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Abstract The massive presence of silent members in

online communities, the so-called lurkers, has long at-

tracted the attention of researchers in social science,

cognitive psychology, and computer-human interaction.

However, the study of lurking phenomena represents an

unexplored opportunity of research in data mining, in-

formation retrieval and related fields. In this paper, we

take a first step towards the formal specification and

analysis of lurking in social networks. We address the

new problem of lurker ranking and propose the first cen-

trality methods specifically conceived for ranking lurk-

ers in social networks. Our approach utilizes only the

network topology without probing into text contents

or user relationships related to media. Using Twitter,

Flickr, FriendFeed and GooglePlus as cases in point,

our methods’ performance was evaluated against data-

driven rankings as well as existing centrality methods,

including the classic PageRank and alpha-centrality.

Empirical evidence has shown the significance of our

lurker ranking approach, and its uniqueness in effec-

tively identifying and ranking lurkers in an online social

network.

Keywords lurker ranking · lurking coefficient ·
LurkerRank · delurking

1 Introduction

The majority of members of online communities play a

passive or silent role as individuals that do not readily
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contribute to the shared online space. Such individuals

are called lurkers, since they belong to a community but

remain quite unnoticed while watching, reading or, in

general, benefiting from others’ information or services

without significantly giving back to the community.

Lurking characterization in online communities has

been a controversial issue from a social science and

computer-human interaction perspective [20]. Since the

early works on social motivations and implications of

lurking [45,47], one common perception of lurking is

that based on the infrequency of active participation

to the community life, but other definitions have been

given under the hypotheses of free-riding [32], legit-

imate peripheral participation [36,28], individual in-

formation strategy of microlearning [30], and knowl-

edge sharing barriers (e.g., interpersonal or technolog-

ical barriers) [6]. Lurkers might also be perceived as

a menace for the cyberspace as they maliciously feed

on others’ intellects. For instance, in P2P file sharing

systems [19], lurking may correspond to a leeching be-

havior whenever a user wastes valuable bandwidth by

downloading much more than what s/he uploads. In the

realm of online social networks (OSNs), negative views

of the lurkers have been however supplanted with a neu-

tral or even marginally positive view. A neutral per-

ception of lurkers is related to the fact that their silent

presence is seen as harmless and reflects a subjective

reticence (rather than malicious motivations) to con-

tribute to the community wisdom; half of times, a lurker

simply feels that gathering information by browsing is

enough without the need of being further involved in

the community [47]. However, lurking can be expected

or even encouraged because it allows users (especially

newcomers) to learn or improve their understanding of

the etiquette of an online community before they can

decide to provide a valuable contribution over time.

Lurking is responsible for a participation inequal-

ity phenomenon that is shared by all large-scale on-

line communities. This phenomenon is explained by the

so-called “1:9:90” rule, which states that while 90% of

users do not actively contribute, 9% of users may con-

tribute (i.e., comment, like or edit) from time to time,

and only 1% of users create the vast majority of so-

cial content [45,47]. Consequently, such inequities lead

to a biased understanding of the community, whereby

a major risk is that we will never hear from the silent

majority of lurkers. Therefore, a challenge is to attract,

or de-lurk, the crowd of lurkers, whereby online adver-

tising strategies should be tailored to the lurkers’ be-

havioral profile. Moreover, since lurkers have knowledge

about the online community (as a result of the sub-

stantial time they dedicate towards learning from the

community), delurking can mainly be seen as a mix of
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strategies aimed at encouraging lurkers to return their

acquired social capital, through a more active partici-

pation to the community life.

Understanding user behaviors has long been studied

in online social networks. A key element that is shared

by all studies is the use of a social graph model as the

basic tool to represent relationships among users [55].

Relationships, or ties [26], can vary over a spectrum

that include friendships and followships [33,4,43,34,

15,57], visible interactions [17,37,54,57,41], and latent

interactions (based on, e.g., browsing profiles or click-

stream data) [50,9,29].

Surprisingly, despite the fact that lurking has been

recognized and surveyed in social sciences, we are not

aware of any previous study on lurking in social net-

works from a graph data management or mining per-

spective. Particularly, no computational method has

been so far conceived to determine, and eventually, rank

lurkers in an OSN graph. Note that, beyond the fre-

quent yet trivial case of users that exhibit a peripheral

unstructured membership, hidden forms of lurking are

massively present in OSNs, which make it challenging

to mine lurkers. While lurking is hard to track from a

personal dispositional viewpoint, it appears that rank-

ing lurkers is still possible by handling the situational

variables that are related to the network of relationships

between members. Moreover, a well-founded principle

of eigenvector centrality, which is adopted in this work,

will enable the determination of each node’s lurking

score in function of the lurking scores of the nodes that

it is connected to.

One may notice that ranking influential people is

clearly valuable as we naturally tend to follow lead-

ers and learn from them, and conversely wonder “why

ranking lurkers?”. We argue that scoring community

members as lurkers, rather than limiting to solely rec-

ognize (potential or actual) lurkers, should be seen as

essential to determine the contingencies in the network

under which different lurking behaviors occur, and ul-

timately to aid devising both generic and ad-hoc de-

lurking plans and strategies. In effect, ordering mem-

bers by decreasing lurking score would enable to man-

age priority in de-lurking applications, to identify the

sub-communities particularly affected by lurkers, and

to define personalized triggers of active participation.

For example, lurkers of a given sub-community devel-

oped around an entity of interest (e.g., a person, or

theme) would welcome messages that highlight the key

topics (a service that is already delivered to its users

by Twitter, for example), social events that describe

how to approach a discussion in a forum or to start

off your own project in a collaboration network, or in-

troduce the role of forum moderators or team leaders.

Moreover, in order to alleviate information overload,

which is recognized as a major negative factor for par-

ticipation, various mechanisms of filtering (e.g., recom-

mending threads of discussion, providing visual maps of

the categories of activities) or promotion of lightweight

contribution tasks (e.g., [22]) could be applied with the

ultimate goal of revealing the lurker’s value (i.e., ideas,

opinions, expertise) to the community.

Contributions. This paper extends our previous

work [53], in which we took a first step towards min-

ing lurkers in OSNs. We scrutinize the concept of lurk-

ing in OSNs to determine the essential criteria that

can be taken as the basis for mining lurkers. We lay

out a topology-driven lurking definition upon a network

representation modeling the directed relationships from

information-producer to information-consumer. Our lurk-

ing definition is based on three principles that respec-

tively express in/out-degree related properties of a given

node, its in-neighborhood, and its out-neighborhood.

We also define a lurking coefficient to characterize the

topology of a network in terms of lurking degree.

The proposed lurking definition lends itself natu-

rally to score the users in an OSN according to their

lurking behavior, thus enabling the development of rank-

ing mechanisms. We hence focus on the problem of

lurker ranking, and define three formulations of it that

rely on the different aspects of our topology-driven lurk-

ing concept. By resorting to classic link-analysis rank-

ing algorithms, PageRank and alpha-centrality, we pro-

vide a complete specification of lurker ranking methods.

We also propose a randomization-like model that simu-

lates a mechanism of “self-delurking” of a network, and

a lurking-oriented percolation analysis to unveil pos-

sible relations between lurkers and users that act as

bridges over subnetworks.

We conducted experiments on Twitter, Flickr, Friend-

Feed, and GooglePlus networks. Quantitative and qual-

itative results have shown the effectiveness of our lurker

ranking approach, highlighting superior performance a-

gainst PageRank, alpha-centrality and the Fair-Bets

model, which conversely might fail to correctly identify

and rank presumed lurkers. We have finally provided

a preliminary exploration of relations between lurking

and trustworthiness in an OSN.

The remainder of this paper is organized as follows.

Section 2 introduces our definitions of topology-driven

lurking and lurking coefficient of a network. Our lurker

ranking methods are described in Section 3. Section 4

and Section 5 present experimental methodology and

results. Section 6 discusses related work. Pointers for

future research are provided in Section 7, and Section 8

concludes the paper.
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Fig. 1 An example OSN graph for our lurking-oriented rank-
ing analysis.

2 In-degree, Out-degree, and Lurking

User interactions in an OSN are typically modeled as in-

fluence relationships, whose varying strengths are used

to determine and rank the influential users. In effect,

ranking methods, such as PageRank, follow the con-

ventional model of influence graph, which implies that

the more incoming links a node has the more impor-

tant or authoritative it is; for example, translated to

Twitter terms, the more followers a user has, the more

interesting his/her published tweets might be. Actually,

as is well-known in spam detection, a node’s in-degree

can easily be affected by malicious manipulation, and

hence the number of incoming links is not to be trusted

as unique estimator of the node’s importance score.

Rather, as discussed in [24] in the Twitter scenario, the

follower-to-followee ratio should in principle be consid-

ered: if the number of followers exceeds those of fol-

lowees then the user is likely to be an opinion-maker,

otherwise her/his tweets are not that interesting.

We however observe that classic authority-based rank-

ing methods (i.e., PageRank and related methods) can-

not be directly applied to lurking analysis because they

assume that links across users carry the meaning of

node influence propagation, which is related to the a-

mount of information (number of walks) a node pro-

duces. By contrast, lurking behaviors build on the amount

of information a node consumes; again, in Twitter terms,

if user v follows user u, then v is benefiting from u’s in-

formation (i.e., v is receiving u’s tweets).

A question might arise whether there is any evi-

dent correlation between the in/out-degree ratio and

the in-degree distribution in an OSN graph. To roughly

answer the question, we empirically investigated this

aspect on the networks we used for our experimental

evaluation (cf. Section 4.1); Figure 2 displays the aver-

age in/out-degree for each in-degree k, on some selected

datasets. While the charts show substantially different

trends, they all provide evidence on the poor correla-

tion between in/out-degree ratio and the in-degree dis-

tribution. For the FriendFeed and GooglePlus cases,

it can be observed a slightly upward trend for low in-

degree values, while for Twitter-UDI , the initial up-

trend rapidly decreases for low-mid in-degrees. All cases

however present high dispersion of in/out-degrees for

mid-high in-degrees.

2.1 Topology-driven Lurking

Upon the in/out-degree ratio intuition, we now provide

a basic definition of lurking which aims to lay out the

essential hypotheses of a lurking status based solely on

the topology information available in an OSN.

Definition 1 (Topology-driven lurking) Let G =

〈V, E〉 denote the directed graph representing an OSN,

with set of nodes (members) V and set of edges E ,

whereby the semantics of any edge (u, v) is that v is

consuming information produced by u. A node v with

infinite in/out-degree ratio (i.e., a sink node) is trivially

regarded as a lurker. A node v with in/out-degree ratio

not below 1 shows a lurking status, whose strength is

determined based on:

Principle I: Overconsumption. The excess of informa-

tion-consumption over information-production. The

strength of v’s lurking status is proportional to its

in/out-degree ratio.

Principle II: Authoritativeness of the informa-

tion received. The valuable amount of informa-

tion received from its in-neighbors. The strength of

v’s lurking status is proportional to the influential

(non-lurking) status of the v’s in-neighbors.

Principle III: Non-authoritativeness of the in-

formation produced. The non-valuable amount

of information sent to its out-neighbors. The strength

of v’s lurking status is proportional to the lurking

status of the v’s out-neighbors.

To support this intuition, let us consider the example

of network in Figure 1. Nodes 3, 7, 8, 10, 11 have the

highest in/out-degree ratio (i.e., 2), and as such they

are candidate lurkers in the network. However, node 8

should be scored higher than others, since it benefits

from information coming from two connected compo-

nents, which are likely to contain influential nodes in

the network (i.e., 5, 6). By contrast, nodes 10, 11 should

be scored as lurkers lower than node 8, since they are

mainly fed by 8 itself; similarly, nodes 3, 7 should be

scored higher than 10, 11 but lower than 8, since they

receive information that propagates from a smaller sub-

graph. Note that the example allows us to shed light on

a crucial aspect related to the role that node 8 has in

the network. In effect, one may say that 8 is a “bridge”
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Fig. 2 Average in/out-degree as function of the in-degree k, on double-logarithmic scale. Sink and source nodes are discarded.

as it allows readers 9, 10, and 11 to peek into two oth-

erwise separated communities. However, in our network

model oriented to information consumption, the notion

of bridge is also revised: the communication received

from 9, 10, and 11 is likely to be less significant (in

terms of amount and/or quality) than the bandwidth

of information flow originated from the two largest com-

ponents and received from 8. In Section 5.4, we shall in-

vestigate the relationship between lurkers and bridges,

which will confirm that it’s correct to regard node 8 as

top-lurker.

