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Abstract
Analyzing ego networks to investigate local properties and behaviors of individuals is a fundamental task in social network 
research. In this paper we show that there is not a unique way of defining ego networks when the existence of edges is 
uncertain, since there are two different ways of defining the neighborhood of a node in such network models. Therefore, we 
introduce two definitions of probabilistic ego networks, called V-Alters-Ego and F-Alters-Ego, both rooted in the literature. 
Following that, we investigate three fundamental measures (degree, betweenness and closeness) for each definition. We also 
propose a method to approximate betweenness of an ego node among the neighbors which are connected via shortest paths 
with length 2. We show that this approximation method is faster to compute and it has high correlation with ego betweenness 
under the V-Alters-Ego definition in many datasets. Therefore, it can be a reasonable alternative to represent the extent to 
which a node plays the role of an intermediate node among its neighbors.

Keywords  Probabilistic networks · Ego networks · Local properties · Betweenness · Closeness

1  Introduction

Empirical social network data collection is often an imper-
fect process affected by some degree of uncertainty. Uncer-
tainty can come from different sources. For example because 
of missing information and indirect measurements, as in 
the case when we infer social ties or influence relationships 
between individuals based on their interactions (Aggarwal 
and Wang 2010; Bernard et al. 1982). Uncertainty can be 
available even when we are asking about the immediate 
connections of an individual in social networks for exam-
ple due to forgetfulness of informants (Bernard et al. 1979; 
Killworth and Bernard 1979). To model uncertain informa-
tion in networks, probabilistic models in which each edge is 
associated with an independent probability are the typical 
choice in the literature (Asthana et al. 2004; Poisot et al. 
2016; Rhodes et al. 2005). Despite the fact that uncertainty 
affects several types of data collection processes, the major-
ity of works on social networks ignore it. More precisely, in 
data collection a thresholding approach is typically used, in 
which if the degree of confidence about the existence of an 

edge is higher than a specific value, then we draw and edge 
between those nodes. However, the selection of a threshold 
value is a subjective task. As an example, De Choudhury 
et al. (2010) have studied two email exchange datasets (a 
university email dataset and the Enron email dataset) to infer 
unobserved social ties using the number of exchanged emails 
between pairs of individuals. They have inferred the exist-
ence of a social tie between each pair of individuals if the 
average number of exchanged emails in a specific period of 
time is higher than a specific number, i.e., a threshold. As a 
result, they have demonstrated that different choices of the 
threshold lead to completely different network structures. 
Brugere et al. (2018) have introduced a wide variety of areas 
such as computational biology, neuroscience, ecology and 
social science in which edges between entities have been 
inferred using another type of interactions and the threshold-
ing approach has been used to construct the final networks. 
In our opinion, the main reason why uncertainty is rarely 
considered in social network analysis is the lack of appropri-
ate methods to handle it. In this paper, we thus focus on the 
methods to analyze probabilistic networks.

Mining and analysis of probabilistic social networks have 
gained a great attention during the last years and have led 
to formulating many problems in such networks. A large 
number of analytic approaches and algorithms to solve these 
problems are based on local properties of nodes, such as 
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their connectivity with their one-hop (immediate) neighbors 
(Bonchi et al. 2014; Mukherjee et al. 2017; Parchas et al. 
2015, 2018).

One of the main approaches to study the local properties 
of a node is to examine its ego network. In deterministic 
social networks, in which the existence of edges is certain, 
an ego network is a network consisting of a node called 
ego, its neighbors called alters and the edges between the 
alters and the ego and between the alters. Deterministic ego 
networks have been studied extensively following different 
lines of research. One direction of research is focused on 
studying the structural properties of ego networks to iden-
tify and predict some human behaviors in online social net-
works (Arnaboldi et al.  2014, 2016a, b; Roberts and Dunbar 
2011). Another branch of study tries to estimate the global 
properties of nodes based on their corresponding properties 
in their ego-networks (Everett and Borgatti 2005; Marsden 
2002; Pantazopoulos et al. 2013). The third branch of works 
attempt to focus on the differences between the egocentric 
properties of nodes in online and offline social networks 
(Arnaboldi et al. 2017; Socievole and Marano 2012).

Despite the existence of several studies on deterministic 
ego networks, ego measures have not been studied for proba-
bilistic networks so far. In fact, no definition of probabilistic 
ego network has been proposed and evaluated yet. Consider-
ing the importance of deterministic ego networks in the field 
of social network analysis, the absence of a probabilistic 
counterpart of this theory constitutes a strong limitation. As 
mentioned before, in the current literature on probabilistic 
network analysis many methods are based on the local prop-
erties of nodes, which highlights the significance of having a 
clear definition of probabilistic ego network and associated 
measures.

Unlike the uniqueness of the definition of deterministic 
ego network, probabilistic ego networks can be defined in 
two ways. In the first one, first all possible worlds1 are gener-
ated and then the neighborhood of an ego node in each pos-
sible world is defined independently. In the second approach, 
first the neighborhood of an ego node is defined in the proba-
bilistic network and then all possible worlds corresponding 
to that neighborhood are generated.

