
arXiv.org manuscript No.
(will be inserted by the editor)

Change Detection in Noisy Dynamic Networks: A
Spectral Embedding Approach

Isuru Udayangani Hewapathirana 1 ·
Dominic Lee 2 · Elena Moltchanova 2 ·
Jeanette McLeod 2

Abstract Change detection in dynamic networks is an important problem in
many areas, such as fraud detection, cyber intrusion detection and health care
monitoring. It is a challenging problem because it involves a time sequence
of graphs, each of which is usually very large and sparse with heterogeneous
vertex degrees, resulting in a complex, high dimensional mathematical object.
Spectral embedding methods provide an effective way to transform a graph
to a lower dimensional latent Euclidean space that preserves the underlying
structure of the network. Although change detection methods that use spectral
embedding are available, they do not address sparsity and degree heterogeneity
that usually occur in noisy real-world graphs and a majority of these methods
focus on changes in the behaviour of the overall network.

In this paper, we adapt previously developed techniques in spectral graph
theory and propose a novel concept of applying Procrustes techniques to em-
bedded points for vertices in a graph to detect changes in entity behaviour.
Our spectral embedding approach not only addresses sparsity and degree het-
erogeneity issues, but also obtains an estimate of the appropriate embedding
dimension. We call this method CDP (change detection using Procrustes anal-
ysis). We demonstrate the performance of CDP through extensive simula-
tion experiments and a real-world application. CDP successfully detects vari-
ous types of vertex-based changes including (i) changes in vertex degree, (ii)
changes in community membership of vertices, and (iii) unusual increase or
decrease in edge weight between vertices. The change detection performance

1.
Faculty of Science,
University of Kelaniya,
Sri Lanka.
E-mail: ihewapathirana@kln.ac.lk

2.
School of Mathematics and Statistics,
University of Canterbury,
New Zealand.

ar
X

iv
:1

91
0.

02
30

1v
1

 [
cs

.L
G

]
 5

 O
ct

 2
01

9

2 Hewapathirana et al.

of CDP is compared with two other baseline methods that employ alternative
spectral embedding approaches. In both cases, CDP generally shows superior
performance.

Keywords Change Detection · Dynamic Networks · Sparse Networks ·
Degree Heterogeneity · Spectral Embedding · Dimensionality Reduction ·
Procrustes Analysis

1 Introduction

A network is a collection of entities, that have inherent relationships. Some ex-
amples include a social network of friendships among people, a communication
network of company employees connected by phone calls, emails or text mes-
sages, and a biological network of neurons connected by their synapses. A net-
work can be mathematically conceptualized as a graph by associating entities
with vertices, and relationships with edges connecting vertices in the graph.
For example, in the graph representation of a social network like Facebook,
vertices may represent friends and edges represent friendship connections.

Most real-world networks evolve as time progresses. That is, the entities
and their relationships keep evolving with time. This type of relational data
can be represented as a dynamic network. For example, a communication net-
work of a company is a dynamic network because new employees (entities) join
the network and communication patterns (relationships) are modified contin-
uously. Although both the entities and the relationships in a network can vary
over time, in this paper, we assume that a dynamic network consists of a
fixed set of entities with time varying relationships between them. A dynamic
network can be represented as a time sequence of graphs, each representing
the entities (as vertices) and their relationships (as edges) at a given time in-
stant. Change detection is the process of continuously monitoring a dynamic
network for deviations in entities and their relationship structure. A clear il-
lustration of the change detection process based on a toy example is given in
[2]. Given a dynamic network conceptualized as a time sequence of undirected,
weighted graphs, we address the problem of detecting vertex-based changes at
each time instant. Detecting vertex-based changes is important in areas such
as fraud detection, cyber intrusion detection and spam detection. For example,
consider the time varying email communications between a set of employees
in an organisation. A sudden collaboration between a set of employees who
rarely communicated during the recent past, may indicate some unusual moti-
vation or a major event involving the organisation [3]. Such changes in entity
behaviour can be detected by monitoring the behaviour of vertices in the cor-
responding sequence of graphs.

Monitoring the behaviour of every vertex in the graph is a challenging
problem because each graph in the time sequence contains a large number of
vertices resulting in a high-dimensional mathematical object. Spectral embed-
ding methods provide an effective solution to the high dimensionality problem.
These methods can be used to obtain a low dimensional representation of the

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 3

(a) Original graph.

(b) Two-dimensional embedding.

Fig. 1: Illustration of an embedding of a network using a toy exam-
ple. The two-dimensional embedding preserves the edge-based closeness in the
original graph.

graph that excludes noise and redundant information and retain important
structural information [4]. Our goal for spectral embedding is to obtain a low
dimensional representation of vertices which maintains their edge-based close-
ness in the graph. In Figure 1, we give an illustration of an embedding of a
small graph. The left figure (a) shows a graph where the length of each edge is
drawn proportionally to the closeness between the corresponding pair of ver-
tices. We can observe three clusters of vertices in this graph. The right figure
(b) gives the two-dimensional embedding, where each vertex is represented as
a point in a two dimensional Euclidean space. We can see how the edge-based
closeness of vertices in the graph in (a) is maintained by the embedded points
in (b). This characteristic emphasizes the clustering property of the embedded
points [5].

In literature, we can find numerous approaches that detect vertex-based
changes in a time series of graphs [6, 7, 8, 9, 10, 11]. However, only a few
utilize spectral methods. For example, [12, 13, 14] apply matrix-based spec-
tral embedding while [15, 16] use a tensor-based spectral embedding method.
The majority of the real-world graphs are sparse and contain vertices with
heterogeneous degrees [17]. Currently available spectral-based change detec-
tion methods do not simultaneously address sparsity and degree heterogeneity
issues prior to obtaining an embedding from the graph. Consequently, changes
involving only a few vertices, or changes involving low degree vertices, tend to
be missed by these methods.

In this paper, we propose a novel method called CDP (change detection us-
ing Procrustes analysis) to detect changes in vertex behaviour. In our method,
we first obtain a low dimensional embedding from the weighted adjacency
matrix representing the graph at each time instant. Each embedded point
characterizes the behaviour of a vertex in the graph at a given time instant.

4 Hewapathirana et al.

We use statistical Procrustes analysis techniques [18] to compare embeddings
across time instants and calculate change scores for vertices. We evaluate the
performance of CDP using extensive simulation experiments and the dynamic
network for the Enron email dataset [19]. By carefully structuring the simula-
tion experiments, we fully evaluate the performance of the method in detecting
various types of changes that occur in real world networks. In all our experi-
ments, we formally compare CDP to two other methods. Based on the results,
we conclude that CDP efficiently and effectively identifies various vertex-based
changes that are considered in our experiments.