2.2 Lurking Coefficient of a network

The participation inequality “1:9:90” rule loosely tells

us that the majority of users shows a potential lurking

behavior, in any generic online community. But, can we

have a more precise indication of the presence of lurkers

given a particular network? To answer this question we

introduce here a measure, named Lurking Coefficient,

as a basic lurking-related property of the topology of a

network.

Given the directed graph G = 〈V, E〉 representing

an OSN, for any node i ∈ V let Bi = {j|(j, i) ∈ E}
and Ri = {j|(i, j) ∈ E} denote the set of in-neighbors

(i.e., backward nodes) and out-neighbors (i.e., reference

nodes) of i, respectively. The sizes of sets Bi and Ri are

the in-degree and the out-degree of i, denoted as in(i)

and out(i), respectively. The local Lurking Coefficient

of a node is first introduced to measure how likely any

given node i is a lurker within its neighborhood. We

define this quantity as:

lci =
1

|Vi|

∑
j∈Bi

1

{
in(j)

out(j)
<

in(i)

out(i)

}
+

∑
j∈Ri

1

{
in(j)

out(j)
≥ in(i)

out(i)

} (1)

where Vi is the set of neighbors of i, and 1{A} is the

indicator function, which is equal to 1 when the event A

is true, 0 otherwise. Note that the two additive terms in

Eq. (1) are in accordance with Principle II and Principle

III, respectively, of Def. 1. The Lurking Coefficient of

a graph G is then given by the weighted average of the

local Lurking Coefficients over the nodes in G:

LCG =
1

|V|
∑
i∈V

pi · lci (2)

where pi is the weight of lci. This weight, unitary by de-

fault, can be set in accordance with Principle I, hence it

is defined as the in/out-degree ratio of i normalized over

all nodes in its neighborhood. We will refer to the vari-

ant of LC with non-unitary weights as weighted Lurk-

ing Coefficient (wLC).

3 Lurker Ranking

In this section we formulate our solutions to the prob-

lem of lurker ranking. To this aim, we will capitalize

on the three principles stated in our topology-driven

lurking definition. Note that, as a general premise valid

for all lurker ranking methods that we shall present,

we introduce a Laplace smoothing factor in the calcu-

lation of both in-degree and out-degree of node, i.e.,

in(i) (resp. out(i)) is meant hereinafter as the actual

in-degree (resp. out-degree) of node i plus one. This

allows us to deal with sink nodes and avoid infinite

in/out-degree ratios.

According to Principle I in Definition 1, a basic way

of scoring a node as a lurker is by means of its in/out-

degree ratio. However, this way has clearly the disad-

vantage of assigning many nodes the same or very close

ranks and, as we previously discussed, it ignores that

the status of both the in-neighbors (Principle II) and

out-neighbors (Principle III) contributes to the status



Lurking in Social Networks: Topology-based Analysis and Ranking Methods 5

of any given node. In the following we elaborate on each

of those aspects separately.

In-neighbors-driven lurking. According to Princi-

ple II in Definition 1, an in-neighbors-driven lurking

measure can be defined as:

ri =
∑
j∈Bi

out(j)

in(j)
rj

Hence, the score of node i increases with the number of

its in-neighbors and with their likelihood of being non-

lurkers, which is expressed by a relatively high out/in-

degree. The above formula can be enhanced by includ-

ing a factor that is inversely proportional to the i’s

out-degree. Formally, we define the in-neighbors-driven

lurking score of node i as:

ri =
1

out(i)

∑
j∈Bi

out(j)

in(j)
rj (3)

Note that Eq. (3) accounts for both the contribution of

a node’s in-neighbors and its own in/out-degree prop-

erty.

Out-neighbors-driven lurking. The exclusive con-

tribution of out-neighbors for the calculation of a node’s

lurking score, according to Principle III of Definition 1,

can be formalized as:

ri =
∑
j∈Ri

in(j)

out(j)
rj

However, this method would let the score of a node

increase with the tendency of its out-neighbors of be-

ing lurkers, while ignoring the status of the node itself;

as a consequence, not only reciprocal lurkers will be

scored high but also every node from which lurkers re-

ceive information. A correction factor should hence be

introduced as proportional to the in-degree of the tar-

get node. Formally, we define the out-neighbors-driven

lurking score of node i as:

ri =
in(i)∑

j∈Ri
in(j)

∑
j∈Ri

in(j)

out(j)
rj (4)

Note that in Eq. (4), the in-degree of node i is divided

by the sum of in-degrees of its out-neighbors in order

to score i higher if it receives more than what its out-

neighbors receive.

In-Out-neighbors-driven lurking. The two previ-

ous definitions of lurking can in principle be combined

to obtain an integrated representation of all three prin-

ciples in Definition 1. To this aim, we define the in-out-

neighbors-driven lurking score of node i as:

ri =

 1

out(i)

∑
j∈Bi

out(j)

in(j)
rj


1 +

 in(i)∑
j∈Ri

in(j)

∑
j∈Ri

in(j)

out(j)
rj

 (5)

Note that in Eq. (5) we have emphasized the aspect

related to the strength of non-lurking behavior of in-

neighbors, which is expected to have a better fit of the

hypothetical likelihood function for a given node.

3.1 LurkerRank methods

We now define our lurker ranking methods, dubbed

LurkerRank (for short LR), upon the previously de-

fined lurking models. In order to provide a complete

specification of our models, we resorted to the classic

eigenvector-centrality schemes offered by PageRank [11]

and alpha-centrality [10]. Note that while being widely

applied to a variety of application domains with the

purpose of scoring the influence or prestige in informa-

tion networks, PageRank and alpha-centrality rely on

different assumptions which make it worth the explo-

ration of lurker ranking through both approaches.

Let us first recall the PageRank mathematics. The

PageRank vector is the unique solution of the iterative

equation r = αSr + (1 − α)v. S denotes the column-

stochastic transition probability matrix, which is de-

fined as (Dout
−1A)T + eaT/|V|, where A is the adja-

cency matrix of the network graph G = 〈V, E〉, with

Aij = 1 if (vi, vj) ∈ E , and Aij = 0 otherwise; Dout =

diag(Ae) is the out-degree diagonal matrix; e denotes

a |V|-dimensional column vector of ones; and a is de-

fined such that ai = 1 if node i has zero out-degree, and

0 otherwise. Vector v is typically defined as (1/|V|)e,

but can be modeled to bias the PageRank to boost a

specific subset of nodes in the graph. Term α is a real-

valued coefficient (α ∈ [0, 1], commonly set to 0.85),

which acts as a damping factor so that the random

surfer is expected to discontinue the chain with proba-

bility 1− α, and hence to randomly select a page each

with relevance 1/|V| (teleportation).

We formulate three of our methods according to a

PageRank-like scheme, i.e., at a high level, according

to a combination of a random walk term with a ran-

dom teleportation term. Our first LurkerRank method

is named in-neighbors-driven LurkerRank (hereinafter
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denoted as LRin) since it is built upon Eq. (3):

ri = α

 1

out(i)

∑
j∈Bi

w(j, i)
out(j)

in(j)
rj

 +
1− α
|V|

(6)

Note that with Eq. (6), we introduce edge weights to

deal with weighted graphs as well, for the sake of gen-

erality; although, as in our experimental setting, they

are set as unitary by default. Analogously, the out-

neighbors-driven LurkerRank (hereinafter denoted as

LRout) is defined as:

ri = α

 in(i)∑
j∈Ri

in(j)

∑
j∈Ri

w(i, j)
in(j)

out(j)
rj

+

1− α
|V|

(7)

Finally, the in-out-neighbors-driven LurkerRank (here-

inafter denoted as LRin-out) is defined as:

ri = α

 1

out(i)

∑
j∈Bi

w(j, i)
out(j)

in(j)
rj

(1+

 in(i)∑
j∈Ri

in(j)

∑
j∈Ri

w(i, j)
in(j)

out(j)
rj

+
1− α
|V|

(8)

Alpha-centrality [10] expresses the centrality of a

node as the number of paths linking it to other nodes,

exponentially attenuated by their length. Moreover, it

takes into account the possibility that each node’s sta-

tus may also depend on information that comes from

outside the network or that may regard solely the mem-

ber. Alpha-centrality is defined as r = αATr+v, where

v is the vector of exogenous source of information (v =

e as default), and α here reflects the relative importance

of endogenous versus exogenous factors in the determi-

nation of centrality. High values of α (e.g., 0.85) make

the close neighborhood contribute less to the central-

ity of a given node. The rank obtained using alpha-

centrality can be considered as the steady state distri-

bution of an information spread process on a network,

with probability α to transmit a message or influence

along a link.

We will denote our alpha-centrality based Lurker-

Rank methods with prefix ac- to distinguish them from

the PageRank-based counterparts. The alpha-centrality-

based in-neighbors-driven LurkerRank (ac-LRin) is de-

fined as:

ri = α

 1

out(i)

∑
j∈Bi

w(j, i)
out(j)

in(j)
rj

 + 1 (9)
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Fig. 3 Lurker ranking in the example OSN graph of Fig. 1:
LRin (on top) versus PageRank (on bottom). Nodes are sized
proportionally to their ranking scores.

Analogously, other two methods, denoted as ac-LRout
and ac-LRin-out, are defined according to the out-neighbors-

driven and in-out-neighbors-driven lurking models, re-

spectively.

Figure 3 compares the rankings obtained by our

LRin and basic PageRank on the example network of

Figure 1 (α set to the default 0.85). Using LRin, node 8

was ranked highest (0.146), followed by 3 and 7 (0.112),

and then 11 (0.094), 10 (0.088): this sheds light on the

ability of LRin to match our definition of lurking (cf.

discussion about Fig. 1 in Section 2). By contrast, Page-

Rank ranked first nodes 10 and 11 (both around 0.256),

and then 3 and 7 with a significant gap in score from

the first two (0.116), followed by 8 (0.052), 1 (0.048);

moreover, node 5 was ranked eighth, despite it is a ma-

jor feeder of the lurker 8, while it was correctly ranked

lowest by LRin. Similarly, alpha-centrality (results not

shown) did not fare well as it ranked first nodes 11

(0.317) and 10 (0.308), before ranking node 8 (0.095),

and nodes 3 and 7 in ninth and tenth position both

with a score of 0.004.

3.2 Limit α→ 0 of the LR functions

We investigate the behavior of LR functions to un-

derstand whether LR rank can be reduced to either

the in/out-degree or the out/in-degree rank as α ap-

proaches 0. We take the LRin functional form as case

in point, while analogous conclusions can be drawn for

the other LR functions.

In the extreme case α = 0, the LRin score of each

vertex is equal to 1/|V|. If α ≈ 0, then (1 − α) → 1,
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(a) Flickr (b) FriendFeed (c) Twitter-Kwak

Fig. 4 LRin rank versus in/out-degree rank. Damping factor α is set to 0.01. Sink and source vertices are discarded.

therefore we write 1 − α = 1 − ε, with ε � 1, and

ri ≈ 1/|V|. Substituting these into Eq. (6), with unitary

edge weights for the sake of simplicity, we have:

ri = ε

 1

out(i)

∑
j∈Bi

out(j)

in(j)
rj

 +
1− ε
|V|

≈ 1

|V|

1 + ε

 1

out(i)

∑
j∈Bi

out(j)

in(j)
− 1

 (10)

A crucial part in Eq. (10) is the estimation of the sum.

This term would be estimated as proportional to the

in/out-degree of vertex i and to the average out/in-

degree 〈 outin 〉:

ri ≈
1

|V|

[
1 + ε

(
in(i)

out(i)

〈
out

in

〉
− 1

)]
(11)

The above approximation is however admissible only if

a relatively small dispersion can be assumed to hold for

the out/in-degree distribution. Unfortunately, in all our

evaluation network datasets (cf. Sect. 4.1), this does not

seem the case since the out/in-degree distribution is al-

ways found to be less narrow than the corresponding

in/out-degree distribution, as reported in Table 1. This

would indicate that in principle LRin rank distribution

is likely not to follow exactly the same trend as that of

in/out-degree as α ≈ 0. In effect, although a moderate

to strong positive correlation may still occur — 0.568 on

FriendFeed (Fig. 4(b)), 0.674 on Twitter-UDI , 0.679 on

Flickr (Fig. 4(a)), 0.686 on Twitter-Kwak (Fig. 4(c)),

and 0.745 on GooglePlus — Fig. 4 shows that top-

ranked vertices by LRin often do not correspond to top-

ranked in/out.