1.1 � Contributions and outline

In this paper, we provide three main contributions:

•	 As the first contribution we introduce two definitions 
of probabilistic ego networks, called V-Alters-Ego and 
F-Alters-Ego. These definitions are based on the two 

definitions of a node’s neighborhood in probabilistic 
networks.

•	 As the second contribution, we examine degree, between-
ness and closeness for both definitions of probabilistic 
ego networks, to see to what extent the two definitions 
of probabilistic ego networks lead to different sets of top-
ranked nodes and to what extent they are correlated. We 
show that while closeness is always 1 for all nodes under 
V-Alters-Ego, it is represented as a probability distribu-
tion under F-Alters-Ego.

•	 As the third contribution, we propose a method to 
approximate probabilistic ego betweenness and show that 
this method is an acceptable alternative for the between-
ness under V-Alters-Ego definition.

Section 2 presents an introduction to three concepts that 
are foundations of our research: probabilistic networks, ego 
networks and nodes’ neighborhood. Section 3 describes two 
definitions of probabilistic ego networks based on two defi-
nitions of nodes’ neighborhood in probabilistic networks. 
Moreover, we show how degree, betweenness and close-
ness apply under each of these two definitions. In Sect. 4 we 
propose an approximation method to estimate the extent to 
which an ego node plays the role of an intermediate node 
among its neighbors. In Sect. 5, we evaluate the extent to 
which different definitions of probabilistic ego networks 
result into different lists of most influential nodes in proba-
bilistic networks and to what extent they are correlated. We 
conclude and present some opportunities for further research 
in Sect. 6.

2 � Preliminaries

2.1 � Probabilistic networks

The most common model to represent uncertainty in net-
works is G = (V ,E, p) where V and E are, respectively, sets 
of nodes and edges and p ∶ E → (0, 1] is a function assign-
ing a probability to each edge. Edge probabilities are mutu-
ally independent. This model is called a probabilistic net-
work model and has been used widely to represent imperfect 
network data not only in social influence networks (Potamias 
et al. 2010), but also in sensor networks (Gao et al. 2017), 
opportunistic networks (Lu et al. 2016), **protein-protein 
interaction networks (Srihari and Leong 2013) and road net-
works (Fushimi 2018).

As each edge has two possible states (existing/non-existing) 
with probability p and 1 − p , each probabilistic graph corre-
sponds to 2|E| deterministic graphs which are called possible 
worlds (or instances), where each instance Gi has an associ-
ated probability Pr(Gi) . Under this definition, each measure in 

1  The concept of possible worlds is explained in Sect. 3.
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probabilistic graphs equals the expected value of that measure 
over all possible worlds:

where G is the set of all possible instances of G and Mi is the 
value of measure M in possible world Gi.

2.2 � Deterministic ego network

In order to define probabilistic ego networks, we first look 
at the definition of ego network in deterministic networks. A 
deterministic ego network of an arbitrary node e is a network 
consisting of node e, called ego, its neighbors called alters, the 
edges between the alters and the ego and the edges between the 
alters (Everett and Borgatti 2005; Marsden 2002). With this 
network, local structural properties of nodes can be extracted 
(Fig. 1). The most common measures in ego networks are 
given below.

2.2.1 � Degree

Node degree is a fundamental measure in networks. The 
degree of a node in its ego network is the same as the degree 
of that node in the whole network.

2.2.2 � Ego betweenness

Ego betweenness was introduced in Marsden (2002). Fol-
lowing that, authors in Everett and Borgatti (2005) proposed 
an efficient and simple method to calculate ego betweenness 
based on the adjacency matrix of an ego network: the ego 
betweenness of node e is the sum of the reciprocal of all ele-
ments in the upper triangle of matrix �2[� − �] without con-
sidering the diagonal elements:

(1)�(M) =
∑
Gi∈G

Mi × Pr(Gi)

(2)Bwego(e) =
∑
i>j

1

�2[� − �]ij

where � is the ego network’s adjacency matrix.

2.2.3 � Ego closeness

Closeness of a node is based on the length of the shortest 
paths between that node and all other nodes in the net-
work. By definition, the shortest path distance between 
an ego node and its alters is 1. So, the closeness of an ego 
node in its ego network is not meaningful.

2.3 � Nodes’ neighbors

The definition of ego network in deterministic networks is 
based on the definition of neighborhood, which is the set 
of nodes that are adjacent to the ego node. However, since 
the analysis of probabilistic networks is based on possible 
worlds semantics, there are two different ways of defining 
neighborhood in probabilistic networks: before generating 
possible worlds or after generating possible worlds.

Definition 1  (after generating possible worlds) Given a 
probabilistic graph G = (V ,E, p) and an arbitrary node u, 
the neighbors of node u in possible world w are defined as 
the set of nodes adjacent to u in that possible world:

where � is the set of all possible worlds of G and Nw(u) is 
the set of u’s neighbors in possible world w and �w is the set 
of edges in possible world w.

Definition 2  (before generating possible worlds) Given a 
probabilistic graph G = (V ,E, p) and an arbitrary node u, 
the neighbors of node u in all possible worlds are defined 
as the set of nodes having a positive probability of being a 
neighbor of that node:

According to this definition, the set of neighbors of node u 
is fixed, N(u), regardless of in which possible worlds they 
are connected and in which possible worlds they are not 
connected.