The rest of the paper is organized as follows. We first provide a brief
overview of our overall change detection method in Section 2. In Section 3, we
provide a detailed description of our change detection framework. In Section
3.6, we summarize our change detection procedure and present the CDP al-
gorithm. We evaluate the performance of CDP using simulation experiments
(Section 4) and a real-world application (Section 5). In each experiment, the
performance of CDP is compared with two other change detection approaches
which are discussed in Section 4.5. Finally, we conclude by summarizing our
findings in Section 6.

2 Brief Overview

Our proposed method, CDP (change detection using Procrustes analysis), aims
to detect vertex-based changes in a dynamic network. A dynamic network is
represented as a time sequence of undirected graphs, where each graph is
then represented as a symmetric, weighted adjacency matrix. We apply spec-
tral methods to the weighted adjacency matrix and embed the vertices into
a d-dimensional Euclidean space that preserves the closeness between vertices
in the original graph representation. The embedded points also highlight im-
portant vertex properties such as transitivity, homophily by attributes, and
clustering, that are present in most real-world graphs [20, 21]. In this paper,
we define these embedded points as features for vertices characterizing vertex
behaviour at each time instant. Vertices in sparse and heterogeneous graphs
depict entities with different abilities to establish connections. It is difficult to
achieve a good representation if we ignore sparseness and degree heterogeneity
when obtaining a low dimensional embedding [22]. By employing ideas from
spectral graph theory [23], combined with the graph regularization technique
introduced in [24], we formulate a strategy to effectively embed sparse and
heterogeneous graphs into low dimensional Euclidean spaces. It is important
to identify an optimum value for the low dimension d in order to obtain a
highly accurate representation of the inherent clusters of the data using the
embedded space [25]. CDP adapt the low-rank matrix approximation method
in [26] to automatically estimate the proper embedding dimension.

Generalized orthogonal Procrustes analysis (GPA) methods can be used
to calculate an average from a set of matrices after removing Euclidean sim-
ilarity transformations [18, 27]. We adjust the standard GPA technique to

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 5

extract profile features during the recent past time instants, and calculate
change scores for vertices at each time instant. A profile feature, which is also
a vector, represents the average behaviour of the vertex in the recent past time
instants (previous w time instants). Our idea of applying Procrustes analysis
techniques to compare embeddings for the purpose of change detection in
dynamic networks is new and is inspired by [28]. Using a moving window ap-
proach, the change score calculation procedure is repeated over time to detect
changes for all time instants.

Figure 2 provides an illustration of the overall CDP framework. In order to
evaluate the performance of CDP, we apply it to both synthetic and real-world
datasets. We compare our method with two baseline change detection methods
that are also based on different spectral embedding procedures. The results
show that CDP performs better than the others in various change scenarios
considered.

Fig. 2: Illustration of the overall CDP framework. The time sequence of
graphs is first represented as a time sequence of weighted adjacency matrices.
At each time instant, we perform spectral embedding on the matrix and obtain
an embedding where each row corresponds to a feature representing a vertex’s
behaviour. Next, we define a window of length, w ∈ Z+, over the previous w
embeddings, and use GPA to obtain the profile embedding, where each row
corresponds to a vertex’s profile feature. The dissimilarity between the current
embedding and the profile embedding is then obtained to compute the change
scores of the vertices at the current time instant. The window is moved along
all preceding time instants to calculate vertex change scores for the whole time
period.

6 Hewapathirana et al.

3 Problem Framework

3.1 Notation and Terminology

Let G1, G2, . . . , GT be a sequence of graphs defined over time instants, t =
1, 2, . . . , T . Each Gt is a weighted and undirected graph with a fixed set of
vertices, V = {v1, . . . vn}. In our discussions, we also refer to vi as vertex i.
Define the edge set of graph, Gt, as Et, where |Et| ≤ n2, and Et contains
edge, ei,j , if there is an edge between vertex i and vertex j. Each graph is
represented by a symmetric weighted adjacency matrix, W t, of dimension
n× n, where each element, W t

i,j ≥ 0. If W t
i,j = 0, then the vertices i and

j are not connected in Gt. The degree of each vertex i at time instant t is
defined as

dti =

n∑
j=1

W t
i,j .

The degree matrix, Dt, is the diagonal matrix containing the vertex degrees,
dt1, . . . , d

t
n, on the diagonal. Let λ̂t be the average vertex degree of graph, Gt,

where λ̂t = 1
n

∑
i d
t
i. From [24], we define a network as sparse when λ̂t < 5.

3.2 Problem Statement

At each time instant t, our goal is to calculate a change score for each vi in
Gt, relative to the recent past behaviour. Our definition of the change score
for vi at time instant t is defined as follows.

Definition 1 The change score, zti , for vi at time instant t is

zti = f(x̄t−1
i ,xti), (1)

where xti is the feature vector representing the behaviour of vi at time instant
t, x̄t−1

i is the profile feature vector representing the behaviour of vi in the
recent past time instants, and f is a dissimilarity function.

According to this definition, our overall change detection procedure can be
summarized as follows.
1. Obtain a feature, xti, for vi from each Gt, where xti ∈ Rdt and dt ∈ Z+.
2. Obtain a profile feature, x̄t−1

i , for vi from recent w past time instants,

Gt−w, . . . , Gt−1, where x̄t−1
i ∈ Rd̄t−1

and d̄t−1 ∈ Z+.
3. Calculate the dissimilarity between xti and x̄t−1

i , and obtain the change
scores, zti , for vi ∈ V by using a suitable dissimilarity function f .

In Sections 3.3, 3.4, and 3.5, we discuss how these steps are implemented
respectively.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 7

3.3 Feature Extraction at Each Time Instant

In this section, we formulate our spectral embedding strategy for each Gt

(Note that in this paper, for discussions focused on one time instant, we drop
the superscript t to simplify notation. For example, we use W instead of W t

to denote the matrix of Gt). The embedding of a graph is an n × d matrix,
where rows correspond to the d−dimensional embedded points for vertices.
Our spectral embedding procedure consists of three main steps.

1. Pre-processing the weighted adjacency matrix, W , of G.
As we consider weighted, heterogeneous graphs, some edges possess con-
siderably higher weights than the other edges and can turn out to be very
influential during the embedding process. These edges are called dominant
edges. The elements of the corresponding weighted adjacency matrix, W ,
also show high variability. The presence of dominant edges may also hin-
der the detection of unusual edges that have lower weights, preventing the
change from being detected. Applying a transformation on W , such as the
logarithm, helps to mitigate this problem. After the log transformation, we
scale each element, so that all elements in the resulting matrix are between
zero and one. Below we state our two preprocessing steps in more detail.