4 Experimental Evaluation

4.1 Data

We used five OSN datasets for our evaluation, namely

Twitter (with two different dumps), Flickr, FriendFeed,

and GooglePlus:

– From the Twitter dump studied in [34], which we

will refer to as Twitter-Kwak, we extracted the follower-

followee topology starting from a connected compo-

nent of one hundred thousands of users and their

complete neighborhoods. A partial copy of the tweet

data used in [34] was exploited to define a Twitter-

based data-driven ranking and also to perform a

qualitative evaluation on Twitter-Kwak, as we shall

describe in Section 4.2.

– The Twitter-UDI dataset [38] was originally col-

lected in May 2011, hence it’s more recent and also

larger than Twitter-Kwak. Tweet data however could

not be exploited for our analysis since they are avail-

able only for a very small subset of users in Twitter-

UDI (less than 0.6%) and they are also upper-bounded

(limit of 500 tweets per user) [38].

– We used the entire Flickr data studied in [42], orig-

inally collected in 2006-2007. Information on the

number of views and number of favorite markings

every photo had, was exploited for our definition of

Flickr-based data-driven ranking.

– We used the latest version of the FriendFeed dataset

studied in [14]. Due to the recognized presence of

spambots in this OSN dataset, we filtered out users

with an excessive number of posts (above 20 posts

per day) as suggested in [14].

– GooglePlus dataset was originally studied in [40],

and consists of circles from GooglePlus. The dataset

was collected from users who had manually shared

their circles using the share circle feature, and the
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Table 1 Mean and standard deviation values of in/out-degree and out/in-degree.

in/out ∗ in/out ∗∗ out/in ∗ out/in ∗∗

mean sd mean sd mean sd mean sd

Flickr 1.096 3.377 2.731 10.557 1.263 4.583 5.554 20.085
FriendFeed 1.664 5.693 10.359 15.353 8.682 71.771 63.269 219.387
GooglePlus 3.947 11.200 24.350 27.665 3.739 46.235 27.984 144.051
Twitter-Kwak 2.647 3.863 11.662 9.442 1.263 46.078 6.910 145.665
Twitter-UDI 1.541 1.530 5.517 3.582 1.202 15.758 4.946 50.321

∗ Sink nodes and source nodes are discarded. ∗∗ Like ∗, but only 90th percentile is considered.

Table 2 Main structural characteristics of the evaluation network datasets.

data # nodes # links avg avg clustering assortativity # sources LC
in-degree path length coefficient # sinks wLC

Flickr 2,302,925 33,140,018 14.39 4.36* 0.107 0.015
360,416 0.573
57,424 0.248

FriendFeed 493,019 19,153,367 38.85 3.82 0.029 -0.128
41,953 0.955
292,003 0.354

GooglePlus 107,612 13,673,251 127.06 3.32 0.154 -0.074
35,341 0.869

22 0.096

Twitter-Kwak 16,009,364 132,290,000 8.26 5.91* 1.26E-4 -0.095
1,067,936 0.914
10,298,788 0.435

Twitter-UDI 24,984,590 284,884,500 11.40 5.45* 4.96E-3 -0.297
3,380,805 0.790
8,065,287 0.470

∗ Value estimated as (log(|V|))/log(2|E|/|V|).

topology was built by combining the edges from

each node’s ego network.

Beyond the complexity of their technical and soci-

ological aspects, the five networks have been selected

since they naturally provide asymmetric relationships

— recall that in our setting, a link from user i to user

j means that j is a follower or subscriber of i — and

also because they offer a variety of topological proper-

ties, as shown in Table 2. The table also reports each

network’s Lurking Coefficient (LC), in the upper row,

and weighted LC (wLC), in the bottomer row (cf. Sec-

tion 2.2). Notably, a high LC (ranging from about 0.8

to 0.95) was found for all networks except for Flickr:

this may prompt us to suppose that lurkers would not

characterize Flickr as much as other OSNs; in effect, dif-

ferently from the other selected networks, users would

subscribe and join the Flickr community when they are

willing to upload and share their photos, thus showing

a normal attitude to participate. Moreover, the lower

value of weighted LC that characterizes GooglePlus

could be explained due to a clustering coefficient, along

with variation of in/out degree (Table 1), exhibited by

this network, which are both relatively higher than in

the other ones. Yet, note that the values of assortativ-

ity reported in Table 2 are always negative or close to

zero, which would indicate no tendency of vertices with

similar degree to connect to each other; interestingly,

Twitter-UDI which has the most negative degree of as-

sortativity, has also the largest value of weighted LC.

4.2 Assessment methodology

Competing methods and notations. We compared our

proposed methods against PageRank (henceforth PR),

alpha-centrality (henceforth AC), and Fair-Bets model [13]

(henceforth FB). The latter method was included in the

comparative evaluation as it also exploits the notion of

in/out-degree ratio to rank users, which is seen as a fair-

bets model of social capital accumulation and expendi-

ture; originally conceived to rank players in round-robin

tournaments, the Fair-Bets model assumes that users

are paying each other to accept invitations on an on-

line community, then the fair bets score of a user is the

amount she/he can afford to pay on average. Fair-Bets

computes the score of any node i as

ri =
1

out(i)

∑
j∈Bi

rj

Finally, we included in the evaluation the in/out-degree

distribution of the nodes in a network dataset, as a

baseline method (henceforth IO).

Data-driven evaluation. Given the novelty of the prob-

lem at hand, we had to cope with an issue relating to

the lack of ground-truth data for lurker ranking. In the

attempt of simulating a ground-truth evaluation, we

generated a data-driven ranking (henceforth DD) for a

network dataset and used it to assess the proposed and

competing methods.

On Twitter-Kwak, we calculated the score of a node

as directly proportional to its in/out-degree (Laplace

add-one smoothed, cf. Section 3) and inversely expo-

nentially with a Twitter-specific measure of influence:

r∗i =
in(i)

out(i)
exp(−EI(i))

EI(·) denotes the empirical measure of influence [8]

which is used to estimate the influence of a user based
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on the amount of information s/he posted (i.e., tweets)

and that her/his followers have retweeted. For a user i,

EI(i) =
1

out(i)

∑
j∈Ri

nRetweets(j)

where nRetweets(j) is the number of retweets by fol-

lower j. Note that, as found in [34], a ranking based

on retweets differs from that based on the number of

followers, and this prompted us to combine the two as-

pects in our data-driven ranking.

We defined an analytically similar function for the

FriendFeed data-driven ranking, in which the empirical

measure of influence has been redefined as:

EI(i) =

 1

out(i)

∑
j∈Ri

nCom(j, i)

 log10 (nPosts(i) + 10)

where nCom(j, i) is the number of comments from user

j to posts by user i, and nPosts(i) is the total number

of posts by user i. Note that this combination of indica-

tors of user’s activity with user’s influence was needed

since only a limited portion (below 10%) of users in

FriendFeed had information on the number of received

comments.

For Flickr we produced two data-driven rankings,

dubbed DD-F and DD-V. While still related to the in/out

degree as for the previously defined DD, we used the

number of favorites (DD-F), or alternatively the num-

ber of views (DD-V), received by a user’s photos to set

the exponent (with negative sign) in the data-driven

ranking function.

Unfortunately, for both Twitter-UDI and Google-

Plus we were unable at the time of this writing to gather

adequate information to produce a data-driven ranking,

also due to the restrictive usage limits of both networks

APIs. Note that the information used to generate DD
for Twitter-Kwak was substantially incomplete and ob-

solete to be used for Twitter-UDI .

Assessment criteria. In order to comparatively evalu-

ate our proposed methods’ performance with respect

to the competing methods, we resorted to well-known

assessment criteria, namely Kendall tau rank correla-

tion coefficient [1] Fagin’s intersection metric [21] and

Bpref [12].

Kendall correlation evaluates the similarity between

two rankings, expressed as sets of ordered pairs, based

on the number of inversions of pairs which are needed

to transform one ranking into the other. Formally:

τ(L′,L′′) = 1− 2∆(P(L′),P(L′′))
M(M − 1)

where L′ and L′′ are the two rankings to be compared,

M = |L′|= |L′′| and ∆(P(L′),P(L′′)) is the symmetric

difference distance between the two rankings, calculated

as number of unshared pairs between the two lists. The

score returned by τ is in the interval [−1, 1], where a

value of 1 means that the two rankings are identical and

a value of −1 means that one ranking is the reverse of

the other.

Fagin measure allows for determining how well two

ranking lists are in agreement with each other. This is

regarded as the problem of comparing “partial rank-

ings”, since elements in one list may not be present in

the other list. Moreover, according to [56], a ranking

evaluation measure should consider top-weightedness,

i.e., the top of the list gets higher weight than the tail.

Applied to any two top-k lists L′,L′′, the Fagin score

is defined as:

F (L′,L′′, k) =
1

k

k∑
q=1

|L′:q ∩ L
′′
:q|

q

where L:q denotes the sets of nodes from the 1st to the

qth position in the ranking. Therefore, F is the average

over the sum of the weighted overlaps based on the first

k nodes in both rankings.

Bpref [12] evaluates the performance from a differ-

ent view, i.e., the number of non-relevant candidates. It

computes a preference relation of whether judged rele-

vant candidates R of a list L′ are retrieved, i.e., occur

in a list L′′, ahead of judged irrelevant candidates N ,

and is formulated as

Bpref(R,N)=
1

|R|
∑
r

(
1−#of n ranked higher than r

|R|

)
where r is a relevant retrieved candidate, and n is a

member of the first |R| irrelevant retrieved candidates.

In our setting, we first determined N as the set of nodes

with data-driven ranking score below or equal to 1,

and used it for comparisons with DD, when available;

whereas, for comparisons among competing methods,

N was defined as either the bottom of the correspond-

ing method’s ranking having the same size as N in the

data-driven ranking, or (when DD is not available) as

the bottom-25% of the method’s ranking. R was se-

lected as the set of nodes having top-l% score from the

complement of N .

Both F and Bpref are within [0, 1], whereby val-

ues closer to 1 correspond to better scores. For the

experiments discussed in the following, we setup the

size k of the top-ranked lists for Fagin evaluation to

k = 102, 103, 104, and the l% of relevant candidates for

Bpref evaluation to l = 10, 25, 50 (i.e., relevant candi-

dates in the 90th percentile, the third quartile and the
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median). Moreover, unless otherwise specified, F scores

will correspond to ranking lists without sink nodes,

in order to avoid biasing (presumably overstating) our

evaluation with trivial lurkers.

5 Results

We present here our experimental results, which are or-

ganized as follows. We begin first with an analysis of

reciprocity and attachment behaviors of lurkers. Sec-

tion 5.2 is devoted to present quantitative results on

the ranking performance obtained by the proposed and

competing methods. In Section 5.3, we introduce a ran-

domization-like model to study how to support “self-

delurking” of a network, whereas in Section 5.4 we present

a lurking-oriented percolation analysis. Finally, in Sec-

tion 5.5, we provide a qualitative insight into the meth-

ods’ ranking behavior.

Notations: Here we briefly recall main notations

that will be used throughout this section. LR and ac-
LR prefixed abbreviations refer to our proposed Lurker-

Rank methods (cf. Section 3.1). The following notations

are abbreviations for the competing methods (cf. Sec-

tion 4.2): IO stands for in/out-degree ratio ranking; PR,

PR, and FB stand for PageRank, alpha-centrality, and

Fair-Bets model, respectively. Moreover, DD symbols

refer to data-driven rankings.

5.1 Lurker reciprocity and attachment

We aimed at understanding two different aspects of the

lurking behaviors: (1) how lurkers relate to each other,

in terms of link reciprocity, and (2) how lurker distri-

bution grows with respect to active users, which can be

explained in terms of attachment mechanisms.