The two described definitions above are rooted in the 
probabilistic network literature. Some works implicitly use 
Definition 1 (Bonchi et al. 2014), while others use Defini-
tion 2 (Mukherjee et al. 2017).

(3)∀w ∈ �,Nw(u) = {v | (u, v) ∈ �w}

(4)∀w ∈ �,Nw(u) = {v | (u, v) ∈ E, puv > 0} = N(u)

e 1
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(a) a deterministic network

e 1
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3

4
5

(b) e’s deterministic ego network

Fig. 1   Ego network in deterministic networks
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3 � Probabilistic ego networks: definitions 
and measures

3.1 � Probabilistic ego networks with varying sets 
of alters

Our first definition of probabilistic ego network is based on 
Definition 1. Therefore, for arbitrary node e, e’s ego network 
in a specific possible world is the network consisting of node 
e, its neighbors in that possible world, the edges between 
the neighbors and e and the edges between the neighbors. 
Figure 2a shows a probabilistic network and Figure 2b, c 
illustrate two possible worlds of it. Figure 2d, e shows two 
ego networks of node e, extracted from possible worlds in 
Fig. 2b, c respectively. Hereafter, we notate e’s alters in 
each instance as Av(e) , where subscript v denotes the varia-
tion of the set of alters in each possible world. We also use 
the abbreviation V-Alters-Ego to refer to this definition of 
probabilistic ego networks.

In the following, we discuss the calculation of the most 
fundamental and common measures including degree, ego 
betweenness and ego closeness according to this definition:

3.1.1 � Degree

In a probabilistic network we may not know the degree 
of a node with certainty; instead, we can compute degree 
probability distributions, where for each node a probability 

is associated to one or more possible values for the degree. 
Since the calculation and analysis of degree distributions 
in large networks are challenging, summary measures of 
degree distributions have been used as a corresponding 
measure for degree (Bonchi et al. 2014; Parchas et al. 
2015, 2018). The most commonly used summary measure 
is expected degree. To calculate the expected degree of an 
ego node in probabilistic networks, we have to use Eq. 1 
by replacing Mi with Di(e) which is the degree of node e 
in possible world Gi . Since a node’s degree distribution in 
probabilistic networks is a Poisson binomial distribution 
(Kaveh et al. 2019) the expected degree is calculated eas-
ily by aggregating the probability of all the edges incident 
to e.

where Av(e) is the set of alters of ego e and peu is the proba-
bility of the edge between e and u. For example the expected 
degree of node e in Fig. 2a is 2.8.

3.1.2 � Betweenness

Betweenness of an ego node in a probabilistic network 
equals the expected value of ego betweenness in all deter-
ministic possible worlds. As discussed in Everett and Bor-
gatti (2005), the shortest path length between two alters in 
deterministic ego networks is 1 if they are adjacent (nodes 
1 and 3 in Fig. 1b) or is 2 if they are not adjacent (nodes 1 
and 4 in Fig. 1b). For non-adjacent alters there is always 
a path with length 2 that passes through the ego node, 
although in addition to it, it is possible to have other paths 
with length 2 (e.g., two geodesic paths between alters 1 
and 4 pass, respectively, through ego node e and alter 
node 3). In the algorithm proposed in Everett and Borgatti 
(2005), if � is the adjacency matrix of an ego network, 
�

2[� − �]ij is 0 if nodes i and j are adjacent, is 1 if they 
are not adjacent and the shortest path between them only 
passes through the ego node e, and is 1 + d if there are d 
paths of length 2 passing through nodes other than e.

The following matrix shows the result of �2[� − �] for 
the deterministic graph presented in Fig. 1b. The matrix 
shows that there are 2 shortest paths with length 2 between 
nodes 2 and 5. Since e is adjacent to both of them, so one 
of these paths is definitely passing through this node and 
the other path is passing through another alter (in this case 
node 1).

As the ego node is represented in the first column/row 
of the matrix, the number of shortest paths between nodes 
2 and 5 corresponds to the 3rd row and 6th column of the 
resulting matrix.

(5)�(De) =
∑

u∈Av(e)

peu

e 1

2
3

4
5

6 7

0.7

0.
4

0.5

0.4

0.8
0.3

0.40.9

0.2

0.
7

0.4

0.1

(a) probabilistic net-
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(b) PW 1
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(c) PW 2
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(d) V-Alters-Ego 1

e 1

2
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(e) V-Alters-Ego 2

Fig. 2   a a probabilistic network, b, c two possible worlds of the prob-
abilistic network in a, d and e two V-Alters-Ego corresponding to 
possible worlds PW1 and PW2 in b, c 
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If � is the adjacency matrix of a probabilistic network in 
which �ij represents the probability of the edge between 
nodes i and j, �2[� − �] does not give the same informa-
tion. The following matrix presents the result of �2[� − �] 
for the probabilistic graph in Fig. 2a (by removing nodes 6 
and 7). Each element of the matrix shows the expected num-
ber of paths of length 2 between the corresponding nodes. 
However, this value does not reflect the contribution of the 
ego node as the intermediate node between A and B between 
the considered nodes. For example, the expected number of 
paths of length 2 between nodes 2 and 5 in Fig. 2a is 0.38. 
However, the contribution of the ego node e as the interme-
diate node between nodes 2 and 5 is either 1 with probability 
0.3008 (the path via node 1 does not exist) or 0.5 with prob-
ability 0.0192 (both paths exist). Then, the betweenness of 
the ego node is 0.3104 and it cannot be extracted from the 
following matrix.