(a) Apply a log transformation to each element in W , and obtain Ẅ , where

Ẅi,j = log10(Wi,j + 1) ∀i, j ∈ {1, . . . , n}. (2)

(b) Scale the elements of Ẅ by its maximum element, and obtain Ẁ , where

Ẁi,j =
Ẅi,j

maxi,j{Ẅi,j}
. (3)

Note that the methodology discussed in this paper is also applicable to
an unweighted graph, where the representation matrix is the binary ad-
jacency matrix, A, with elements that are 0’s or 1’s. However, perform-
ing log transformation followed by scaling would make no difference,
hence can be omitted in this case.

2. Obtaining a suitable representation matrix.
The mapping of edge weights into a suitable representation matrix is an
essential task when using the embedded points to study the structure of
the underlying graph [4]. In sparse and heterogeneous graphs possessing
power law degree distributions, the embeddings from the weighted adja-
cency matrix will only focus on vertices with the highest degrees, resulting
in an inaccurate representation of the underlying connectivity structure
[29]. To account for sparsity and degree heterogeneity, we construct the
regularized degree normalized weighted adjacency matrix, M , as the repre-
sentation matrix. Let the regularizer, τ , be

τ =
1

4n2

∑
i,j

Ẁi,j . (4)

8 Hewapathirana et al.

Then M is given by
M = D−1/2

τ WτD
−1/2
τ , (5)

where
Wτ = Ẁ + τ11T , (6)

where 1 is an n-dimensional column vector containing all ones, and Dτ is
the degree matrix for Wτ . The regularization step (Equation 6) addresses
sparseness by adding τ to each element in Ẁ , while the degree normal-
ization step (Equation 5) further adjusts for the irregularity in the degree
distribution by dividing each element, [Wτ]i,j , by

√
[dτ]i[dτ]j . For a de-

tailed theoretical justification on using M as the representation matrix to
obtain an embedding, we refer the reader to [30].

3. Obtaining a low dimensional embedding from the representation matrix,
M , using spectral decomposition.

A low dimensional embedding, X, from the representation matrix, M can
be seen as a solution to the optimization function,

max
X
‖ XTMX ‖2F , (7)

subject to XTX = I, where X ∈ Rn×d for d� n [31]. The embedding, X,
can be estimated by performing the singular value decomposition (SVD),
M = UΣV T , and extracting d principal singular vectors. In order to de-
termine d we employ the low-rank matrix approximation procedure in [26],
which proposes to retain those singular vectors capturing the strongest
structure in M based on the L2 norm. The L2 norm of matrix M is de-
fined as,

‖M ‖2= max
‖v‖F =1

‖Mv ‖F , (8)

where ‖ ‖F denotes the Frobenius norm.
We refer the intersted reader to [26] for a detailed and theoretical descrip-
tion of the method. In this section, we summarize our implementation of
their method in Algorithm 1.
It is important to note that the regularization step (Equation 6) inserts
edges between all disconnected components and creates a connected graph.
For such a graph, the first principle singular vector, u1 (with corresponding
singular value σ1), ofM , is a constant vector and therefore not useful for the
embedding [32]. Thus, to obtain the embedding dimension, d, we initially
remove the first reconstruction in step 2 of Algorithm 1. Hence, the output
d returned by the algorithm is the number of principal singular vectors that
should be kept starting from the second principal singular vector onwards1.

1 The Frobenius norm of a matrix measures its average linear trend [26]. Hence, the
division by the Frobenius norm of Rk in step 9 of the algorithm provides a standardization
to each ρk [4].

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 9

Algorithm 1 Optimal Low-Rank d Approximation
Input: (i) Symmetric matrix, M , with dimensions n× n, where rank(M) = r, (ii) threshold,

ε
Output: d
1: Compute SVD, M = UΣUT

2: Update M = M − σ1u1uT1
3: Compute SVD, M = UΣUT

4: Initialize k=1, ρ = inf
5: while ρ > ε and k ≤ r do
6: M̂k =

∑k
j=1 σjuju

T
j

7: Rk = M − M̂k

8: Calculate R̃k by randomly flipping the signs of elements in Rk such that,

P
[
[R̃k]i,j = [Rk]i,j

]
= 1

2
and P

[
[R̃k]i,j = −[Rk]i,j

]
= 1

2

9: Update ρ =
|‖Rk‖2−‖R̃k‖2|

‖Rk‖F
10: Set k = k + 1
11: end while
12: if k = r then
13: Set the converged value d = r
14: else
15: Set the converged value d = k − 1
16: end if

Once d is obtained, the low dimensional embedding, X ∈ Rn×d, is given
by

X = [u2, . . .ud+1].

Each row vector, xi ∈ Rd, is the feature for vi at a given time instant.
Furthermore, an important input parameter for Algorithm 1 is the con-
vergence threshold, ε. Since there is no definitive method for choosing ε
discussed in [26], we conduct extensive experiments and decide ε = 0.005
(See Appendix).

By following steps 1, 2, and 3 in Section 3.3, each graph, Gt, in the time
sequence is represented as a low dimensional embedding, Xt ∈ Rn×dt , where
dt is the embedding dimension returned by Algorithm 1. After following the
three steps discussed in this section, the sequence of graphs, G1, . . . , GT , is
reduced to a sequence of low dimensional embeddings, X1, . . . , XT .

3.4 Obtaining the Profile Features at Each Time Instant

After performing the steps stated in Section 3.3, we have a set of w embed-
dings from the w recent past time instants. From the uniqueness property of
SVD [4], the embedding obtained at each time instant is unique up to Eu-
clidean similarity transformations such as scale, rotation and reflection. Thus,
we cannot directly average the embeddings from the recent past time instants
to obtain profile features. Generalized orthogonal Procrustes analysis (GPA)
can be used to obtain an average from a set of matrices after adjusting for

10 Hewapathirana et al.

Euclidean similarity transformations. In this section, we show how we em-

ploy GPA to obtain an average embedding,X
t−1

, from the set of embeddings,

Xt−w, . . . , Xt−1. We callX
t−1

, the profile embedding for time instant t. Let us
first state the GPA procedure.

The pre-shape, X̃, of a matrix, X ∈ Rn×d, is defined as

X̃ =
Xc

‖ Xc ‖F
, (9)

where
Xc = CX, (10)

and the centering matrix, C = I− 1
n jjT . Here, I is an n×n identity matrix, and

j is an n−dimensional vector of ones. Let X1, . . . , Xw be w matrices, each of
dimension n× d. GPA involves the optimization of the least squares objective
function

min
Γ,µ

w∑
i=1

‖ X̃iΓi − µ ‖2F , (11)

where Γi ∈ Rd×d is the orthogonal rotation/reflection matrix corresponding

to Xi, and X̃i is the preshape corresponding to Xi as given in Equation 9. In
Algorithm 2 we summarize our implementation of the iterative algorithm that
solves the GPA objective function.