Reciprocity. We examined the impact of the presence

of lurkers on measures of reciprocity in the various net-

work graphs, under three different settings that cor-

respond to the top-25%, top-10% and top-5%, respec-

tively, of a LR ranking solution. Specifically, we consid-

ered four measures of reciprocity, namely (i) the number

of reciprocal lurking edges (i.e., reciprocal edges in the

lurking-induced network graph), (ii) the percentage of

reciprocal lurking edges to the total number of edges

in the original graph (denoted as rle), (iii) the frac-

tion of reciprocal edges in the original network graph

that connect lurkers to each other, and (iv) the frac-

tion of edges that connect lurkers to each other within

a lurking-induced subgraph.
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Fig. 5 Fraction of reciprocal edges in the lurking-induced
subnetworks.

Table 3 reports results obtained by the LRin-out
method. A first remark is that rle was very small or neg-

ligible regardless of the portion of LR ranking solution

considered. An exception was represented by Flickr,

whose rle varied from about 50% to 10%; this could

be explained as an effect of the crawling mechanism

used to build the Flickr network dataset, since unlike

the other datasets, it was obtained starting from a sin-

gle seed user and then performing a breadth-first search

on the social network graph. Considering the fraction

of reciprocal edges in the original network graph that

connect lurkers to each other (results not shown), again

with the exception of Flickr we observed a very small

value even for the case of top-25% lurkers (around 23%

for GooglePlus, 5% for Twitter-UDI , and below 1% for

FriendFeed and Twitter-Kwak), while approaching zero

when the top-ranked solution is narrowed to 10% or

smaller.

Note that, while LRin behaved very similarly to LRin-
out, results obtained by LRout showed that rle values

were significantly higher than those observed in Table 3,

with averages over the datasets equal to 35% (top-25%),

27% (top-10%), and 20% (top-5%). Even higher were

the values of the fraction of reciprocal edges in the

original network graph connecting lurkers, with peaks

above 90% in the top-25% case, and averages of 85%

(top-25%), 63% (top-10%), and 45% (top-5%). These

findings were actually not surprising since LRout is de-

signed to emphasize the lurking attitude of any node

from which a target node receives information.

Figure 5, as complementary to Table 3, shows the

fraction of edges that connect lurkers to each other

within a lurking-induced subgraph. In the figure, we

also included for comparison the case of “potential lurk-

ers”, regarding them as those nodes having in/out-degree

ratio above 1. An evident remark is that the reciprocity

between lurkers generally followed a decreasing trend
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Table 3 Reciprocity and lurking. rle is the number of reciprocal lurking edges (i.e., reciprocal edges in the lurking-induced
network graph) divided by the total number of edges in the original graph.

top-25% of the LRin-out solution top-10% of the LRin-out solution top-5% of the LRin-out solution
# recip. edges # edges # reciprocal % rle # edges # reciprocal % rle # edges # reciprocal % rle

(full graph) (induced graph) lurking edges (induced graph) lurking edges (induced graph) lurking edges

Flickr 20,603,483 23,352,367 16,440,872 49.61 12,349,595 8,704,922 26.27 5,030,759 3,192,712 9.63
FriendFeed 3,014,306 340,935 33,654 0.18 1,096 46 <0.01 2 0 0.00
GooglePlus 2,870,336 1,413,468 667,422 4.88 49,481 23,562 0.17 5,310 2,624 0.02
Twitter-Kwak 52,137,192 7,293 2,806 <0.01 216 52 <0.01 64 10 <0.01
Twitter-UDI 191,858,256 18,839,845 10,078,339 3.54 3,094,341 1,198,615 0.42 872,332 271,751 0.10

(a) (b) (c) (d)

Fig. 6 Distribution of active users as a function of the lurkers-followers (a)-(c) and distribution of lurkers as a function of the
active users-followees (b)-(d). (GooglePlus, two plots from the left, and Twitter-UDI , two plots from the right).

varying from the “potential lurkers” to the top-5% set-

ting; this trend was quite slow or roughly stagnant

on three out of five datasets (i.e., Flickr, GooglePlus,

and FriendFeed) but much sharper in the two largest

networks (i.e., the two Twitter datasets). Interestingly,

when considering LRout instead of LRin-out or LRin, the

fraction of reciprocal edges in the lurking-induced sub-

graph was in general not longer observed as a decreasing

function by decreasing sizes of lurker sets; the trend was

rather increasing for the Twitter datasets (upper val-

ues of 0.78 for Twitter-UDI and 0.60 for Twitter-Kwak)

and for FriendFeed (upper value of 0.32).

Attachment. We focus now on the relation between

lurkers and the “active” users they are linked to. Specif-

ically, we analyzed the distribution of lurkers as func-

tion of the degree of attached active users, and dually

for the distribution of active users. For this analysis, we

selected the same fraction (25%) from the top and from

the bottom of the LRin-out ranking solution in order to

choose the set of lurkers and the set of active users,

respectively, under examination.

Our goal was to understand whether the probabil-

ity of observing active users with a certain degree of

attached lurkers, and vice versa, can be predicted by

a power law. Therefore, for each dataset, we learned

the best fit of a power law distribution to the observed

data, where the statistical significance of this fitting was

assessed based on a Kolmogorov-Smirnov test. The re-

sulting plots obtained on our datasets showed a power

law behavior for both the distribution of lurkers (fol-

lowing k active users) and the distribution of active

users (followed by k lurkers); Figure 6 shows the plots

for GooglePlus and Twitter-UDI . The exponent of the

fitted power law distributions varied from 1.67 (Google-

Plus and Twitter-Kwak) to 2 (FriendFeed, Twitter-

UDI), for the distribution of active users, and from

1.36 (Flickr, Twitter-Kwak) to 1.86 (GooglePlus), for

the distribution of lurkers. Significant fitting was ac-

tually found in general for both distributions in each

dataset, which would indicate that they may follow a

preferential attachment mechanism: active users, who
already are followed by a large number of lurkers, are

likely to attract even more lurkers; analogously, lurk-

ers, who already follow a large number of active users,

are more likely to do so. Moreover, as smaller values

of the Kolmogorov-Smirnov statistic denote better fit,

we observed a slight tendency of better explaining the

growing of the number of lurkers (rather than of active

users) by preferential attachment on GooglePlus and

Twitter-UDI , while an opposite situation was found on

Flickr.

5.2 Ranking evaluation

Correlation analysis with data-driven rankings. Table 4

shows the Kendall tau rank correlation obtained by our

LurkerRank methods and by the competing methods

with respect to the data-driven ranking (DD) for all

eligible datasets.
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Table 4 Comparative performance of LurkerRank methods and competitors with respect to data-driven rankings: Kendall
tau rank correlation values (with 95% confidence intervals in parentheses).

dataset IO PR AC FB LRin LRout LRin-out ac-LRin ac-LRout ac-LRin-out

FriendFeed .169 (± .003) .128 (± .004) .230 (± .005) .373 (± .004) .661 (± .003) -.169 (± .005) .497 (± .003) .664 (± .003) -.189 (± .005) .470 (± .003)
Flickr vs DD-V .046 (± .008) .043 (± .005) .043 (± .008) .047 (± .002) .247 (± .007) -.007 (± .013) .239 (± .014) .234 (± .014) .011 (± .014) .251 (± .013)
Flickr vs DD-F .052 (± .007) .049 (± .005) .049 (± .008) .053 (± .002) .231 (± .006) .003 (± .012) .260 (± .013) .255 (± .013) .011 (± .014) .273 (± .012)
Twitter-Kwak .171 (± .006) .004 (± .011) .215 (± .010) .235 (± .012) .671 (± .007) -.082 (± .004) .559 (± .008) .659 (± .008) -.073 (± .004) .560 (± .008)

Bold values refer to the highest correlation per dataset. All values except those in italic are statistically significant (under the null hypothesis
of independence of two rankings).

The in-neighbors-driven and in-out-neighbors-driven

LurkerRank methods generally obtained the highest cor-

relation with DD (e.g., 0.67 by LRin on Twitter-Kwak,

0.66 by ac-LRin on FriendFeed). Results confirmed that

LRin and LRin-out (and their ac- counterparts) signif-

icantly improved upon all competing methods, with

maximum gains of 0.59 against IO, 0.66 against PR,

0.45 against AC and 0.43 against FB.

Note that LRout and ac-LRout obtained the low-

est scores on all datasets: interestingly, this behavior

confirms our intuition that determining the strength

of lurking of a given node should not depend solely

on the strength of the lurking behavior shown by the

out-neighbors of that node (i.e., Principle III of Defini-

tion 1).

Concerning correlation of each of the competing meth-

ods with DD, we observed on FriendFeed and Twitter-

Kwak some correlation for FB (up to 0.37) and AC (up

to 0.23), while IO and PR showed poor correlation. How-

ever, on Flickr, all competing methods tended to be

uncorrelated with the two DD, with an average corre-

lation of 0.05 over all competitors. More interestingly,

it is worth noting that IO generally showed poor corre-

lation with DD, which not only would justify the use of

in/out-degree ranking as a baseline competing method,
but also gives evidence that in/out-degree cannot be

considered as a basic approximation of LurkerRank.

Comparative evaluation with LurkerRank methods.

Tables 5–9 compare our LurkerRank methods against

PageRank, alpha-centrality, Fair-Bets (all at conver-

gence) as well as against DD (where possible) and IO.

Note that results are organized on 3-row groups, where

each row in a group corresponds to a specific variation

of the Fagin’s or Bpref’s parameters.

On Twitter-Kwak (Table 5), LRin and LRin-out along

with their ac- counterparts showed a relatively much

higher F intersection with DD (0.516 on average) and

IO (0.473) than with FB (0.08), and a nearly empty

F with respect to PR and AC. By contrast, LRout and

ac-LRout exhibited a larger F with PR, although be-

low 0.316 on average, while scoring even lower with

respect to the other methods. Bpref evaluation led to

mostly similar remarks on the relative comparison be-

Table 5 Comparative performances on Twitter-Kwak.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB

LRin .527 .404 0.0 0.0 .112 .997 .992 .121 .790 .441
.289 .209 0.0 0.0 .127 .995 .989 .473 .914 .704
.581 .617 .001 .001 .068 .985 .962 .521 .866 .606

LRout .030 .032 .181 .010 .034 .045 0.0 .754 .311 .313
.008 .008 .351 .024 .015 .055 .001 .757 .650 .600
.003 .002 .437 .048 .005 .109 .074 .641 .678 .648

LRin-out .475 .364 0.0 0.0 .064 .968 .981 .039 .826 .204
.314 .277 0.0 0.0 .063 .979 .977 .387 .929 .524
.666 .688 .001 .001 .032 .961 .925 .453 .878 .489

ac-LRin .583 .459 0.0 0.0 .174 .993 .990 .072 .808 .339
.573 .570 0.0 0.0 .122 .992 .988 .443 .921 .653
.767 .810 .001 .001 .048 .982 .967 .501 .872 .575

ac-LRout .038 .032 .244 .006 .036 .049 0.0 .796 .339 .307
.009 .008 .319 .017 .011 .059 0.0 .775 .659 .598
.003 .002 .362 .042 .004 .120 .081 .654 .687 .643

ac-LRin- .473 .363 0.0 0.0 .062 .957 .981 .039 .828 .203
out .278 .234 0.0 0.0 .062 .975 .976 .386 .930 .464

.663 .685 .001 .001 .031 .957 .933 .453 .880 .454

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

Table 6 Comparative performances on Twitter-UDI .