As a result, to obtain the probabilistic ego betweenness we 
can not replace the adjacency matrix of the probabilistic ego 
network in Eq. 2. Hence, in V-Alters-Ego, the ego between-
ness has to be calculated in each possible world and the 
probabilistic ego betweenness is the result of Eq. 1 in which 
Mi is replaced by Eq. 2.

3.1.3 � Closeness

Closeness in deterministic ego networks can only take the 
value 1, by definition, and it is thus not a meaningful meas-
ure. In V-Alters-Ego in which each measure is the mean 
value of that measure in all possible worlds, ego closeness 
is also 1.

3.2 � Probabilistic ego networks with a fixed set 
of alters

Our second definition of probabilistic ego network is based 
on Definition 2. In this approach the set of neighbors of a 
node is fixed for all possible worlds. Therefore, for arbitrary 

�
2[� − �] =

⎡⎢⎢⎢⎢⎢⎢⎣

. 0 0 0 0 0

. . 0 0 2 0

. . . 2 1 2

. . . . 0 2

. . . . . 1

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎦

�
2[� − �] =

⎡⎢⎢⎢⎢⎢⎢⎣

. 0.144 0.126 0.32 0.27 0.028

. . 0.196 0.21 0.64 0.448

. . . 0.32 0.16 0.38

. . . . 0.02 0.48

. . . . . 0.32

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎦

node e, e’s ego network in an specific possible world is the 
network consisting of node e and the fixed set of its neigh-
bors, and all the edges available between the neighbors 
and e and the edges between the neighbors in that possible 
world. We notate the set of all nodes that are connected via 
uncertain edges to the ego node e (alters of e) as Af (e) . For 
the sake of brevity, we use the abbreviation F-Alters-Ego to 
refer to the definition of probabilistic ego network based on 
a fixed set of alters.

Figure 3b shows an arbitrarily chosen node e and all the 
nodes that are considered as e’s neighbors in all possible 
worlds. Figure 3c, d demonstrates two possible worlds of 
it. In both possible worlds nodes Af (e) = {1, 2, 3, 4, 5} are 
treated as e’s neighbors.

By defining probabilistic ego networks in V-Alters-Ego, 
first the distance between an ego node and its alters is always 
1 and second, the distance between two alters is either 1 or 
2. On the other hand, by defining probabilistic ego networks 
in V-Alters-Ego, first, the distance between an ego node 
and its alters can be longer than 1 and second, the distance 
between alters can be longer than 2 in some possible worlds. 
These two differences motivate us to re-study betweenness 
Sect. 3.2.1 and closeness Sect. 3.2.2 in F-Alters-Ego accord-
ingly. However, the definition of degree is the same in the 
V-Alters-Ego and F-Alters-Ego cases.

3.2.1 � Betweenness

Ego betweenness in deterministic networks is calculated 
by counting the number of the shortest paths with length 
2 that traverse the ego (Everett and Borgatti 2005). Under 
the V-Alters-Ego definition, the ego betweenness is the 
expected value of deterministic ego betweenness in all 
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Fig. 3   a a probabilistic network, b F-Alters-Ego, c, d two possible 
worlds of F-Alters-Ego in b 



	 Social Network Analysis and Mining (2021) 11:2

1 3

2  Page 6 of 12

possible worlds. Figure 4a shows a possible world of the 
probabilistic network in Fig. 3a. In this possible world in 
Fig. 4b, e’s ego betweenness under V-Alters-Ego definition 
is 1, however, under F-Alters-Ego, not only e is an interme-
diate node in a path with length 2 between nodes 1 and 3, 
but also it is an intermediate node in the paths with length 
3 (between nodes 2 and 3 as well as 1 and 4) and length 4 
(between nodes 2 and 4).

This shows that under the F-Alters-Ego definition, the 
shortest paths with length higher than 2 which pass through 
an ego node have a contribution in the value of ego between-
ness of that ego node. Therefore, the ego betweenness under 
F-Alters-Ego is the expected value of ego betweenness in 
all possible worlds in which shortest paths between alters 
with length higher than 2 which pass through the ego node 
are also counted.

3.2.2 � Closeness

By defining probabilistic ego networks as in Sect. 3.1, the 
distance between an ego node and its alters is always 1. On 
the other hand, by defining it based on a fixed set of alters 
the distance between the ego node and each alter is repre-
sented as a shortest path distance distribution. More pre-
cisely, in some instances the distance between the ego node 
and an alter is higher than 1.

Having the shortest path length distribution between ego 
node and its alters, motivates us to study the concept of dis-
tance between an ego node and their alters to propose a new 
version of closeness.