Algorithm 2 Generalized Procrustes Distance Calculation

Input: X1, . . . , Xw ∈ Rn×d, threshold ε
Output: µ̂, X̂i for i = 1, . . . , w

1: Initialize µ0 = X1, D = inf
2: while D > ε do
3: for i ∈ {1, . . . , w} do
4: Calculate X̃i = CXi

‖CXi‖F
, where C = I − 1

n
jjT

5: Calculate SVD, µT0 X̃i = UΣV T

6: Calculate Γ̂i = V UT

7: Obtain X̂i = X̃iΓ̂i
8: end for
9: Calculate mean embedding, µ̂ = 1

w

∑w
i=1 X̂i, using the aligned embeddings

10: Update D =‖ µ0 − µ̂ ‖2F
11: Update: µ0 = µ̂
12: end while

There is one limitation in applying GPA to the embeddings obtained at
different time instants. GPA assumes that all matrices, Xt−w, . . . , Xt−1, are of
the same dimension, but the embeddings resulting from our methods discussed
in Section 3.3, can be of different dimensions. We find two possible solutions
to address this problem. Let dmax = max{dt−w, . . . , dt−1}.
1. For any Xt with dt < dmax, append columns of zeros to Xt to make it of

size n× dmax.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 11

2. For any Xt with dt > dmax, truncate the additional columns of Xt to make
it of size n× dmax.

Truncating extra dimensions causes us to drop singular vectors that may de-
scribe important structure of the graph. Appending columns of zeros does
not cause loss of information, and is thus preferred. Thus, whenever the di-
mensions of the embeddings to be compared are different from each other, we
append the low dimensional embedding with columns of zeros before fitting
the generalized Procrustes model.

Therefore, the profile embedding,X
t−1

, is calculated as follows:

1. Let dmax = max{dt−w . . . , dt−1}. Append dmax − dt columns of zeros to
each Xt and obtain Xt

padded.
2. Perform the generalized Procrustes analysis procedure and estimate the

mean embedding,X
t−1

= µ̂. To do this, we input Xt−w
padded, . . . , X

t−1
padded into

Algorithm 2, and estimate the mean embedding, µ̂.

At each time instant t, the n rows ofX
t−1

give the profile features for the n
vertices in the graph.

3.5 Change Score Calculation

After applying the methods discussed in Sections 3.3 and 3.4, at each time

instant t, we end up with the profile embedding,X
t−1 ∈ Rn×d̄t−1

, and current
embedding, Xt ∈ Rn×dt . Vertex change scores are calculated by computing

the dissimilarity between Xt and X
t−1

. Procrustes analysis can be used to
compare two matrices after adjusting for Euclidean similarity transformations.
From Section 3.4, when d̄t−1 6= dt, we append columns of zeros to the lower
dimensional embedding. Thus, the change score, zti , for vertex i at time instant
t is calculated as follows:

1. Let dmax = max{dt, d̄t−1}. Append dmax − dt and dmax − d̄t−1 columns

of zeros to Xt andX
t−1

, respectively and obtain Xt
padded ∈ Rn×dmax and

X
t−1

padded ∈ Rn×dmax .
2. Perform GPA using Algorithm 2 and obtain the transformed embeddings,

X̂t and X̂
t−1

, and the average of the transformed embeddings, µ̂t.
3. For each vertex i, calculate the change score

zti =
‖ X̂t

i,. −X̂
t−1

i,. ‖2F
‖ µ̂t ‖F

. (12)

3.6 Proposed Algorithm - CDP (Change Detection using Procrustes Method)

We have now constructed the three main steps of our change detection pro-
cedure. These include, at each time instant, extracting features for vertices

12 Hewapathirana et al.

through graph embedding (Section 3.3), calculating profile features for ver-
tices by applying GPA on the recent past embeddings (Section 3.4), and finally
calculating change scores for vertices through generalized Procrustes distance
calculation between current and profile embeddings (Section 3.5). The steps
are listed in Algorithm 3.

Algorithm 3 Change Detection using Procrustes Analysis - CDP

Input: (i) Time sequence of symmetric, weighted adjacency matrices, W 1,W 2, . . .WT ,
where each W t has dimension n× n (ii) window size, w

Output: Time sequence of vertex change scores, z1, z2, . . . zT . Each zt is a vector of di-
mension n

1: for t = 1 to T do
2: Update: W t = log10(W t + 1n×11Tn×1)

3: Update: W t = W t

maxi,j{W t
i,j}

4: Calculate τ t = 1
4n2

∑
i,jW

t
i,j

Update: W t
τ = W t + τ t1n×11Tn×1,

Calculate Dtτ ∈ Rn×n, where [Dtτ]i,i =
∑n
j=1[W t

τ]i,j

Calculate Mt = (Dtτ)−1/2W t
τ (Dtτ)−1/2

5: Input Mt to Algorithm 1 and estimate dt

6: Perform SVD: Mt = UΣUT

7: Obtain the low dimensional embedding Xt ∈ Rn×dt , where
Xt = [u2, . . .udt+1]

8: end for
9: for t = w + 1 to T do

10: Let dmax1 = max{dt−w, . . . , dt−1}
11: for t′ ∈ {t− w, . . . , t− 1} do
12: if dt

′
< dmax1 then

13: append dmax1 − dt
′

columns of zeros to Xt′

14: end if
15: end for
16: Input Xt−w, . . . , Xt−1 into Algorithm 2, and estimate the profile embeddingX

t−1

17: Let dmax2 = max{dmax1 , d
t}

18: if dmax1 < dmax2 then

19: append dmax2 − dmax1 columns of zeros toX
t−1

20: end if
21: if dt < dmax2 then
22: append dmax2 − dt columns of zeros to Xt

23: end if
24: Align Xt and X

t−1
with each other using Algorithm 2, and obtain the adjusted

embeddings, X̂t and X̂
t−1

, and the mean µ̂t

25: Calculate vertex change scores, zti =
‖X̂t

i,.−
̂̄Xt−1

i,. ‖
2
F

‖µ̂t‖F
26: end for

After describing our algorithm, we evaluate its performance by conducting
experiments on simulated dynamic networks and a real-world dataset.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 13

4 Simulation Experiments

Simulated networks enable us to comprehend not only how and when a specific
technique is doing well, but also when a technique is not doing well [33]. We
conduct such an investigation by generating different synthetic datasets that
mimic several real-world change scenarios. Within each scenario, a subset of
vertices under-go change from recent past behaviour.