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

IO PR AC FB IO PR AC FB

LRin .337 0.0 0.0 .184 .809 .254 .230 .477
.245 0.0 0.0 .136 .917 .645 .633 .546
.455 0.0 0.0 .292 .927 .709 .715 .568

LRout 0.0 0.0 0.0 0.0 0.0 .867 .767 .164
0.0 .004 0.0 .002 0.0 .876 .766 .339
.001 .021 .006 .001 .275 .810 .732 .531

LRin-out .305 0.0 0.0 .160 .762 .130 .123 .299
.178 0.0 0.0 .078 .897 .546 .550 .405
.172 0.0 0.0 .076 .902 .646 .656 .443

ac-LRin .343 0.0 0.0 .186 .825 .216 .202 .454
.267 0.0 0.0 .152 .924 .617 .617 .524
.446 0.0 0.0 .324 .932 .690 .704 .550

ac-LRout 0.0 0.0 0.0 0.0 0.0 .861 .765 .159
0.0 .004 0.0 .002 0.0 .873 .765 .338
.001 .021 .006 .001 .272 .807 .730 .530

ac-LRin-out .306 0.0 0.0 .161 .877 .113 .153 .140
.176 0.0 0.0 .076 .947 .482 .607 .293
.153 0.0 0.0 .060 .949 .598 .692 .399

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

tween proposed and other methods: LRin, LRin-out and

their ac- counterparts highly matched DD and IO (around

0.97 on average), but also a moderately high Bpref

with respect to AC (0.87) and mid-low Bpref with re-

spect to FB (0.47). Again, as already observed for both

the Kendall evaluation and the Fagin evaluation, LRout
and ac-LRout showed no significant matches in practice

with DD (while scoring pretty high with respect to PR).
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Table 7 Comparative performances on Flickr.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD-F DD-V IO PR AC FB DD-F DD-V IO PR AC FB

LRin .576 .574 .639 0.0 0.0 .552 .361 .327 .921 .465 .769 .502
.451 .433 .511 .003 .007 .463 .532 .496 .953 .522 .783 .488
.297 .286 .383 .018 .008 .313 .650 .630 .931 .499 .987 .570

LRout .102 .101 .123 .045 0.0 .037 .071 .060 .206 .620 .862 .138
.124 .121 .107 .064 0.0 .008 .252 .218 .509 .503 .868 .229
.015 .014 .126 .237 .007 .033 .460 .446 .645 .411 .878 .392

LRin-out .561 .559 .626 0.0 0.0 .536 .353 .321 .878 .441 .761 .520
.462 .444 .520 .004 .007 .462 .305 .292 .883 .474 .766 .509
.311 .301 .398 .021 .008 .310 .430 .417 .667 .478 .748 .594

ac-LRin .609 .607 .676 0.0 0.0 .587 .349 .316 .878 .458 .784 .498
.535 .513 .604 .004 .007 .538 .523 .487 .940 .484 .792 .482
.348 .336 .447 .018 .009 .352 .644 .625 .921 .481 .795 .573

ac-LRout .102 .009 .123 .051 0.0 .037 .071 .060 .209 .622 .660 .138
.105 .101 .107 .072 0.0 .008 .256 .220 .514 .510 .670 .232
.115 .114 .127 .229 .007 .034 .477 .464 .645 .413 .675 .392

ac-LRin- .443 .440 .510 0.0 0.0 .432 .375 .345 .958 .604 .640 .520
out .305 .293 .337 .002 .004 .291 .569 .533 .970 .675 .677 .466

.232 .224 .293 .013 .006 .215 .676 .655 .954 .569 .706 .494

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

Table 8 Comparative performances on FriendFeed.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB

LRin .542 .690 .024 .010 .453 1.0 .980 .331 .606 .985
.488 .586 .108 .118 .384 .998 .976 .570 .802 .977
.576 .628 .126 .153 .493 .986 .953 .678 .843 .898

LRout .015 .009 .479 .620 .011 .008 0.0 .691 .672 .031
.138 .163 .550 .725 .167 .030 .038 .764 .746 .066
.154 .156 .498 .704 .184 .062 .110 .739 .737 .258

LRin-out .207 .297 .032 .042 .170 .972 .910 .252 .604 .879
.278 .320 .061 .064 .166 .955 .910 .553 .794 .870
.424 .455 .076 .099 .338 .914 .874 .642 .815 .813

ac-LRin .575 .735 .025 .014 .467 1.0 .980 .300 .605 .980
.520 .627 .118 .131 .403 .999 .977 .548 .803 .969
.603 .660 .130 .161 .503 .988 .954 .661 .845 .882

ac-LRout .015 .009 .479 .620 .011 .008 0.0 .691 .672 .031
.138 .163 .550 .725 .167 .030 0.0 .749 .726 .066
.154 .156 .498 .704 .184 .040 .080 .723 .718 .257

ac-LRin- .169 .243 0.0 0.0 .126 .958 .891 .237 .594 .852
out .240 .273 .001 .001 .122 .942 .892 .546 .785 .836

.400 .426 .041 .064 .310 .898 .853 .634 .803 .782

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

Table 9 Comparative performances on GooglePlus.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

IO PR AC FB IO PR AC FB

LRin .742 0.0 0.0 .363 1.0 .434 .582 .976
.850 .001 0.0 .480 .993 .584 .695 .962
.881 .063 .144 .592 .987 .684 .722 .937

LRout .011 .079 0.0 .015 .972 .796 .796 .686
.015 .107 .012 .015 .971 .793 .790 .815
.223 .322 .144 .213 .964 .782 .774 .807

LRin-out .629 0.0 0.0 .318 1.0 .462 .587 .907
.721 0.0 0.0 .419 .991 .572 .688 .910
.799 .045 .130 .547 .989 .677 .731 .886

ac-LRin .747 0.0 0.0 .361 1.0 .456 .578 .976
.851 .001 0.0 .477 .992 .546 .702 .963
.882 .063 .143 .591 .988 .699 .724 .937

ac-LRout .011 .077 0.0 .015 .972 .796 .796 .687
.015 .107 .012 .015 .971 .793 .790 .815
.223 .322 .145 .212 .965 .782 .774 .807

ac-LRin-out .647 0.0 0.0 .328 1.0 .489 .586 .896
.729 0.0 0.0 .422 .994 .612 .675 .899
.795 .042 .125 .543 .983 .702 .727 .875

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

Results on Twitter-UDI (Table 6) corroborated the

advantage of LRin and ac-LRin with respect to the other

LR methods. LRin-out and ac-LRin-out achieved lower

F than LRin and ac-LRin, respectively, with respect to

IO and FB, especially for higher k. Compared to the

Twitter-Kwak case, Bpref values were relatively higher

(respectively, lower) with respect to PR (respectively,

AC), except for LRout and ac-LRout which had higher

Bpref with respect to AC than in Twitter-Kwak.

On Flickr (Table 7), once again the best perfor-

mance against the data-driven ranking (DD-F and DD-
V) was obtained by LRin and LRin-out along with their

ac- counterparts, and also roughly similar F values were

obtained with respect to IO and FB. Note that both

data-driven ranking (the favorites-based one, DD-F, and

the views-based one, DD-V) corresponded to nearly iden-

tical results, with a slightly better agreement of the LR
algorithms with respect to DD-F. In terms of Bpref ,

LRin, LRin-out and their ac- counterparts highly matched

IO. Bpref values were also moderately high with re-

spect to AC and mid-low with respect to PR and FB.

Looking at FriendFeed results (Table 8), LRin and

LRin-out along with their ac- counterparts were again

the best-performing methods against DD (0.42 F and

0.97 Bpref), and also showed mid F (0.34) and high

Bpref (0.89) with respect to FB. Yet, LRout and ac-
LRout were moderately in agreement with PR and AC
in terms of F , whereas all LR generally achieved mid

Bpref with both PR and AC.

GooglePlus evaluation results (Table 9) led us to

draw conclusions similar to the other network datasets

in terms of F values: in- and in-out-based algorithms

outperformed the out-based ones when comparing with

IO and FB, while nearly empty intersection was found

with respect to PR and AC. LRin, LRin-out and their ac-
counterparts achieved very high Bpref with respect to

IO, and also showed good agreement with FB.

Statistical significance testing. We also determined the

statistical significance of the better performance of Lurk-

erRank methods with respect to the competing ones,

through two stages of statistical testing analysis; in

both cases, we fixed the Fagin parameter as k = 104

(which ensured a larger overlap between the ranking

lists to be compared) and the Bpref parameter as l = 25

(for which |R| was always smaller than |N |). Results re-

fer here to Twitter-Kwak and FriendFeed, nevertheless

similar conclusions were actually reached for the other

evaluation networks.

Tables 10–11 show the p-values resulting from an

unpaired two-tail t-test, in which the performance scores

obtained for each iteration by a ranking method with

respect to DD were regarded as the statistical sam-

ples, under the null hypothesis of no difference in per-

formance with respect to DD between a LurkerRank

method and a competing method. Note that in all cases,
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Table 10 Twitter-Kwak t-test on the per-iteration perfor-
mances.

Fagin evaluation Bpref evaluation
PR AC FB PR AC FB

LRin 4.4E-65 4.4E-65 8.4E-11 5.2E-110 1.1E-25 2.1E-65
LRout 2.8E-41 2.7E-41 1.8E-04 3.2E-50 5.5E-79 9.2E-71
LRin-out 4.3E-277 4.4E-277 2.9E-12 1.5E-89 6.7E-21 7.6E-65
ac-LRin 5.6E-228 5.6E-228 4.8E-14 1.2E-91 2.1E-25 2.7E-65
ac-LRout 6.5E-34 6.2E-34 1.8E-04 4.1E-54 1.8E-71 2.3E-73
ac-LRin-out 3.8E-213 3.3E-265 3.4E-12 5.8E-85 2.1E-21 1.0E-64

Table 11 FriendFeed t-test on the per-iteration perfor-
mances.

Fagin evaluation Bpref evaluation
PR AC FB PR AC FB

LRin 1.3E-116 1.3E-103 2.6E-10 4.5E-195 5.9E-197 6.1E-10
LRout 8.5E-12 1.6E-101 1.5E-38 6.8E-252 1.3E-264 2.5E-271
LRin-out 6.0E-193 2.4E-166 2.1E-24 1.3E-298 2.1E-212 2.2E-116
ac-LRin 1.0E-195 1.0E-172 4.4E-13 5.0E-298 3.9E-189 7.8E-10
ac-LRout 2.6E-12 5.1E-88 1.3E-38 4.1E-99 5.9E-299 1.4E-282
ac-LRin-out 8.1E-63 1.3E-96 2.1E-25 8.3E-82 5.1E-226 1.5E-75

the number of iterations (samples) was adequate to per-

form a t-test (generally above 50). Looking at the two

tables and both F and Bpref evaluation, the p-values

turned out to be extremely low in most cases, thus giv-

ing a strong evidence that the null hypothesis was al-

ways rejected, at 1% significance level. This finding was

useful to confirm that a certain difference (actually, the

improvement) in performance between the LR methods

and the competing ones, also on FriendFeed for which

relatively high Bpref scores were observed in the pre-

vious analysis.

In the second stage of statistical testing, we analo-

gously performed a paired two-tail t-test in which the

samples corresponded to the F scores respectively ob-

tained by two ranking methods with respect to DD
over the same randomly generated subgraph. For each

of the network datasets, we extracted 100 subgraphs,
each time starting from a randomly picked seed node

and roughly covering a fixed number of nodes (around

1/100 of the original network size). This test was hence

intended to stress the ranking methods performing over

a pool of subnetworks having different characteristics

from each other, and from the whole original network

as well; for instance, on Twitter-Kwak, the subnetworks

had average path length mean of 2.52 (0.86 stdev), and

in/out-degree ratio mean of 0.07 (0.13 stdev) — this

might be explained because of the adopted approach

of breadth-first traversal of the network, which led to

connect the majority of nodes with a few source nodes

having very high out-degree. On Twitter-Kwak, we ob-

served a close behavior between the LurkerRank meth-

ods (except LRout and ac-LRout) and AC (around 0.19

F on average), and between PR and FB, which however

achieved a lower average F (0.029) — note that k was

still set to 104, hence very high for such network sizes

(i.e., around 200,000 nodes). In any case, i.e., for each

pair of LurkerRank method vs. competing method, the

Table 12 Comparative performances on FriendFeed damp-
ing factor depending on the average path length.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

DD IO PR AC FB DD IO PR AC FB

LRin .450 .686 .012 .003 .445 .955 .978 .318 .601 .985
.422 .582 .079 .078 .341 .914 .975 .567 .800 .974
.529 .627 .111 .134 .472 .678 .952 .673 .839 .897

LRout .015 .072 .510 .620 .015 .011 0.0 .689 .672 .027
.138 .070 .571 .725 .184 .033 .041 .762 .747 .059
.154 .208 .508 .704 .189 .155 .121 .738 .737 .199

LRin-out .205 .294 .020 .031 .191 .759 .909 .250 .604 .871
.274 .317 .053 .055 .182 .744 .910 .553 .792 .860
.421 .448 .074 .096 .352 .602 .872 .642 .813 .804

ac-LRin .485 .727 .016 .004 .479 .961 .978 .291 .600 .981
.450 .623 .088 .090 .367 .916 .975 .545 .800 .967
.553 .656 .115 .141 .488 .679 .951 .656 .841 .883

ac-LRout .015 .072 .510 .620 .015 .011 0.0 .689 .672 .027
.138 .070 .571 .725 .184 .033 .008 .747 .726 .059
.154 .208 .508 .704 .189 .142 .102 .721 .718 .199

ac-LRin- .169 .239 0.0 0.0 .140 .745 .889 .237 .594 .850
out .240 .271 .001 .001 .136 .722 .891 .547 .785 .833

.400 .421 .042 .064 .325 .592 .854 .636 .803 .780

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

Table 13 Comparative performances on GooglePlus with
damping factor depending on the average path length.