3.2.3 � Shortest path length distribution

The shortest path lengths between any pairs of nodes in proba-
bilistic networks are expressed as shortest path length distri-
butions (Potamias et al. 2010). In F-Alters-Ego, the smallest 
shortest path length between an ego node and its alters is 1 
with the probability of the incident edge between them. The 
longest shortest path is in the case that there is a path between 
the ego and its alter by traversing all other alters. In this case, 
the longest shortest path length has the length equal to the 

number of alters. We notate the shortest path length distribu-
tion between two nodes u and v as spu,v and define spu,v(l) to 
be the probability that the shortest path length between nodes 
u and v is l:

where G is the set of all possible worlds of probabilistic 
graph G . To put it in another way, the probability that the 
shortest path length between nodes u and v is l equals the 
sum of the probabilities of all possible worlds in which 
shortest path length between these two nodes is l. For exam-
ple, the shortest path length between ego e and alter 2 is 1 
with probability 0.4. Moreover, alter 2 is accessible with 
shortest path length 2 with probability 0.126 via node 1 
(Fig. 5a) and with shortest path length 3 with probability 
0.018 by passing nodes {5, 1} or {3, 1} (see Fig. 5b). The 
highest shortest path length between e and 2 is obtained in 
the instance in Fig. 5c. Furthermore, node 2 is disconnected 
from e with probability 0.453 (Fig. 5d). Figure 5e shows 
the shortest path length distribution in which the event of 
disconnection between e and 2 is notated as ∞.

One of the most common summarizing measures of prob-
ability distributions is the expected value. As the shortest path 
length is presented as a probability distribution, the expected 
length of the shortest paths is the most desirable measure, 
however its calculation is problematic. The reason is that in 
probabilistic networks there is a probability of disconnection 
between each pair of nodes. Since in network science the dis-
tance between two disconnected nodes is typically assumed 
infinite, calculation of the expected value of the shortest 
path length between them is impossible. For example the 
expected value of the shortest paths between nodes e and 2 is:  
1 × sp

e,2(1) + 2 × sp
e,2(2) + 3 × sp

e,2(3) + 4 × sp
e,2(4) + ∞×

sp
e,2(∞) = ∞.
Although extracting the average distance between an ego 

node and an alter is implausible, still it is possible to extract 
useful information from the shortest path length distribution. 
For example, the shortest path length distribution in Fig. 5e 
reveals that in 52.6% of the possible worlds of the network in 
Fig. 3b the distance between nodes e and 2 is at most 2. Based 
on this intuition we define �-distance between two nodes in 
probabilistic networks.

Definition 3  �-distance is the minimum shortest path 
length where the probability of having this length or less is 
higher than �:

(6)spu,v(l) =
∑

G|D(u,v)=l
Pr(G)

(7)d�(v, u) = argmin k

{
k∑

l=1

spv,u(l) ≥ �

}

e 1

2
3

4
5

(a)

e 1

2
3

4
5

(b)

Fig. 4   a, e is an intermediate node between 1 and 3, b e is an inter-
mediate node between nodes 1, 2 and 3, 4 
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where 0 < 𝛼 ≤ 1 . In other words, �-distance between two 
nodes is k if at least in � × |PW(G)| of possible worlds, the 
shortest path length between them is at most k. By replacing 
� with 1

2
 , we will have the median distance which is similar 

to the definition of median distance introduced in Potamias 
et al. (2010). As an example, d0.5(e, 2) = 2 and shows that at 
least in 50% of possible worlds, nodes e and 2 are connected 
with paths with length at most 2 (see Fig. 5e).

As discussed before, the concept of closeness is mean-
ingless in deterministic ego networks and in V-Alters-Ego, 
because the shortest path length between an ego node and 
all its alters is 1. However by defining the probabilistic ego 
networks based on a fixed set of alters and having the short-
est path length distribution between each alter and ego node, 
the notion of closeness becomes relevant. We define �-close-
ness of an ego node to be the sum of the reciprocal of the �
-distance between the ego node and each of its alters:

where Af (e) is the set of alters of the ego node e.

4 � Approximating ego betweenness 
in V/F‑Alters‑Ego

Here, we outline a method to calculate the contribution of 
an ego node as the intermediate node in paths with length 
2. To this end, for each pair of alters u and v, we consider 

(8)C�(e) =
∑

v∈Af (e)

1

d�(e, v)

the probability of existence of edges (e, u) and (e, v) and 
at the same time the probability of nonexistence of an edge 
between u and v, i.e., the probability of an open triplet 
made by (e, u) and (e, v). Hence, we define be(u, v) to be 
the probability that ego node e is the intermediate node 
in shortest paths with length 2 between its alters u and v:

where peu is the probability of the edge between nodes e 
and u and so on. As a result, we define betweenness of an 
ego node e to be the sum of the shortest paths with length 
2 crossing e (the sum of the probability of all open triplets, 
centered on e):

where Af (e) is the set of alters of ego node e. As an 
example in Fig.  3b, be(1, 2) = 0.7 × 0.4 × (1 − 0.3) , 
be(1, 3) = 0.7 × 0.5 × (1 − 0.4) and be(1, 4) = 0.7 × 0.4 and 
so on so forth, and then Be = 2.554.