4.1 Overall Setting

For each change scenario we generate a time sequence of symmetric weighted
adjacency matrices,W 1,W 2, . . . ,W T , to represent a time sequence of weighted
graphs. Similar to [34], we assume that each network is generated from a
certain recognized underlying model that determines the process of generation.
We assume that the edges of the graphs have distribution F0 and when a
change occurs the distribution becomes F1. We consider two types of changes.

1. Change occurs at a given time instant: change-point. A change point is
injected to the time sequence of graphs by defining the edge distribution
as

W t ∼

{
F1 if t = t∗,

F0 otherwise ,
(13)

for w < t∗ ≤ T .
2. Change occurs at a time instant, and persists for some time period: change-

interval. A change-interval is generated by defining the edge distribution
as

W t ∼

{
F1 if t∗1 ≤ t ≤ t∗2,
F0 otherwise ,

(14)

for w < t∗1 < t∗2 ≤ T .

In Section 4.2, we discuss the model that is used to generate graphs for our
experiments.

4.2 Random Graph Model Used for Synthetic Network Generation

The degree corrected stochastic block model (DCSBM) [35] is a commonly
used model because it can closely mimic the community structure of real-
world networks. In our simulation experiments, we employ the DCSBM to
define the probability distribution of the edges of a graph. By adjusting the
model parameters, we obtain a wide variety of edge distributions.

Let ci ∈ {1, 2, . . . , k} denote the block membership of vertex i. Then the
vector, c ∈ {1, 2, . . . , k}n, of dimension n denotes the block memberships of

14 Hewapathirana et al.

the n vertices in the graph. In terms of the weighted adjacency matrix, W , its
distribution under the DCSBM is given by

P[W |θθθ, ψ, c] =
∏
i 6=j

(θiθjψci,cj)Wi,j

Wi,j !
exp(−θiθjψci,cj), (15)

where ψci,cj is the expected number of edges between a vertex in block ci and a
vertex in block cj , and θθθ is an n-dimensional vector of degree parameters. Each
element, Wi,j , is a Poisson random variable with mean θiθjψci,cj . In order to
mimic the degree distribution of real-world graphs, the vector, θθθ, is generated
from a power-law distribution [36] defined as

P(θθθ|θmin, β) =

n∏
i=1

β − 1

θmin

(
θi
θmin

)−β
,

where θmin is the lower bound of the support of θi, β is the shape parameter.
The θi’s are normalized to sum to one for vertices in the same block, i.e.,∑
i θiδci,r = 1 (where δci,r = 1 if vertex i belongs to block r).
To specify what ψ is, let B ∈ [0, 1]k×k be the block probability matrix

where each element, Bcicj , denotes the probability of an edge between vertices
in blocks ci and cj . Using c, we can obtain g ∈ Rk×1, where each element,
gr =

∑n
i=1 δci,r, denotes the number of vertices in block r. Using B and g we

can calculate the expected number of edges, ψr,s, between a vertex in block r
and a vertex in block s giving

ψr,s = Br,sgrgs.

We select B to have the form

B = λBplanted + (1− λ)Brandom, (16)

where λ ∈ [0, 1]. For example, for a graph with three blocks, Bplanted can take
the form,

Bplanted =

α 0 0
0 β 0
0 0 γ

 , (17)

where α, β, γ ∈ [0, 1] give the intra-block probabilities. Brandom is given by

Brandom = ν1k1
T
k , (18)

where 1k is the k×1 vector of ones, and ν ∈ [0, 1]. ν can be regarded primarily
as an inter-block probability. Thus, by varying λ, we can vary the level of noise
in the generated graphs, which makes it more difficult to identify the blocks.

The Equations (15 to 18) for the distributions of probability make the
DCSBM a strong, flexible and popular tool for analyzing complex networks
[37, 33]. The distributions, F0 and F1, for the edges are obtained using different
sets of parameter values. Each set of parameter values is chosen to mimic
real-world change scenarios involving vertices. In Table 1, we summarize the
parameter settings of different DCSBM models used to generate graphs in our
experiments.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 15

4.3 Change Scenarios

A detailed review on numerous change scenarios studied in previous research
is given in [2]. Based on these ideas, we come up with the following change
scenarios to evaluate our change detection method.

1. Change in block membership - group-change.
A set of vertices in a block change their block (group) membership.

2. Change in block Structure,
(a) split - a block in the graph splits into two blocks,
(b) merge - the reverse of split: two blocks join together and form one block,
(c) form - a high increase in connections in a block that was previously

sparse,
(d) fragment - the reverse of form: a dense block becomes sparse.

3. Change in degree,
(a) Heterogeneous degrees to homogeneous degrees - hetero-to-homo.

The degree parameters of a block of vertices in the graph change from
heterogeneous to homogeneous.

(b) Homogeneous degrees to heterogeneous degrees - homo-to-hetero.
The reverse of hetero-to-homo: the degree parameters of a block of
vertices change from homogeneous to heterogeneous.

4. Change in connectivity patterns:
(a) Clear block structure to complex structure - simple-to-complex.

Two blocks add inter-block edges, disrupting the clear block structure
in the graph.

(b) Complex block structure to clear block structure - complex-to-simple.
The reverse of simple-to-complex: most inter-block edges between two
blocks vanish, resulting in a graph with a clear block structure.

In Table 2, we give a detailed description of how we mimic these change sce-
narios through transitions of the underlying generative models. Each scenario
corresponds to changes in the connectivity patterns of a subset of vertices in
the graph. For each scenario, we visualize an example of W ’s generated from
the models corresponding to F0 and F1.

For each change scenario, we generate a sequence of 30 graphs, that is, we
set T = 30. The parameters for the two types of changes defined in Section
4.1 are as follows.

1. change-point (Equation 13): t∗ = 21,
2. change-interval (Equation 14): t∗1 = 21, t∗2 = 30.

We use windows of sizes 1, 5, and 10, and calculate change scores for all vertices.
We repeat this 100 times, and calculate our performance measures (Section
4.4).

16 Hewapathirana et al.

Table 1: Parameter settings of different models with fixed parameters, n =
900, λ = 0.8, Bplanted with α = 0.01, β = 0.02, γ = 0.03, and Brandom with
ν = 0.0025.