F Bpref
k = 102 // 103 // 104 l = 10 // 25 // 50

IO PR AC FB IO PR AC FB

LRin .729 0.0 0.0 .551 1.0 .438 .584 .985
.829 .001 0.0 .631 .989 .585 .700 .963
.864 .061 .140 .690 .983 .689 .725 .927

LRout .011 .085 0.0 .022 .972 .994 .996 .671
.015 .148 .012 .018 .971 .993 .990 .795
.223 .356 .144 .232 .964 .981 .974 .783

LRin-out .629 0.0 0.0 .474 .997 .467 .590 .940
.720 0.0 0.0 .546 .989 .576 .689 .915
.798 .047 .129 .642 .980 .679 .734 .876

ac-LRin .732 0.0 0.0 .551 1.0 .459 .579 .986
.830 .001 0.0 .629 .990 .550 .702 .963
.864 .061 .139 .689 .986 .711 .726 .927

ac-LRout .011 .083 0.0 .022 .972 .994 .996 .671
.015 .148 .012 .018 .971 .993 .990 .796
.223 .356 .145 .232 .965 .981 .974 .783

ac-LRin-out .647 0.0 0.0 .488 .998 .492 .590 .935
.729 0.0 0.0 .550 .991 .623 .678 .907
.795 .044 .125 .638 .984 .709 .728 .866

Bold values refer to the highest scores per LurkerRank method and
assessment criterion. Underlined bold values refer to the highest
scores per assessment criterion.

null hypothesis of equal means was rejected even at 1%

significance level, since the p-values were ranging from

1.4E-3 to 2.8E-19. Analogous final remarks were drawn

for FriendFeed.

Relation between damping factor and average path length.

In our proposed methods, the damping factor α is cho-

sen to be 0.85, in analogy with the default setting of the

parameter in the original PageRank algorithm. Recall

this finds an explanation based on the empirical obser-

vation that a web surfer is likely to navigate following 6

hyperlinks (before discontinuing this navigation chain

and randomly jumping on another page), which cor-

responds to a probability α = 1 − (1/6) ≈ 0.85. On

the other hand, research on degrees-of-separation in di-

rected network graphs has shown that for many OSNs
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the average path length is typically below 6 (e.g., [7,

43]). Here we leverage on this result, confirmed in our

network datasets as well, to understand how the rank-

ing performance may change as the damping factor is

varied in function of a network-specific structural char-

acteristic like the average path length. Precisely, we set

α as α = 1− (1/apl), being apl the average path length

of the particular network. For this evaluation stage, we

focused on FriendFeed and GooglePlus, which exhibit

the lowest average path lengths, i.e., 3.82 and 3.32, re-

spectively (cf. Table 2).

Comparing the results in Table 13 that correspond

to α = 0.7 with the results obtained with default α

(Table 9) on GooglePlus, F values were slightly lower

(resp. unvaried) for the in- and in-out-based algorithms,

(resp. for the out-based algorithms) with respect to IO,

generally higher with respect to FB, and equal or higher

with respect to PR and AC. Again comparing with the

results in Table 9, Bpref slightly increased with respect

to PR and AC and decreased with respect to IO. As for

FriendFeed, comparing Table 8 with Table 12, we found

that F values were generally lower when using α = 0.74

for in- and in-out-based algorithms, and higher for out-
based ones. A decrease in the performance of in- and

in-out-based algorithms was observed for Bpref as well,

especially with respect to DD.

Overall, it appears that the average path length can-

not be regarded as a good estimator of damping factor

in our methods, in the sense of a necessarily better al-

ternative to the default 0.85. However, we would tend

to take this sort of conclusion with a grain of salt, due

to the heterogeneity of such networks and the lack of

more example networks with average path length sig-

nificantly below 6.

Efficiency results. Figure 7 shows the runtime perfor-

mance of LurkerRank algorithms. The times do not

include the graph building step.1 Firstly, it was in-

teresting to observe on all datasets that the Lurker-

Rank methods consistently reached a ranking stabil-

ity very quickly, in the range 35÷75 iterations, with

the exception of ac-LRin-out which always reached con-

vergence with fewer iterations. The latter fact is how-

ever explained by a generally poor diversification of the

ranking scores achieved by ac-LRin-out, which partic-

ularly affects the top of the ranking results: in fact,

in most datasets, the scores at the maximum as well

as the third quartile are of the same order of magni-

tude as the mean or even as the first quartile scores.

LRin and LRout mostly required pretty similar running

1 Experiments were carried out on an Intel Core i7-3960X
CPU @ 3.30GHz, 64GB RAM machine.
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Fig. 7 Runtime performance of LurkerRank methods.

times, while LRin-out was slower than the other al-

gorithms on 3 out of 5 networks — about twice the

running time of LRin and LRout, which is clearly ex-

plained since LRin-out needs to iterate both on the in-

and out-neighborhood of each node. As concerns the

alpha-centrality based formulations, ac-LRin always re-

quired a higher number of iterations to reach ranking

stability than LRin, while ac-LRout performed similarly

and sometimes faster than LRout, considering that in

most cases both algorithms needed the same number of

iterations until ranking stability. As a side remark, it

should be noted that our power-iteration-method im-

plementation of the LR algorithms caused quite differ-

ent performance for networks with a number of edges of

the same order of magnitude, but a greater difference

in the number of nodes (e.g., FriendFeed and Flickr).

5.3 Delurking-oriented randomization

As we discussed in the Introduction, the ultimate ob-

jective of lurker analysis is in principle to attract the

lurkers to the community life, that is, to change their

status to that of active players in the network. Although

devising real delurking plans (which might rely on mar-

keting aspects) goes beyond our study, we are still in-

terested in conceiving a general topology-based model

that can support “self-delurking” of a network.

For this purpose, we introduce a novel randomization-

like model, named delurking-oriented randomization. Ran-

domized models are commonly used to monitor how

varying a certain topological feature may impact on the

dynamics of the network. The most widely applied ran-

domized model uses the concept of rewiring, so that the

edges of the original (undirected) network are randomly

rewired pairwise. The key idea behind our delurking-

oriented randomization model is to simulate a mecha-

nism of disclosure of the presence of lurkers, by letting

more-likely-active users virtually hear from less-likely-

active users.
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Algorithm 1 Delurking-oriented randomization

Input: The topology graph G = 〈V, E〉 of an OSN. The rank-
ing L corresponding to a LR solution for G. Cut-off per-
centage thresholds t1, t2 of ranking order in L. Probability
p. Maximum fraction d of new edges to add to G.

Output: A randomized graph G′.
1: E′ ← ∅
2: Sort L by decreasing lurking score
3: Let Ltop (resp. Lbottom) be the top-t1 (resp. bottom-t2)

of the sorted L
4: Eal ← {e = (a, l) ∈ E | a ∈ Lbottom, l ∈ Ltop}
5: repeat
6: Pick randomly with probability p an edge (a1, l1) ∈

Eal \ E′
7: Pick randomly with probability p an edge (a2, l2) ∈

Eal \ E′, with a2 6= a1, l2 6= l1
8: E′ ← E′ ∪ {(l1, a2), (l2, a1)} /* add the new edges */
9: until (|E′|≥ d|Eal|)

10: G′ ← 〈V, E′ ∪ E〉

Algorithm 1 shows our delurking-oriented random-

ization method, which substantially works by inserting

new connections into the network each of which ran-

domly links a vertex selected from the top of a predeter-

mined LR ranking solution to a vertex selected from the

bottom of that ranking. The algorithm hence requires

cut-off thresholds to control the selection of the head

and tail of the LR distribution, and a percentage thresh-

old to control the degree of delurking-oriented random-

ization (i.e., the fraction of potentially new edges to

add to the graph). At each step of insertion of a new

pair of edges, it is to be ensured that both the new

formed edges do not already exist in the graph — this

restriction prevents the appearance of multiple edges

connecting the same pair of vertices. It should be noted

that Algorithm 1 does not provide a proper randomiza-

tion model in its usual definition, since both the size of

the network and the degree of vertices will change.

We applied Algorithm 1 to our networks, with the

following setting: p = 0.5, t1 = t2 = 25%, and d ranging

from 0.2 to 1.0 (with increment by 0.2). Note that this

setup of the algorithm was chosen to allow us to focus

mainly on the degree of delurking-oriented randomiza-

tion (d); as for the partition of the lurker ranking list,

we decided to leave the middle 50% out and hence se-

lect one quartile both for the top (t1) and the bottom

(t2) of the ranking list.

For this stage of evaluation, we mainly focused on

two features of the network: the LR distribution and

the in/out-degree distribution (either with and without

the inclusion of sink and source vertices), and analyzed

the pairwise correlations between a LR (resp. in/out-

degree) ranking on a particular network and the LR
(resp. in/out-degree) rankings obtained on the corre-

sponding delurking-randomized networks.
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Fig. 8 Delurking-oriented randomization analysis: pairwise
correlation between LRin solutions, as obtained on origi-
nal network and randomized networks, for increasing de-
gree of delurking-oriented randomization, on Flickr (top) and
FriendFeed (bottom).

Considering the case where all vertices were included

in the evaluation, we observed no clear trend both in

the pairwise correlations between the LR ranking so-

lutions at the different degrees of delurking-oriented

randomization, which were either moderate (Flickr) or

high, and in the correlations between an original LR and

each of the LR solutions in the randomized networks,

which were either absent (Flickr and FriendFeed) or

moderate/high. However, when sink and source ver-

tices were discarded from the analysis, trends become

more evident: in one case (corresponding to the Twit-

ter networks), the pairwise correlations between the LR
ranking solutions at the different degrees of delurking-

oriented randomization were moderate, while absent or

moderate with respect to the original LR ranking; how-

ever, in the other case (corresponding to GooglePlus,

Flickr, and FriendFeed), the LR ranking solutions at

the different degrees of delurking-oriented randomiza-

tion turned out to be not or scarcely correlated to each

other as well as totally uncorrelated to the original LR
ranking.

Interestingly, the above remarks indicate that upon

a delurking-oriented randomization process, the top-

ranked lurkers can significantly change, not only with

respect to the original configuration of the network but

also with respect to a configuration corresponding to

a different degree of delurking-oriented randomization

(shown in Fig. 8 for the LRin evaluation). Clearly, as ex-

pected, when considered as a global feature of the net-

work, the delurking-oriented randomization impact can

be lower for larger networks (e.g., Twitter), which have

much lower (resp. higher) clustering coefficient (resp.

average path length) than the other network datasets.
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Fig. 9 Percolation analysis: fraction of lurkers matched as function of the vertices removed based on directed topological
overlap.

By contrast, the delurking-oriented randomization

seems to negligibly affect the in/out-degree distribu-

tion: correlations turned out to be moderate to high

(when sinks and sources were considered) both between

the in/out ranking in the original network and each of

the in/out rankings of the randomized networks, and

between the randomized in/out rankings pairwise. This

result would indicate that an apparently “invasive” al-

teration of the topology (through the insertion of new

links) actually will not significantly change the topolog-

ical features based on in- and out-degree distributions.

5.4 Percolation analysis

Percolation analysis corresponds to studying the effect

of network disruption via edge removal strategies, gen-

erally with the purpose of assessing topological integrity

properties of the network or its vulnerability to (ran-

dom) failures/attacks. An edge removal strategy is typ-

ically based on local structural properties of edges, such

as topological overlap. Topological overlap is a measure

originally introduced in [46] for undirected networks,

which evaluates the number of neighbors shared by two

given vertices i and j. Edges between connected com-

ponents are expected to have a low number of common

neighbors, and hence low topological overlap.

Removing edges by increasing order of topological

overlap has shown to effectively detect the edges that

act as bridges between different communities [25,48].

Upon this we build our intuition that if we would dis-

cover a certain correlation between the result of our

lurker detection and the result of percolation based on

topological overlap, then we could claim that lurkers

are likely to behave as bridges between communities.