We aim to call attention to three points: first, Eq. 10 
aggregates the probability of all shortest paths of length 2 
that cross node e, between all pairs of its possible alters, 
regardless of whether there are other geodesic paths of 
length 2 in the ego network between u and v or not. Sec-
ond, Eq. 10 takes into accounts all shortest paths of length 
2 between alters, however, there could be paths of length 
higher than 2 between alters that cross through the ego 

(9)be(u, v) = peu pev (1 − puv)

(10)Be =
∑

u,v∈Af (e)

be(u, v)

Fig. 5   a–d An example of pos-
sible worlds where the shortest 
path length between nodes 
e and 2 has different values 
in F-Alters-Ego definition, e 
shortest path length distribution 
between nodes e and 2 
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node. Third, Eq. 10 violates possible worlds semantics and 
includes intersections among open triplet.

Regarding the last point, it is worth to mention that our 
approximation approach is consistent with the method pro-
posed in Pfeiffer and Neville (2011) to approximate cluster-
ing coefficient of nodes in probabilistic networks. The author 
of this paper outlined that their approximation method is 
based on the first-order Taylor expansion, though they did 
not provide any mathematical proof. Therefore, we use 
experimental/empirical analysis approach to see whether the 
proposed approximation method is an appropriate method 
to estimate ego betweenness in either V-Alters-Ego approach 
or F-Alters-Ego approach or not. If the number of incident 
edges to the ego node is De then the computational complex-

ity is O
((De

2

))
= O(D2

e
) which is tractable even for nodes 

with large De.

5 � Evaluation

In this section we want to investigate whether the two ways 
of defining probabilistic ego networks (V-Alters-Ego and 
F-Alters-Ego) lead to different local properties of the nodes. 
Answering this question is important because, as men-
tioned before, the result of many algorithms and analytical 
approaches in the analysis of probabilistic networks depend 
on the nodes’ local properties.

As a method of evaluation, we study the association 
among the aforementioned measures by first calculating 
the Pearson, Spearman and Kendall correlation coefficients 
and then calculating the proportion of common top-k nodes 
obtained by using the centrality measures.

5.1 � Datasets

For the evaluation, we use four probabilistic social networks 
from the literature. Table 1 summarizes the characteristics 
of these datasets.

5.1.1 � Enron

The first dataset is a snowball sample of the Enron email 
network which consists of emails sent between employ-
ees of Enron between 1999 and 2001. Nodes represent 
employees and there is an edge between two nodes if 
at least one email has been exchanged between them. 
The probabilities of the edges are set using equation 
pi,j = 1 −

∏
k(1 − exp(−�(tnow − tk))) quantifying the prob-

ability that a new email will be exchanged between a pair 
of nodes at time tnow . � is the scaling parameter, and tk is the 
time when message k has been exchanged between nodes 
i and j (Pfeiffer and Neville 2011). The Enron dataset is 
denser than the others.

5.1.2 � Facebook

The second dataset contains two years of wall-to-wall post-
ings between a snowball sample of users in Facebook. There 
is an edge between two nodes if at least one of them has 
posted at least one message on another person’s wall. The 
probabilities on the edges come from the same equation in 
the Enron dataset and represent the likelihood of having an 
active relationship at time tnow (Pfeiffer and Neville 2011).

5.1.3 � FriendFeed

The third dataset is a snowball sample of the FriendFeed 
network (Magnani et al. 2010) with 150 nodes and 619 
edges. We draw an edge between two nodes if they mutu-
ally follow each other. The probabilities of an edge is the 
likelihood that two nodes will exchange a message in the 
future. This probability is quantified by the exponential func-
tion pij = 1 − exp(−�n) , where n is the number of messages 
exchanges between them in any direction and � is the scaling 
parameter with the value of 0.25.

5.1.4 � DBLP

The fourth dataset is a snowball sample of the computer 
science bibliography DBLP dataset. In this network, nodes 
are authors of papers and two authors have an uncertain 
edge if they have co-authored at least one paper. The prob-
abilities of the edges are obtained from exponential function 
pij = 1 − exp(−�n) determining the probability that two 
authors will co-author a paper in the future. n is the number 
of papers that two authors have co-authored in the past and 
� is the scaling factor (Parchas et al. 2015).

Figure 6 shows the CDF2 of edge probabilities of our 
datasets. The blue dashed lines show the probability 

Table 1   Characteristics of datasets, |�| is the number of nodes, |�| is 
the number of edges, � is the mean of the edge probabilities and � is 
the mean of nodes’ degree

Dataset |�| |�| � �

Enron 805 3956 0.173 9.83
Facebook 1976 1809 0.179 1.83
FriendFeed 150 619 0.547 8.25
DBLP ( � = 0.05) 2763 3268 0.074 2.37
DBLP ( � = 0.5) 0.486

2  Cumulative distribution function.
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threshold from which 25% of the edges have lower prob-
ability ( �1 ). Likewise, the green dotted lines indicate the 
threshold from which 50% of edges have lower proba-
bility ( �2 ). The deterministic graphs for each dataset is 
obtained by removing all probabilities from the edges, 
or by removing all edges with probability lower than the 
threshold and then considering all the remaining edges 
as certain edges. For the DBLP dataset, since more than 
72% of the edges have the same probability, finding a 
threshold to remove 25% and 50% low probability edges 
is impossible. So, instead of using a DBLP dataset that 
does not include 25% (50%) of its edges, we use two com-
plete DBLP datasets with different scaling parameters 
� = {0.05, 0.5}.