Modela Bplanted Distribution of θ g k

M1

α 0 0
0 β 0
0 0 γ

 θθθ ∼ P(θθθ|1, 2.5) [300, 300, 300] 3

M2


α 0 0 0
0 α 0 0
0 0 β 0
0 0 0 γ

 θθθ ∼ P(θθθ|1, 2.5) [150, 150, 300, 300] 4

M3

α 0 0
0 β 0
0 0 0.1(γ)

 θθθ ∼ P(θθθ|1, 2.5) [300, 300, 300] 3

M4

α 0 0
0 β 0
0 0 γ

 θθθ ∼ P(θθθ|1, 2.5) [150, 450, 300] 3

M5

α 0 0
0 β 0
0 0 γ

 θθθVc = c b [300, 300, 300] 3

θθθV̄c
∼ P(θθθ|1, 2.5) c

M6

0.5α 0.5α 0
0.5α β − 0.5α 0

0 0 γ

 θθθ ∼ P(θθθ|1, 2.5) [300, 300, 300] 3

a Different values of λ were tested (λ = 0, 0.1, 0.2, . . . , 1), but the same λ value is used for
the pair of models involved in a given change scenario.

b θθθVc is a vector of degree parameters of the set of vertices, Vc = {v1, v2, . . . , v300}, and c
denotes a positive vector of constants.

c θθθV̄c
is a vector of degree parameters of the set of vertices, V̄c = {v301, v302, . . . , v900}.

4.4 Performance Measure

Since our goal is to detect vertices that have changed their behaviour with
respect to the recent past, we measure the performance of CDP with respect
to the ability of the change scores produced to discriminate between changed
and unchanged vertices. Each change scenario discussed in Section 4.3 involves
a set of vertices, Vc, changing their behaviour. Let |Vc| = nc. If our method
performs well, the change scores for vertices in Vc should be higher than the
change scores for the rest of the vertices in Vc̄, especially at the time instant
corresponding to a change. Note that |Vc̄| = nc̄, Vc ∪Vc̄ = V , and nc +nc̄ = n.

Let us consider a time sequence of vertex change scores, z1, z2, . . . z30,
where each zt is a vector of length n obtained from a single simulation run of
a change scenario. Let z̃t be the nc × 1 vector of change scores obtained for

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 17

Table 2: Illustration of change scenarios. Each scenario corresponds to a
change in the connectivity patterns of a subset of vertices in the DCSBM graph
and is visualized using the pixel-plots of the adjacency matrices generated.

No. Change Scenario F0 F1 Changed Vertices

1 group-change M1 M4 {1 . . . 600}

2 split M1 M2 {1 . . . 300}

3 merge M2 M1 {1 . . . 300}

4 form M3 M1 {601 . . . 900}

5 fragment M1 M3 {601 . . . 900}

6 hetero-to-homo M1 M5 {1 . . . 300}

7 homo-to-hetero M5 M1 {1 . . . 300}

8 simple-to-complex M1 M6 {1 . . . 600}

9 complex-to-simple M6 M1 {1 . . . 600}

18 Hewapathirana et al.

Vc, and let z̄t be the nc̄ × 1 vector of change scores obtained for Vc̄. We use a
sampling procedure to estimate

φt = P[z̃ti > z̄tj],

which is the probability that vertex, i, in Vc has a higher change score than ver-
tex, j, in Vc̄. We separately sample (with replacement) a vector of N elements,
ˆ̃zt, from z̃t and a vector of N elements, ˆ̄zt, from z̄t; then φt is calculated by
counting the proportion of entries in ˆ̃zt that are larger than the corresponding
entries in ˆ̄zt as

φt ≈ 1

N

N∑
i=1

δˆ̃zti>ˆ̄zti
,

where δˆ̃zti>ˆ̄zti
is one if ˆ̃zti > ˆ̄zti and zero otherwise. In our experiments we use

N = 100000.
A proportion greater than 0.5 indicates a higher chance of a change score for

a vertex in Vc being greater than a change score for a vertex in Vc̄. By repeating
this for all 100 simulation runs, we obtain a 100×1 vector of probabilities, φφφt.
If all elements of φφφt are greater than 0.5 and closer to one at a changed time
instant, good change detection performance is indicated. Instead of directly
using φti, we use the log odds

ηti = log

(
φti

1− φti

)
, (19)

which measures the odds that a vertex in Vc has higher change scores than a
vertex in Vc̄. When a change occurs, we expect the values of ηηηt to lie above
zero and be strongly positive. After calculating ηti , we further calculate the log
odds ratio between time instants t and t− 1 which gives

η̄ti = log

(
φti/(1− φti)

φt−1
i /(1− φt−1

i)

)
. (20)

In our experiments we calculate both ηηηt and η̄ηηt to measure detection perfor-
mance.

4.5 Comparison Methods

We compare our CDP algorithm with two baseline methods.

1. ACT
This is the activity (ACT) vector-based change detection algorithm devel-
oped by [1]. They employ a spectral embedding procedure, and represent
a time sequence of graphs as a time sequence of activity vectors, ut, for
t ∈ {1, 2, . . . , T }. A profile vector, rt−1, is calculated from recent past w
activity vectors. The change score, zti , can be calculated as

zti = |rt−1
i − uti|, (21)

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 19

where |.| denotes absolute value. The elements of the activity vector, ut,
denote the eigenvector centrality scores of the vertices in the graph. [1]
developed ACT to perform change detection in a time sequence of dense
graphs. However in the majority of the applications we encounter, the graph
obtained at each time instant is sparse and heterogeneous. As discussed in
Section 2, such a graph consists of vertices with very high degree (hubs) as
well as very low degree (sometimes zero; resulting in disconnected vertices
in the graph). According to [38], eigenvector centrality is a poor perfor-
mance measure of centrality of vertices in sparse graphs. They show that
the centrality scores are concentrated only on hubs and fail to capture the
centrality of lower degree vertices. While this situation might be useful for
some applications, for our current requirement of detecting changes in the
behaviour of all vertices in the graph, it is inadmissible. Thus, we find [1]’s
approach cannot be generalized to most real-world graphs.

2. ACTM
We make a slight improvement to the profile vector calculation step in
[1] and call this method the modified activity (ACTM) vector-based algo-
rithm. Recall that [1] represent the recent past behaviour using the profile
vector, rt−1. However, rt−1 is only the first vector, r1, from the w singu-
lar vectors, [r1, r2, . . . , rw], resulting from the SVD of the n×w matrix of
activity vectors, [ut−1, . . . ,ut−w], representing the recent past. The w left
singular vectors, [r1, r2, . . . , rw], define an orthonormal basis for the sub-
space defined by the w activity vectors, [ut−w, . . . ,ut−1]. Selecting only
the first vector, r1, might cause us to loose information. Hence, a more
representative profile vector can be obtained by projecting ut onto the w
dimensional orthonormal subspace defined by [r1, r2, . . . , rw], where

r̄t−1 =
(
r1 · ut

)
r1 + . . .