Our network model however implies that edges are

directed from information-producer to information-con-

sumer, therefore the notion of bridge as highly active

user must be revised as less active user. Therefore, we

needed first to adapt the basic topological overlap to

our setting of directed networks, whereby the neighbor

sets of any two selected vertices are partly considered

according to the orientation of the edge drawn between

the two vertices. Given edge (i, j), we define the directed

topological overlap as:

O(i, j) =
|Ri ∩Bj |

(|Ri|−1) + (|Bj |−1)− |Ri ∩Bj |
(12)

We developed a stage of evaluation in which two sets

of vertices are compared with each other: the one result-

ing from an edge removal strategy based on increasing

order of our directed variant of topological overlap, and

the other one corresponding to the highest-ranked lurk-

ers detected by one of our LR algorithms.

Figure 9 plots the fraction of top-25% of lurkers that

matched the sets of vertices respectively included in the

99th, 95th and 90th percentile of the edges with lowest

directed topological overlap. LRin, LRout, and LRin-out
were used to rank lurkers. The methods appear to be-

have very closely to each other for all data, with some

relative differences on the two Twitter networks. At

90th percentile of the edges with lowest directed topo-

logical overlap, almost all top-lurkers were matched on

FriendFeed, GooglePlus, and only by LRin and LRi-
nout, on the two Twitter networks as well. Moreover,

on FriendFeed and GooglePlus, most top-lurkers were

matched already at 95th percentile.

Clearly, this relatively easy tendency of covering the

set of top-lurkers needs to be interpreted in relation to

the ratio of the number of vertices removed (by increas-

ing directed topological overlap) with respect to the to-

tal number of vertices in the network. While on Friend-

Feed and GooglePlus the number of vertices removed

corresponded to more than 90% of the total vertex set

(which hence explains the high rate of coverage over

the top-lurkers), on both the two Twitter networks, the

above percentage was instead less than 27%. The latter,

being observed on the two largest evaluation networks,

should be taken as an important finding, which would
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Fig. 10 Percolation analysis: fraction of the maximal strongly CC as function of removed vertices.

confirm the relationship between the lurkers and the

bridges between communities.

We also analyzed the resilience of the various net-

works when vertices are removed by decreasing lurking

order. To better evaluate the impact of sinks on the

network disruption, we distinguished two cases: either

sinks were preliminarily filtered out or they were in-

cluded when selecting the fraction of lurkers to remove

from the network. As shown in Figure 10 for LRin, the

removal strategy with the most disruptive effects was

that based on decreasing LR rank (with pre-filtering of

sink vertices, denoted as LR noS in the figure), which

led to mostly dismantle the maximal strongly connected

component (i.e., 80 to 90% of its size) already for 25% of

vertex removal in all networks except GooglePlus (for

which 50% of vertex removal was needed). By contrast,

the removal strategy based on increasing topological

overlap produced disruptive effects smoother with re-

spect to the two LR-based strategies, on all networks.

Interestingly, by including sink vertices in the selection

of lurkers to remove, the network resilience was the

same as in the case of sink-pre-filtering on GooglePlus

and Flickr, whereas on the two Twitter and FriendFeed

the resilience was higher than for the other strategies,

since a level of dismantling below 70-60% was reached

only by a removal fraction of 50% or higher. Note that

Twitter and FriendFeed are the networks with a strong

presence of sink vertices, and with a sink/source ratio

greater than 10.

5.5 Qualitative evaluation

We investigated the meaningfulness of the rankings pro-

duced by LurkerRank methods as well as produced by

the competing methods. For this analysis, we retrieved

the OSN pages of top-ranked users and examined the

available information about their profile and neighbor-

hoods. Our goal was to understand whether a user actu-

ally looks like a lurker, or conversely s/he takes another

role in the network.

Tables 14–15 show the top-20 ranked users obtained

on Twitter-Kwak and FriendFeed by PageRank, alpha-

centrality, Fair-Bets, and LRin. Table 14 also reports the

number of times a user was retweeted (#rt), whereas

Table 15 reports the total number of posts by a user

(#posts). Moreover, we left sink nodes out of consid-

eration in order to avoid biasing our evaluation with

trivial lurkers.

By comparing the top-ranked lists, it is evident that

LRin behaved differently from the other algorithms, since

it shared just two users with FB (dark-grey shaded)

and no users at all with PR and AC. Interestingly, the

LRin top-ranked list contains only users who have never

been retweeted; by retrieving the tweet post dates from

Twitter, those users were all found as quite longer-time

users, as in fact they joined Twitter much earlier (e.g.,

#8, #10 and #12 joined in 2007) than most users in

the AC and PR top-ranked lists. Conversely, in the latter

two lists most users have been significantly retweeted

although they joined later (e.g., 2009).

PR and AC showed a certain association, with ten

users in common (light-grey shaded). Most users in

both AC and PR lists however were retweeted hun-

dreds times, and hence they should not be considered as

lurkers. Our hypothesis of non-lurking for those users

was fully confirmed as we observed that those users’

retweets were actually spread over a relatively short

period of time (e.g., second half of 2009). Moreover, AC
and PR ranked the same user on top, who is also the one

having the highest number of retweets in the lists; in-

deed, that user is a very influential person, and in fact

s/he has a followee/follower ratio much below 1: this

would indicate that both AC and PR were not able to

correctly handle this case (i.e., scoring it low enough),

because their performance would be more affected by

highly influential incoming links (i.e., followees) — which

is a clear indication of tendency to absorb valuable

knowledge — rather than by the number and type of

followers. We also found other cases with characteristics

similar to #1, e.g., #12 in the PR list, #10 and #14 in
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the AC list, and the common users “ZAP.” (#3 in both

lists) and “SCO.” (#17 in PR, #12 in AC).

As concerns FB, it was surprising to find that 15

out of 20 top-ranked users refer to spammers (#4, a

fashion/cosmetic marketing spammer, #9, in advertis-

ing, and #15, a porn spammer), or in general to sus-

pended accounts (#2-3, #5, #8, #10-11, #13-14, #17-

20). Only #6, #12 and #16 appear to be lurkers, which

might be confirmed by their high in/out-degree ratio

coupled with a zero retweet-count. By contrast, #1 is an

art director and designer, and #7 refers to an account

actively used for academic advising purposes; probably,

the high number of followees (e.g., about 1800 for #7)

has misled the method. Therefore, like PR and AC, FB
might also fail to correctly recognize real lurkers.

In FriendFeed (Table 15), a large intersection was

found among the top-20 users not only between PR
and AC (like in Twitter-Kwak) but also between FB
and LRin. Looking at the users’ profiles and at the con-

tents of their posts, we can state that most of the users

shared by the top20 lists of FB and LRin are recog-

nized either as content spammers (i.e., users that have

produced spamming contents, regardless of the popu-

larity and number of their posts), or as professionals

who aim to improve their visibility while staying as

observers in the community (e.g., #9 in LRin/#7 in

FB is a marketing expert, #7 in LRin/#5 in FB is a

graphic designer). Some distinct profiles are also found

to be clones, as they are associated to the same spam-

ming contents (e.g., #1 and #4 in LRin, which corre-

spond to #1 and #17 in FB, both probably related

to a Russian commercial site). A reason for this mas-

sive presence of spammers probably can be found in

the nature of the FriendFeed social network: being a

real-time cross-network feed aggregator makes it a de-

sirable and user-friendly means for spammers to reach

high visibility, producing a number of user profiles for

spamming attempts having very similar characteristics

to lurker ones (e.g., high in/out degree ratio, low inter-

action with other members). Looking at PR and AC top-

20 users we found that, as in the Twitter-Kwak case,

most of them are not recognizable as lurkers, but rather

as active and authoritative users (e.g.,#7 in PR/#3 in

AC is a finance blogger, #1 in both PR and AC is an

industrial designer, #5 in PR/#2 in AC represents a

philanthropic foundation). We also found a user shared

by PR and FB top-20s: although the account does not

exist anymore, its name would hint that the user was

probably a spammer for a hosting solutions company.

Concerning GooglePlus (results not shown), the top-

ranked list by LRin is mainly comprised of users that

show poor public activity, and that added a lot of peo-

ple to their circles although scarcely reciprocated. FB

Table 14 Top-20 Twitter-Kwak users by lurking score.

rank PR AC FB LRin
user #rt user #rt user #rt user #rt

1 B.O. 17811 B.O. 17811 D.W.S. 0 R.F. 0

2 W.F. 1676 ZAI. 10902 n.a. 0 R.J. 0

3 ZAP. 8707 ZAP. 8707 APA. 0 R.M.K. 0

4 TH. 7169 AS. 1172 T.S.C. 1 B.B.P. 0

5 L.E. 683 M.M. 7 n.a. 0 TR. 0

6 J.B. 1248 W.F. 1676 CON. 0 MU. 0

7 M.S. 476 M.K. 48 K.T. 0 B.R. 0

8 AS. 1172 P.B. 328 n.a. 0 AZ. 0

9 OH. 1009 W.A. 2814 S.M. 0 O.L. 0
10 H.T. 43 C.B. 11943 n.a. 0 N.T. 0
11 E.T. 2435 EL. 902 n.a. 0 FR. 0

12 SCH. 3277 SCO. 6970 M.P. 0 D.W.S. 0

13 RE. 1467 WI. 811 n.a. 0 AW. 0
14 H.S. 1346 O.W. 1803 n.a. 0 O.B. 0

15 M.M. 7 T.B.B. 102 M.E. 0 N.C. 0

16 ZAI. 10902 T.S. 74 B.B.P. 0 D.P. 0

17 SCO. 6970 S.S. 789 n.a. 0 AU. 0

18 M.K. 48 M.W. 363 n.a. 0 EM. 0

19 WI. 811 H.R. 750 n.a. 0 DI. 0

20 W.A. 2814 A.K. 1572 n.a. 0 M.A. 0

For privacy reasons, users’ names were replaced with their initials or
abbreviations.

Table 15 Top-20 FriendFeed users by lurking score.

rank PR AC FB LRin
user #posts user #posts user #posts user #posts

1 N.D.P. 350 N.D.P. 350 M.C.D. 11 M.C.D. 11

2 FRE. 3 C.T. 5 BOG. 367 BOG. 367

3 BR. 71 J.D.A. 282 L.H. 1 B.I. 61

4 A.C. 142 MBL. 37 DIM. 1 N.D. 13

5 C.T. 5 BR. 71 B.I. 61 G.A. 11

6 MBL. 37 U.R. 52 G.A. 11 L.H. 1

7 J.D.A. 282 TAV. 65 A.C. 2 R.W. 7

8 U.R. 52 D.H. 89 W.H.O. 10 ZAH. 3

9 S.M. 106 P.B. 13 ASR. 0 A.C. 2

10 W.H.O. 10 C.E. 447 H.P.B. 3 E.J.S. 24

11 RID. 886 RID. 886 MUA. 5 M.P. 2

12 D.G. 35 W.B. 5 E.J.S. 24 Y.P. 1

13 L.A.C. 4 R.T. 68 SVL. 1 S.E. 72

14 JSI. 49 K.K. 134 R.W. 7 J.N. 110

15 K.K. 134 D.S. 105 S.F.T. 4 H.P.B. 3

16 S.O. 12 L.A.C. 4 D.G. 5 P.C. 3

17 W.M. 108 JSI. 49 N.D. 13 MRT. 3
18 STR. 2 B.C. 14 I.P.G. 10 I.K.G. 2
19 C.F. 3 D.V. 85 ARG. 2 N.L. 1
20 R.T. 68 M.M.H. 34 E.E.M. 5 F.F. 764

For privacy reasons, users’ names were replaced with their initials or
abbreviations.

showed a behavior nearly similar to LRin, however its

top-20 list contains less real lurkers than those detected

by LRin. PR and AC ranked high users that are likely to

be pretty influential, such as a classical guitarist with

more than 60 thousand followers (ranked #1 by PR),

a landscape photographer with more than 42 thousand

followers (ranked #1 by AC), and even a social media

director with nearly 400 thousand followers (ranked #6

by PR). In contrast to the other network datasets, there

were no shared users among PR and AC top-20s, while

FB shared 2 users with PR and 7 with LRin.

5.6 Some lessons learned

Our study so far allows us to draw some interesting

conclusions, which are briefly summarized as follows.