5.2 � Comparing measures in V‑Alters‑Ego 
and F‑Alters‑Ego

5.2.1 � Degree

The notion of degree in deterministic networks is replaced 
by the notion of node degree distribution in probabilistic 
networks. However, in practice instead of computing the 
whole distribution its expected value is used: the expected 
degree, in both V-Alters-Ego and F-Alters-Ego, is the sum 
of the probabilities of all edges incident to the ego node. 
The computational complexity of these measures (degree 
and expected degree) is O(|V|), where V is the number of 
nodes in network G.

5.2.2 � Betweenness

Ego betweenness in each definition of the probabilistic ego 
network has a different interpretation. In V-Alters-Ego, prob-
abilistic ego betweenness is the expected value of determin-
istic ego betweenness in all possible worlds. The number 
of possible worlds increases exponentially as the number 
of edges in ego network increases. Hence, the calculation 
of ego betweenness in V-Alters-Ego for even average size 
ego networks is intractable. Similarly, ego betweenness in 
F-Alters-Ego is the expected value of deterministic between-
ness of nodes in all possible worlds. In the first, just shortest 
paths with length 2 are counted while in the latter, shortest 
paths with length higher than 2 have also input in the value 
of betweenness.

Columns 2 to 4 in Table 2 show high correlation coeffi-
cients between probabilistic ego betweenness in V-Alters-
Ego and F-Alters-Ego. However, in all datasets Pearson 
correlation coefficient is higher than Spearman and Ken-
dall. High value for Pearson correlation coefficient reveals 
that ego betweenness increases/decreases in V-Alters-Ego 
when it increases/decreases in F-Alters-Ego. Spearman 
and Kendall correlation coefficients expose the associa-
tion between two centrality measures regarding ranking, 
not necessarily the value of centrality measures. There-
fore, the lower values of rank correlation coefficients, in 
comparison to Pearson, show that increase and decrease 
in the value of ego betweenness in both definitions are not 
with the same proportion/rate. This motivates us to study 
the proportion of common top-k ranked nodes obtained by 

Fig. 6   CDF of edge probabili-
ties

Table 2   Correlation coefficients 
between probabilistic ego 
betweenness in V-Alters-
Ego, F-Alters-Ego and the 
approximation method

� , s and � are, respectively, Pearson, Spearman and Kendall correlation coefficients and subscripts V, F and 
APP, respectively, refer to probabilistic ego betweenness in V-Alters-Ego and F-Alters-Ego definitions and 
the approximation method

Dataset �
V ,F s

V ,F �
V ,F �

V ,APP s
V ,APP �

V ,APP �
F,APP s

F,APP �
F,APP

Enron 0.98 0.96 0.91 1 0.93 0.88 0.98 0.93 0.86
Facebook 0.98 0.76 0.73 0.99 0.71 0.65 0.99 0.72 0.66
FriendFeed 1 0.99 0.95 1 1 0.97 1 0.99 0.94
DBLP (0.05) 0.91 0.8 0.76 0.99 0.75 0.68 0.91 0.76 0.68
DBLP (0.5) 0.95 0.92 0.86 0.99 0.95 0.9 0.9 0.95 0.89
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using probabilistic ego betweenness in the two definitions 
to verify whether the difference in ranking occurs among 
the top ranked nodes or the medium/low ranked nodes. 
Figure 7a shows that this difference happens with higher 
proportion among top-k ranked nodes when k is smaller. 
Hence, probabilistic ego betweenness in V-Alters-Ego and 
F-Alters-Ego are not replaceable.

We repeated the same experiments to investigate the 
difference and similarity of probabilistic ego between-
ness in V/F-Alters-Ego with the proposed approximation 
method in 4. In general, Table 2 shows that the proposed 
approximation method for probabilistic ego betweenness 
has a very high Pearson correlation with probabilistic ego 
betweenness for V-Alters-Ego, however, rank correlation 
coefficients are low. Again we examine the proportion of 
common top-k ranked nodes obtained by using probabil-
istic ego betweenness in V-Alters-Ego and the approxi-
mation method. Figure 7b indicates that the difference 
between the two ranking methods happens when k is a 
large number.

Generally, the results shown in Table 2 and Fig. 7 sug-
gest that the approximation method for betweenness in 
Sect. 4 is an appropriate method to approximate probabil-
istic ego betweenness in V-Alters-Ego.

The ego betweenness in V-Alters-Ego and F-Alters-Ego 
has been obtained by averaging on 15,000 samples from 
each node’s ego networks.

5.2.3 � Closeness

In V-Alters-Ego, probabilistic ego closeness is 1 for all 
nodes by definition. However, in F-Alters-Ego �-closeness 
is capable of making a distinction among nodes in a network. 
The shorter the distance is between an ego and its alters in 
at least �|G| of the possible worlds, the higher value of �
-closeness this node has. The time complexity of �-close-
ness depends on the time complexity of shortest path length 
distribution. The calculation of the complete shortest path 
length distribution needs to generate all possible worlds 
in F-Alters-Ego. However, � prunes many possible worlds 
and just considers those possible worlds where the distance 
between ego node and its alter is as short as possible and the 
sum of the probability of those possible worlds is greater 
than or equal to � . Therefore, the smaller � is, the less pos-
sible worlds are needed to be generated.

