Skip to main content
Log in

Modeling cascade formation in Twitter amidst mentions and retweets

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

This paper presents an analytical framework for cascade formation considering both retweet and mentioning activities into account. We introduce two mention strategies (a) random mention and (b) smart mention to model the mention preferences of the users. The proposed framework \({\mathcal {C}}^M_F\) analytically computes the cascade size, depicting tweet popularity and discovers the presence of a critical retweet rate, under which mentioning in a tweet significantly helps in cascade formation. We validate the proposed framework with the help of Monte Carlo simulation; we demonstrate the generality of the framework taking both empirical and synthetic follower networks into consideration. This framework proves the elegance of smart mention strategy in boosting tweet popularity, specially in the low retweeting environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Notably, in this section, we perform experiments on both hashtags and tweets. This is because both ‘hashtag’ and ‘tweet’ are commonly used as an unit of information in Twitter and the propagation dynamics can be assumed to be mostly identical for both of them.

  2. http://dfreelon.org/2012/02/11/arab-spring-twitter-data-now-available-sort-of/.

  3. As inspired from the datastudy (Sect. 2.3), we keep two separate retweet rates for follow and mention.

References

  • Abdullah S, Wu X (2011) An epidemic model for news spreading on twitter. In: 2011 IEEE 23rd international conference on tools with artificial intelligence, pp 163–169. doi:10.1109/ICTAI.2011.33

  • Arenas A, Borge-Holthoefer J, Meloni S, Moreno Y et al (2010) Discrete-time markov chain approach to contact-based disease spreading in complex networks. EPL (Europhys Lett) 89(3):38,009

    Article  Google Scholar 

  • Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining. ACM, pp 65–74

  • Bao P, Shen HW, Jin X, Cheng XQ (2015) Modeling and predicting popularity dynamics of microblogs using self-excited hawkes processes. In: Proceedings of the 24th international conference on world wide web, WWW ’15 Companion. ACM, New York, pp 9–10. doi:10.1145/2740908.2742744

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Barabâsi AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Phys A Stat Mech Appl 311(3):590–614

    Article  MathSciNet  MATH  Google Scholar 

  • Boccaletti S, Bianconi G, Criado R, del Genio C, Gmez-Gardees J, Romance M, Sendia-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122. doi:10.1016/j.physrep.2014.07.001

    Article  MathSciNet  Google Scholar 

  • Bodine-Baron E, Hassibi B, Wierman A (2010) Distance-dependent Kronecker graphs for modeling social networks. IEEE J Sel Top Signal Process 4(4):718–731

    Article  Google Scholar 

  • Boguñá M, Pastor-Satorras R, Vespignani A (2004) Cut-offs and finite size effects in scale-free networks. Eur Phys J B Condens Matter Complex Syst 38(2):205–209. doi:10.1140/epjb/e2004-00038-8

    Article  MATH  Google Scholar 

  • Borge-Holthoefer J, Rivero A, Moreno Y (2012) Locating privileged spreaders on an online social network. Phys Rev E 85(6):066,123

    Article  Google Scholar 

  • Buono C, Alvarez-Zuzek LG, Macri PA, Braunstein LA (2014) Epidemics in partially overlapped multiplex networks. PloS ONE 9(3):e92,200

    Article  Google Scholar 

  • Cerchiello P, Giudici P (2016) How to measure the quality of financial tweets. Qual Quant 50(4):1695–1713. doi:10.1007/s11135-015-0229-6

    Article  Google Scholar 

  • Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: KDD ’09. ACM, New York, pp 199–208. doi:10.1145/1557019.1557047

  • Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the 23rd international conference on World wide web. ACM, pp 925–936

  • Chung F, Lu L, Vu V (2003) Eigenvalues of random power law graphs. Ann Comb 7(1):21–33. doi:10.1007/s000260300002

    Article  MathSciNet  MATH  Google Scholar 

  • Clauset A, Moore C, Newman ME (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453(7191):98–101

    Article  Google Scholar 

  • Cozzo E, Baños RA, Meloni S, Moreno Y (2013) Contact-based social contagion in multiplex networks. Phys Rev E 88(050):801. doi:10.1103/PhysRevE.88.050801

    Google Scholar 

  • Darabi Sahneh F, Scoglio C (2014) Competitive epidemic spreading over arbitrary multilayer networks. Phys Rev E 89(062):817. doi:10.1103/PhysRevE.89.062817