(
rw · ut

)
rw. (22)

The profile vector, r̄t−1 is also the best approximation to ut in the subspace
spanned by [ut−w, . . . ,ut−1] [39]. The error vector, et = r̄t−1 − ut, gives
an indication of the deviation of ut from its recent past. Thus, the change
score, zti , is

zti = |r̄t−1
i − uti|. (23)

4.6 Results

For each change scenario discussed in Section 4.3, we first calculate the per-
formance measure ηηηt for several time instants before and after t = 21 for
CDP, ACT, and ACTM for both change-point and change-interval. In Fig-
ure 3, we show the corresponding results for group-change with w = 5 for
t = 17, 18, . . . , 30. Let us first discuss the results of CDP. For all time instants,
before t = 21, the ηηηt’s are centred at a given level. All graphs generated before
t = 21 are from the same modelM1. Since there is no model change, the odds
of each ztnc

being greater than ztnc̄
are similar during these time instants. At

t = 21, the generative model changes toM4, and we see a clear increase of ηηη21

20 Hewapathirana et al.

Fig. 3: Observing ηηηt on CDP (left), ACT (middle), and ACTM (right)
over time on group-change for w = 5 change point(top) and change-
interval (bottom). CDP shows a clear detection at t = 21 for both change
point and change-interval. Although ACT and ACTM methods also show an
increase at t = 21, the intervals still lie below zero.

compared to ηηη20. This shows that there is a clear increase in z21
nc

. From t = 22
onwards, we observe different patterns for change-point and change-interval.
– Change-point: the generative model returns to M1 at t = 22 and persists

for all time instants, t = 23, . . . , 30.
1. There is a big decrease in ηηη22 compared to ηηη21. Our window is w = 5.

Inside the window, there are four graphs generated from M1, and one
graph generated from M4. Thus, unlike at t = 21, there is less change
compared to the recent past. Thus, ηηη22 is less than ηηη21.

2. For t = 22, 23, 24, 25, 26, the window contains four graphs generated
fromM1, and one graph generated fromM4. Thus, the change occur-
ring in these time instants is similar. So, the ηηηt’s are generally centred
at the same level.

3. At t = 27, the window contains graphs generated purely fromM1, and
the comparison is also done with a graph generated from M1. So the
change involving the set of vertices, Vc, at t = 27 is less than the change
at t = 26. Hence, ηηη27 decreases.

4. For t = 27, 28, . . ., the window contains graphs generated purely from
M1, and the comparison is also done with a graph generated fromM1.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 21

Thus, the change occurring in these time instants is similar. So, the ηηηt’s
are generally centred at the same level.

– Change-interval: the generative model isM4 for time instants, t = 22, . . . , 30.
1. There is a decrease in ηηη22 compared to ηηη21. Inside the window there are

four graphs generated fromM1, and one graph generated fromM4. So
there is less change involving the set of vertices, Vc, compared to their
change at t = 21. Hence, ηηη22 is less than ηηη21.

2. For all time instants, t = 23, 24, 25, the change becomes less and less as
the window (recent past) contains more time instants which are similar
to the current time instant. So ztnc

decreases with time, causing ηηηt to
decrease accordingly.

3. At t = 26, the window contains graphs generated purely fromM4, and
the comparison is also done with a graph generated from M4. So the
change is less compared to the change at t = 25. Thus, ηηη26 is less than
ηηη25.

4. For t = 26, 27, . . ., the window contains graphs generated purely from
M4, and the comparison is also done with a graph generated fromM4.
Thus, the change occurring in these time instants is similar. So, the ηηηt’s
are generally centred at the same level.

For change detection methods ACT and ACTM, ηηηt’s are wider. Further-
more, the bulk of ηηηt lies below zero for all time instants. Thus, although we
see an increase in the ηηη21 intervals for ACT and ACTM, these methods do not
perform well in detecting the change.

Note that the graphs generated at each time instant are independent sam-
ples from a given generative model (F0 or F1). Thus, within the same gener-
ative model, edge weights can change from one time instant to another, also
causing the connectivity patterns of vertices to change. For example, in Figure
3 (Top), we observe that the ηηηt’s are centred at a positive level even within
the generative model, M1. This shows that the set of vertices, Vc, for the
group-change scenario (Table 2) undergo a higher change in their connectivity
patterns for independent graph realizations under M1. However, when calcu-
lating our performance measure, the set of vertices, Vc, does not necessarily
contain those vertices whose connectivity patterns have changed between in-
dependent realizations from a given generative model. For example, in Figure
3 (Bottom), we observe that ηηηt’s are centred at a negative level within gener-
ative model,M4. This shows that the vertices in the set, Vc̄, are the ones that
change more during independent graph realizations under M4. Despite these
changes occurring in connectivity patterns within a given generative model,
our interest lies in detecting a change during model transitions. At t = 21, we
expect ηηη21 to be larger than the ηηηt’s observed for time instants corresponding
to the same model. Thus, in order to clearly observe this, we calculate the
performance measure η̄ηηt (Equation 20). In Figure 4, we plot η̄ηηt for CDP, ACT,
and ACTM with w = 5 for the group-change scenario for t = 17, 18, . . . , 30.
We observe that η̄ηηt provides a clearer picture than ηηηt on a method’s ability
to detect change caused by model transitions. For the rest of the scenarios,
we only plot η̄ηηt over time and compare the performance measure, ηηηt (Equa-

22 Hewapathirana et al.

tion 19), for CDP, ACT, and ACTM for all window sizes only at the time
instant corresponding to a change, i.e., we only compare ηηη21. We compare the
ηηη21’s for only those change scores obtained on change-point scenarios since it
is sufficient to calculate ηηη21 for either change-point or change-interval as both
involve similar changes when considering only t = 21. If ηηη21 is positive, then
this indicates that the vertices in the set, Vc, have higher change scores com-
pared to the rest of the vertices in Vc̄, at the time instant of change (t = 21).
Figure 5 shows ηηη21 returned by CDP, ACT, and ACTM for the group-change
scenario using various window sizes, w = 1, 5, 10. The ηηη21 returned by CDP
for all window sizes are clearly positive. For ηηη21 returned by ACT and ACTM,
we see the bulk of the interval lying below zero for all window sizes, show-
ing failure in detection for those methods. We also observe ηηη21 for the other
change scenarios, split (Figure 6), merge (Figure 8), form (Figure 10), fragment
(Figure 12), hetero-to-homo (Figure 14), homo-to-hetero (Figure 16), simple-
to-complex (Figure 18), and complex-to-simple (Figure 20). Our results show
that CDP successfully detects the change in all the scenarios considered. ACT
shows failure in detection for all change scenarios except form and fragment,
while ACTM shows failure in detection for all change scenarios except form.