Figure 8 shows the CDF of ego �-closeness in our data-
sets. According to the definition of �-closeness in Eq. 8 the 
higher � leads to the lower �-closeness. Figure 8 confirms 
this property in all the datasets. For example, the dashed line 
in Fig. 8a demonstrates that 143 nodes have 0.03-closeness 
higher than 10, while just 105 nodes have 0.05-closeness 
higher than 10.

To evaluate the proposed ego closeness, we examine the 
correlation between it and the expected degree which is the 
same in both probabilistic ego definitions, probabilistic ego 

Fig. 7   Proportion of common 
top-k nodes obtained using 
probabilistic ego betweenness 
in a F-Alters-Ego and V-Alters-
Ego, b V-Alters-Ego and the 
approximation method and c 
F-Alters-Ego and the approxi-
mation method

Table 3   Correlation coefficients 
(Pearson � , Spearman s and 
Kendall � ) between �-closeness 
and expected degree (columns 
2–4), between �-closeness 
and the expected betweenness 
under F-Alters-Ego definition 
(columns 5–7), between �
-closeness and the expected 
betweenness under V-Alters-
Ego definition (columns 8–10), 
and between �-closeness and 
the value of the approximation 
method for betweenness 
(columns 11–13)

Dataset Cl� ,E Cl� ,F − btw Cl� ,V − btw Cl� ,A − btw

� s � � s � � s � � s �

Enron ( � = 0.03) .9 .95 .84 .74 .91 .82 .69 .9 .8 .69 .91 .8
Enron ( � = 0.05) .93 .96 .87 .8 .89 .82 .76 .89 .81 .75 .91 .81
Facebook ( � = 0.03) .82 .79 .66 .66 .66 .6 .66 .65 .59 .66 .79 .7
Facebook ( � = 0.05) .85 .84 .7 .67 .65 .59 .67 .64 .59 .67 .75 .66
FriendFeed ( � = 0.05) .51 .73 .66 .3 .74 .68 .35 .73 .67 .37 .72 .67
FriendFeed ( � = 0.1) .52 .73 .66 .31 .74 .68 .36 .73 .67 .38 .72 .67
DBLP-0.5 ( � = 0.1) .95 .92 .84 .65 .94 .88 .78 .93 .87 .8 .98 .93
DBLP-0.5 ( � = 0.25) .95 .92 .84 .65 .94 .88 .78 .93 .87 .8 .98 .93
DBLP-0.5 ( � = 0.5) .97 .88 .81 .59 .73 .63 .73 .73 .63 .75 .74 .64
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betweenness in V-Alters-Ego, probabilistic ego betweenness 
in F-Alters-Ego and probabilistic ego betweenness calculated 
using the approximation method. Table 3 shows high Pear-
son as well as Spearman and Kendall correlation coefficients 
between �-closeness and expected degree in all the datasets.

The results in Table 3 show that among all measures 
(expected degree, V-Ego betweenness, F-Ego betweenness 
and approximated betweenness), �-closeness has high cor-
relation coefficients just with expected degree. However, 
Fig. 9a reveals that �-closeness and expected degree do not 
have high intersection of top-k nodes except for DBLP-0.5 
with � = 0.5.

Generally for all datasets, the intersection between sets of 
top-k nodes obtained using �-closeness and other four meas-
ures, for small values of k, is neither close to 1, which would 
have shown that those measure are good replacements for �
-closeness, nor close to 0, which would have implied that �
-closeness is reflecting completely different local structural 
properties in comparison to the other four measures (Fig. 9).

6 � Conclusions and future works

In this paper, we investigated two definitions of ego net-
works in probabilistic graphs that we call V-Alters-Ego and 
F-Alters-Ego. In V-Alters-Ego, first possible worlds are 

generated and then in each possible world the neighbors of 
the ego node and the corresponding ego network are defined 
independently. In F-Alters-Ego, the set of neighbors of an 
ego node is defined in the initial step and the possible worlds 
are generated. We examined notions of degree, betweenness 
and closeness in both definitions. Both V-Alters-Ego and 
F-Alters-Ego are based on alternative definitions of neigh-
borhood in the literature on probabilistic networks.

We also proposed an approximation method to calculate 
the extent to which an ego node plays the role of intermedi-
ate node among its neighbors in shortest paths with length 
2. This approximation method, is not only very close to ego 
betweenness in the V-Alters-Ego definition, but also com-
putationally simple, i.e., O(D2

e
) where De is the number of 

incident edges to an arbitrary node e.
We believe that this study paves the path for studying 

more structural properties in probabilistic networks. More 
precisely, in the future we aim to investigate the approxima-
tion of global structural properties of nodes in the network 
by using their local properties, which is something that has 
already been done for deterministic ego networks but not 
investigated for the more general probabilistic case. Moreo-
ver, the approximation method to calculate ego betweenness 
in V-Alters-Ego can be used as a fast-computing local prop-
erty for nodes in algorithms that aim to maintain local prop-
erties of nodes for further processing (Parchas et al. 2018).

Fig. 8   CDF of �-closeness 

Fig. 9   Proportion of common top-k nodes obtained using �-closeness and a expected degree, b ego betweenness for F-Alters-Ego, c ego 
betweenness for V-Alters-Ego, and ego betweenness for V-Alters-Ego, and d approximated value for betweenness
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