Quantitative and qualitative results have demon-

strated the ability of our approach in unveiling lurk-

ing cases that are intuitive yet non-trivial. The best-
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performing ranking methods are those based on in-neigh-

bors-driven and in-out-neighbors-driven lurking, i.e., the

models emphasizing the first two principles underlying

our lurking definition. These methods have shown high

correlation with the data-driven ranking, and outper-

form competing methods, i.e., PageRank, alpha-central-

ity, Fair-Bets model, and the baseline in/out-degree rank-

ing. Moreover, results tend to be relatively consistent

over the PageRank-based and the alpha-centrality-based

formulations of the lurker ranking methods. (We expect

however that a different setting in the damping factor

along with the introduction of a term modeling per-

sonalization or exogenous information in the respective

formulas would bring to a more evident differentiation

of the two ranking approaches.) From a runtime effi-

ciency viewpoint, LRin tends to perform faster than ac-
LRin, while ac-LRin-out achieves the highest rate of con-

vergence although at the cost of much less diversified

ranking scores. Furthermore, our qualitative analysis of

the OSN pages of the top-ranked users has provided

clear evidence that: (i) our approach successfully de-

tects lurkers in an OSN, and conversely (ii) the com-

peting methods fail in doing this — PageRank and

alpha-centrality still detect influential users, whereas

Fair-Bets tends rather to identify spammers.

From a pure network-analysis perspective, lurkers

are not very prone to reciprocate each other, whereas

preferential attachment is likely to occur between lurk-

ers and the active users they are linked to. Under a per-

colation analysis framework, lurkers tend to be matched

by users that are involved in links with low (directed)

topological overlap: this would hint at a relation ex-

isting between lurkers and users playing the role of

bridges between communities, under the assumption of

lurking-oriented topological graph of an OSN. Finally,

our proposed delurking-oriented randomization strat-

egy reveals that self-delurking can be useful to change

the top-ranked lurkers in the network, while scarcely

affecting the in/out degree distribution.

6 Related Work

The topic of lurking has been long studied in social sci-

ence and recently has gained renewed interest in the

computer-human interaction community. [51] investi-

gates relations between lurking and cultural capital,

i.e., a member’s level of community-oriented knowledge.

Cultural capital is found positively correlated with both

the degree of active participation and, except for longer-

time lurkers, with de-lurking. [18] leverages the sig-

nificance of conceptualizing the lurking roles in rela-

tion to their boundary spanning and knowledge broker-

ing activities across multiple community engagement

spaces. The study proposed in [16] raises the opportu-

nity of rethinking of the nature of lurking from a group

learning perspective, whereby the engagement of inten-

tional lurkers is considered within the collective knowl-

edge construction activity. The interactive/interpassive

connotation of social media users’ behavior is studied

in [31], under a qualitative and grounded-theory-based

approach. In the context of multiple online communities

in an enterprise community service, lurking is found as

only partially driven by the member’s engagement but

significantly affected by the member’s disposition to-

ward a topic, work task or social group [44]. Exploring

epistemological motivations behind lurking dynamics is

the main focus of the study in [49], which indeed re-

views major relevant literature on epistemic curiosity

in the context of online communities and provides a set

of propositions on the propensity to lurk and de-lurk.

However, as with [18], the paper only offers insights

that might be useful to guide an empirical evaluation

of lurkers’ emotional traits. The study in [28] exam-

ines peripheral participation in Wikipedia, and designs

a system to elicit lightweight editing contributions from

Wikipedia readers.

To the best of our knowledge, there has been no

study other than ours that provides a formal computa-

tional methodology for lurker ranking. The study in [23],

which aims to develop classification methods for the

various OSN actors, actually treats the lurking problem

marginally, and in fact lurking cases are left out of ex-

perimental evaluation. Similarly, [35] analyzes various

factors that influence lifetime of OSN users, also distin-

guishing between active and passive lifetime; however,

analyzing passive lifetime is made possible only when

the user’s last login date is known, which is a rarely

available information.

We finally mention some research studies that have

focused on latent relationships or side-effect benefits in

an OSN. For instance, [5] defines a Stackelberg game to

maximize the benefit each user gains extending help to

other users, hence to determine the advantages of being

altruistic. Some interesting remarks relate the altruism

of users to their level of capabilities, and indicate that

the benefit derived from being altruistic is larger than

that reaped by selfish users or free riders. [39] also builds

upon game theory to study the property of users’ depar-

ture dynamics, i.e., the tendency of individuals to leave

the community. [58] studies the problem of identifying

the off-line real-life social community of a given user,

by analyzing the topological structure in an on-line so-

cial network like Twitter. To the purpose, user interac-

tions are modeled in the form followee-to-follower (like

in our setting), and a PageRank-like algorithm is ap-

plied over a probability transition matrix that embeds
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three key principles underlying the notion of off-line

community, namely mutual reachability, friendship re-

tainability, and community affinity. It should be noted

that mutual reachability is not a peculiar characteris-

tic of lurkers, i.e., it can hold for active users as well.

Moreover, as for the community affinity principle, lurk-

ers are usually not grouped into communities such that

each community members are (indirectly) connected to

each other; rather, as we have discussed in this paper,

lurkers may lay on the boundary of a component and

bridge over other components.

Relations with existing definitions of lurking. Our defi-

nition of lurking is substantially consistent with the var-

ious existing perspectives on lurking, previously men-

tioned in the Introduction. It can in general recognize

and measure behaviors that rely on phenomena of lack

of information production (i.e., inactivity or occasional

activity) as well as on phenomena of information hoard-

ing or overconsumption, like free-riding and leeching.

It is worth emphasizing that taking into account the

authoritativeness of the information received as well as

the non-authoritativeness of the information produced

by lurkers is essential to the correct scoring of lurk-

ers. Therefore, our definition of lurking can also explain

more complex perspectives, such as legitimate periph-

eral participation. In this case, a lurker is regarded as a

novice, for which it’s legitimate to learn from experts as

a form of cognitive apprenticeship. Indeed, by applying

our LurkerRank methods, in [52] we have addressed an

exemplary form of legitimate peripheral participation,

known as vicariously learning, in the context of research

collaboration networks.

Finally, note that other interpretations of lurking,

such as microlearning and knowledge sharing barriers,

actually aim to understand the various reasons for lurk-

ing, and to what extent they might be perceived as

fruitful, rather than neutral or harmful, for the knowl-

edge sharing in the online community. Therefore, they

mostly involve sociological and psychological aspects

whose study is beyond the objective of our work.

7 Challenges and future directions

The inherent complexity of lurking would advise that

more information besides the network topology needs to

be considered for an enhanced detection and ranking of

lurkers. Some of the most challenging issues for research

in this context are discussed next.

Temporal, context-biased lurking. Starting as visitors

and newcomers, members of a community naturally evolve

over time playing different roles, thus showing a stronger

or weaker tendency toward lurking on different times.

Lurkers have unusual frequency of online presence, and

hence any knowledge on the online participation fre-

quency of the users could guide the identification of

critical time intervals to reveal lurking behaviors. More-

over, the user’s engagement level in the community

clearly depends also on the number and type of con-

texts in which the user is involved.

Boundary-spanning and cross-network lurking. Some

of the members that lay on the boundary of a compo-

nent may bridge over other components. In Section 5.4,

we have found out that indeed relations may exist be-

tween lurkers and users that act as bridges over different

components of an OSN graph. To a larger extent, and

given the increased interest towards cross-network ser-

vices (see the latest examples of YouTube and Google-

Plus), members who lurk inside an OSN may not lurk,

or even take on the role of experts, in other OSNs. An

analysis of the lurker ranking problem across different

OSNs would represent a great potential to get a more

complete picture of their users.

Lurking and trust contexts. Active users tend to avoid

wasting their time with people who are very likely to

not reply or show slow responsiveness, or who have

few/bad feedbacks; as a consequence, lurkers could in

principle be perceived as untrustworthy users. Another

challenge would hence be modeling the dynamics of

lurking behaviors in trust contexts [2], and ultimately

understanding relations between lurkers and trustwor-

thy/untrustworthy users in ranking problems.

While we believe this represents an important is-

sue that deserves much attention in future studies, we

nevertheless provide here a preliminary insight into a

comparison of our LurkerRank methods with a clas-

sic method for ranking pages/users according to their

trustworthiness, namely TrustRank [27]. Moreover, we

further propose to integrate the ability of detecting

trustworthy users (featured by TrustRank) into our Lurk-

erRank in order to improve the trustworthiness of the

lurkers to be detected. The result is a new set of meth-

ods, we call TrustRank-biased LurkerRank methods, in

which the uniform personalization vector of a Lurker-

Rank method is replaced by the ranking vector pro-

duced by TrustRank over the same network.

We recall that TrustRank is substantially a biased

PageRank in which the teleportation set corresponds to

the “good part” of an a priori selected seed set. The seed

set is comprised of a relatively small subset of nodes

in the graph, each of which is labeled as either trust-

worthy or untrustworthy by some oracle function. Note
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Table 16 Comparative performance (Kendall tau rank cor-
relation) of TrustRank-biased LurkerRank methods against
original TrustRank and LurkerRank methods, on Flickr.

LR trust-LR trust-LR
vs. TrustRank vs. TrustRank vs. LR

LRin .393 .436 .639
LRout .562 .556 .980
LRin-out .441 .640 .688
ac-LRin .445 .434 .728
ac-LRout .561 .559 .945
ac-LRin-out .402 .724 .498

Bold values refer to the highest scores per method.

that unlike trust network data, OSNs do not contain ex-

plicit trust assessments among users. However, behav-

ioral trust information in social media networks can be

inferred from some forms of user interaction that would

provide an intuitive way of indicating trust in another

user [3]. Here we leverage information on the number

of favorite markings received by a user’s photographs

in Flickr as implicit trust statements. (We will refer

to Flickr as case in point for this evaluation, although

the approach we shall present can straightforwardly be

generalized to any social media network). In order to

define the oracle function based on the above indica-

tors of trust, we simply postulate that the higher the

number of users that indicate trust in a user i, the more

likely is the trustworthiness of i. We formalize this in-

tuition as an entropy-based oracle function H, in such

a way that for any user i:

H(i) = − 1

log|Vi|
∑
j∈V i

pj log pj

with pj = ET (j, i)/(
∑

k∈V i
ET (k, i)), where Vi is the

set of neighbors of node i, and ET (j, i) is the empirical

trust function measuring the number of implicit trust

statements (i.e., favorites) assigned by node j to node i.

A user i will be regarded as “good” if the corresponding

H(i) belongs to the third quartile of the distribution of

H values over all users.2

It is important to point out that TrustRank requires

a graph model with edge orientation that is inverse with

respect to LurkerRank. That is, if i likes a post by j, an

edge from j to i (j → i) is created in the LurkerRank

graph, whereas the opposite (i → j) is created in the

TrustRank graph, as i indicates trust in j.

Table 16 summarizes Kendall correlation values ob-

tained on Flickr by a pairwise comparison between our

LurkerRank methods, their TrustRank-biased versions

(denoted as trust-LR), and the original TrustRank. Sev-

eral observations stand out. First, looking at the first-

column group of results, all LurkerRank methods showed

2 Inferring and modeling trust in OSNs is a challenging
topic per se: more refined alternatives to our entropy-based
inference of trust can certainly be found.

positive correlation with TrustRank. This is interesting

as it would indicate that the trustworthiness of users is

likely to be considered when ranking lurkers; note that

the LurkerRank behavior against untrustworthy users

or spammers was already observed in our qualitative

evaluation (cf. Section 5.5). By personalizing a Lurk-

erRank method with TrustRank, the correlation with

TrustRank itself generally increased (up to 0.72), as

we expected. More interestingly, trust-LR methods still

showed a strong correlation with their respective origi-

nal LurkerRank methods. This suggests that introduc-

ing a trust-oriented bias in LurkerRank methods would

not significantly decrease their lurker ranking effective-

ness while also accounting for the user trustworthiness.

8 Conclusion

We addressed the previously unexplored problem of

ranking lurkers in an OSN. We introduced a topology-

driven lurking definition that rely on three basic prin-

ciples to model lurking in a network, namely overcon-

sumption, authoritativeness of the information received,

and non-authoritativeness of the information produced.

We proposed various lurker ranking models, for which

we provided a complete specification in terms of the

well-known PageRank and alpha-centrality. We have

been positively impressed by results achieved on a num-

ber of real-world networks by some of our lurker ranking

methods, especially in terms of significance and higher

meaningfulness with respect to other competing meth-

ods. Future directions of research have also been issued.
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