    Google Scholar 

  • Dezső Z, Barabási AL (2002) Halting viruses in scale-free networks. Phys Rev E 65(5):055,103

    Article  Google Scholar 

  • Dickens L, Molloy I, Lobo J, Cheng PC, Russo A (2012a) Learning stochastic models of information flow. In: 2012 IEEE 28th international conference on data engineering, pp 570–581. doi:10.1109/ICDE.2012.103

  • Dickens L, Molloy I, Lobo J, Cheng PC, Russo A (2012b) Learning stochastic models of information flow. In: 2012 IEEE 28th international conference on data engineering. IEEE, pp 570–581

  • Du N, Song L, Gomez-Rodriguez M, Zha H (2013) Scalable influence estimation in continuous-time diffusion networks. In: Advances in neural information processing systems, pp 3147–3155

  • Erdös P, Rényi A (1959) On random graphs, i, vol 6. Publicationes Mathematicae, Debrecen

    MATH  Google Scholar 

  • Galuba W, Aberer K, Chakraborty D, Despotovic Z, Kellerer W (2010) Outtweeting the twitterers-predicting information cascades in microblogs. WOSN 10:3–11

    Google Scholar 

  • Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark Lett 12(3):211–223. doi:10.1023/A:1011122126881

    Article  Google Scholar 

  • Gomez-rodriguez M, Schlkopf DBB (2011) Uncovering the temporal dynamics of diffusion networks. In: Proceedings of the 28th international conference on machine learning (ICML11)

  • Gong Y, Zhang Q, Sun X, Huang X (2015) Who will you “@”? In: Proceedings of the 24th ACM international on conference on information and knowledge management, CIKM ’15. ACM, New York, pp 533–542. doi:10.1145/2806416.2806458

  • González-Bailón S, Borge-Holthoefer J, Rivero A, Moreno Y (2011) The dynamics of protest recruitment through an online network. Scientific reports 1

  • Granell C, Gómez S, Arenas A (2013) Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys Rev Lett 111(12):128,701

    Article  Google Scholar 

  • Granovetter M (1978) Threshold models of collective behavior. Am J Soc 83(6):1420–1443

    Article  Google Scholar 

  • Guo Q, Jiang X, Lei Y, Li M, Ma Y, Zheng Z (2015) Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys Rev E 91(1):012,822

    Article  Google Scholar 

  • Gupta M, Gao J, Zhai C, Han J (2012) Predicting future popularity trend of events in microblogging platforms. Proc Am Soc Inf Sci Technol 49(1):1–10

    Article  Google Scholar 

  • Jin F, Dougherty E, Saraf P, Cao Y, Ramakrishnan N (2013) Epidemiological modeling of news and rumors on twitter. In: Proceedings of the 7th workshop on social network mining and analysis, SNAKDD ’13, vol 8. ACM, New York, pp 1–8:9. doi:10.1145/2501025.2501027

  • Kato S, Koide A, Fushimi T, Saito K, Motoda H (2012) Network analysis of three twitter functions: favorite, follow and mention. In: Richards D, Kang B (eds) Knowledge management and acquisition for intelligent systems, Lecture notes in computer science. Springer, Berlin, pp 298–312. doi:10.1007/978-3-642-32541-0_26

  • Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03. ACM, New York, pp 137–146. doi:10.1145/956750.956769

  • Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Article  Google Scholar 

  • Kupavskii A, Ostroumova L, Umnov A, Usachev S, Serdyukov P, Gusev G, Kustarev A (2012) Prediction of retweet cascade size over time. In: Proceedings of the 21st ACM international conference on information and knowledge management, CIKM ’12. ACM, New York, pp 2335–2338. doi:10.1145/2396761.2398634

  • Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social network or a news media? In: Proceedings of the 19th international conference on World wide web. ACM, pp 591–600

  • Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on digg and twitter social networks. ICWSM 10:90–97

    Google Scholar 

  • Leskovec J, Faloutsos C (2007) Scalable modeling of real graphs using kronecker multiplication. In: Proceedings of the 24th international conference on machine learning, ICML ’07. ACM, New York, pp 497–504. doi:10.1145/1273496.1273559

  • Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2008) Statistical properties of community structure in large social and information networks. In: Proceedings of the 17th international conference on World Wide Web. ACM, pp 695–704

  • Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z (2010) Kronecker graphs: an approach to modeling networks. J Mach Learn Res 11:985–1042

    MathSciNet  MATH  Google Scholar 

  • Li W, Tang S, Fang W, Guo Q, Zhang X, Zheng Z (2015) How multiple social networks affect user awareness: the information diffusion process in multiplex networks. Phys Rev E 92(4):042,810

    Article  Google Scholar 

  • Li Y, Feng Z, Wang H, Kong S, Feng L (2013) ReTweet p: modeling and predicting tweets spread using an extended susceptible-infected- susceptible epidemic model. Springer, Berlin, pp 454–457. doi:10.1007/978-3-642-37450-0_35

  • Malhotra A, Malhotra CK, See A (2012) How to get your messages retweeted. MIT Sloan Manage Rev 53(2):61–66

    Google Scholar 

  • Newman ME (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016,128

    Article  MathSciNet  Google Scholar 

  • Petrovic S, Osborne M, Lavrenko V (2011) Rt to win! predicting message propagation in twitter. In: ICWSM

  • Pillai SU, Suel T, Cha S (2005) The Perron–Frobenius theorem: some of its applications. IEEE Signal Process Mag 22(2):62–75. doi:10.1109/MSP.2005.1406483

    Article  Google Scholar 

  • Pramanik S, Wang Q, Danisch M, Bandi S, Kumar A, Guillaume JL, Mitra B (2016) On the role of mentions on tweet virality. In: The 3rd IEEE international conference on data science and advanced analytics (DSAA)

  • Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? large scale analytics on factors impacting retweet in twitter network. In: 2010 IEEE second international conference on social computing (socialcom). IEEE, pp 177–184

  • Tang L, Ni Z, Xiong H, Zhu H (2014) Locating targets through mention in twitter. World Wide Web, pp 1–31. doi:10.1007/s11280-014-0299-8

  • Uysal I, Croft WB (2011) User oriented tweet ranking: a filtering approach to microblogs. In: CIKM ’11. ACM, pp 2261–2264

  • Valera I, Gomez-Rodriguez M, Gummadi K (2014) Modeling diffusion of competing products and conventions in social media. arXiv preprint arXiv:14060516

  • Wang B, Wang C, Bu J, Chen C, Zhang WV, Cai D, He X (2013) Whom to mention: expand the diffusion of tweets by @ recommendation on micro-blogging systems. In: Proceedings of the 22nd international conference on World Wide Web, International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, WWW ’13, pp 1331–1340

  • Xu Z, Yang Q (2012) Analyzing user retweet behavior on twitter. In: Proceedings of the 2012 international conference on advances in social networks analysis and mining (ASONAM 2012), ASONAM ’12. IEEE Computer Society, Washington, pp 46–50. doi:10.1109/ASONAM.2012.18

  • Youssef M, Scoglio C (2011) An individual-based approach to sir epidemics in contact networks. J Theor Biol 283(1):136–144

    Article  MathSciNet  Google Scholar 

  • Zhao D, Li L, Peng H, Luo Q, Yang Y (2014) Multiple routes transmitted epidemics on multiplex networks. Phys Lett A 378(10):770–776

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao Q, Erdogdu MA, He HY, Rajaraman A, Leskovec J (2015) Seismic: a self-exciting point process model for predicting tweet popularity. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’15. ACM, New York, pp 1513–1522. doi:10.1145/2783258.2783401

  • Zhou G, Yu L, Zhang CX, Liu C, Zhang ZK, Zhang J (2015) A novel approach for generating personalized mention list on micro-blogging system. In: 2015 IEEE international conference on data mining workshop (ICDMW), pp 1368–1374. doi:10.1109/ICDMW.2015.51

Download references

Acknowledgements

This work has been partially supported by the SAP Labs India Doctoral Fellowship program, DST—CNRS funded Indo—French collaborative project ‘Evolving Communities and Information Spreading’ and French National Research Agency contract CODDDE ANR-13-CORD-0017-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumajit Pramanik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, S., Wang, Q., Danisch, M. et al. Modeling cascade formation in Twitter amidst mentions and retweets. Soc. Netw. Anal. Min. 7, 41 (2017). https://doi.org/10.1007/s13278-017-0462-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-017-0462-1

Keywords

Navigation