We further observe η̄ηηt for split (Figure 7), merge (Figure 9), form (Figure
11), fragment (Figure 13), hetero-to-homo (Figure 15), homo-to-hetero (Figure
17), simple-to-complex (Figure 19), and complex-to-simple (Figure 21). CDP
shows a clear detection at t = 21 for change scenarios form, fragment, hetero-
to-homo, homo-to-hetero, simple-to-complex, and complex-to-simple. In the
case of split and merge, we observe an increase at η̄ηη21, with the intervals
being wide. ACT and ACTM do not show a clear increase at η̄ηη21 for split,
merge, simple-to-complex, and complex-to-simple cases. For homo-to-hetero
and hetero-to-homo, we observe a slight increase in η̄ηη21 for ACT and ACTM.
For fragment, η̄ηη21 is highly negative for both ACT and ACTM methods. Thus,
although we observed in Figure 12 that ACT shows good performance in terms
of ηηη21, Figure 13 shows that the change scores have decreased at t = 21. Thus,
ACT shows failure in detecting the fragment scenario.

In Table 3, we perform the sign test to assess the statistical significance of
the observed results. We compare ηηη21 calculated for group-change, split, merge,
form, hetero-to-homo, homo-to-hetero, simple-to-complex, and complex-to-
simple at w = 5 for change-point. We do not perform the sign test for fragment
scenario as we already observed a decrease in η̄ηη21 for ACT and ACTM com-
pared to previous time instants in Figure 13 (this clearly shows how CDP
outperforms these two methods). The leftmost column in Table 3 gives the al-
ternative hypothesis tested. Subsequently in Table 4, we show the proportion
of values in ηηη21, that correspond to the hypothesis tested in Table 3. CDP
outperforms ACT and ACTM for all change scenarios except form. ACTM
outperforms ACT for group-change, form, and homo-to-hetero. For the other
scenarios tested, there is no difference in ηηη21 for ACT and ACTM. However,
when we consider the proportions in Table 4, the majority of the entries in
η̄ηη21
ACTM are greater than η̄ηη21

ACT for all change scenarios except hetero-to-homo.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 23

Fig. 4: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM (right)
over time on group-change for w = 5 change point(top) and change-
interval (bottom).

Fig. 5: Plot of ηηη21 on CDP, ACT, and ACTM for group-change for
w = 1, 5, 10 at change-point. For all w, ηηη21

CDP is positive and increases with
w. For all w, a majority of elements of ηηη21

ACT and ηηη21
ACTM are negative.

24 Hewapathirana et al.

Fig. 6: Plot of ηηη21 on CDP, ACT, and ACTM for split for w = 1, 5, 10
at change-point. For all w, ηηη21

CDP is positive and increases with w. For all
w, ηηη21

ACT and ηηη21
ACTM are negative.

Fig. 7: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM (right)
over time on split for w = 5 change point(top) and change-interval
(bottom). Although η̄ηηtCDP shows an increase at t = 21 for both change point
and change-interval, η̄ηη21

CDP shows high variability further extending below zero.
ACT and ACTM do not show an increase at t = 21.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 25

Fig. 8: Plot of ηηη21 on CDP, ACT, and ACTM for merge for w = 1, 5, 10
at change-point. For all w, ηηη21

CDP is positive and decreases with w. For all
w, ηηη21

ACT and ηηη21
ACTM are negative.

Fig. 9: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM (right)
over time on merge for w = 5 change point(top) and change-interval
(bottom). Although η̄ηηtCDP shows an increase at t = 21 for both change point
and change-interval, η̄ηη21

CDP shows high variance, further extending below zero.
ACT and ACTM do not show a clear increase at t = 21 for both change-point
and change-interval.

26 Hewapathirana et al.

Fig. 10: Plot of ηηη21 on CDP, ACT, and ACTM for form for w = 1, 5, 10
at change-point. For all w, ηηη21

CDP , ηηη21
ACT , and ηηη21

ACTM are positive and
increase with w. However, ηηη21

ACTM is wider and has more outliers.

Fig. 11: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM
(right) over time on form for w = 5 change point(top) and change-
interval (bottom). All η̄ηηtCDP , η̄ηηtACT and η̄ηηtACTM show a clear increase at
t = 21, while η̄ηη21

ACTM shows the highest increase.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 27

Fig. 12: Plot of ηηη21 on CDP, ACT, and ACTM for fragment for w =
1, 5, 10 at change-point. For all w, ηηη21

CDP and ηηη21
ACT are positive and

increase with w. ηηη21
ACTM is mostly negative at w = 1, but increases with w.

However, ηηη21
ACT and ηηη21

ACTM are wider and show more outliers.

Fig. 13: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM
(right) over time on fragment for w = 5 change point(top) and
change-interval (bottom). η̄ηη21

CDP shows a clear detection at t = 21 for
both change point and change-interval. Both η̄ηη21

ACT and η̄ηη21
ACTM are negative.

Furthermore η̄ηηtACT and η̄ηηtACTM contain a large number of outliers.

28 Hewapathirana et al.

Fig. 14: Plot of ηηη21 on CDP, ACT, and ACTM for hetero-to-homo
for w = 1, 5, 10 at change-point. For all w, ηηη21

CDP are positive and slightly
increase with w. The ηηη21

ACT and ηηη21
ACTM are negative for all w.

Fig. 15: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM
(right) over time on hetero-to-homo for w = 5 change point(top)
and change-interval (bottom). η̄ηη21

CDP shows a clear detection at t = 21 for
both change point and change-interval. Both η̄ηη21

ACT and η̄ηη21
ACTM show a slight

increase, but still some values lie below zero.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 29

Fig. 16: Plot of ηηη21 on CDP, ACT, and ACTM for homo-to-hetero
for w = 1, 5, 10 at change-point. For all w, ηηη21

CDP are positive and slightly
increase with w. The ηηη21

ACT and ηηη21
ACTM are negative for all w.

Fig. 17: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM
(right) over time on homo-to-hetero for w = 5 change point(top)
and change-interval (bottom). η̄ηη21

CDP shows a clear detection at t = 21
for both change point and change-interval, but η̄ηη21

CDP slightly extends below
zero. Both η̄ηη21

ACT and η̄ηη21
ACTM also show a slight increase, with the intervals

extending below zero.

30 Hewapathirana et al.

Fig. 18: Plot of ηηη21 on CDP, ACT, and ACTM for simple-to-complex
for w = 1, 5, 10 at change-point. For all w, ηηη21

CDP are positive and increase
with w. The ηηη21

ACT and ηηη21
ACTM are negative for all w.

Fig. 19: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM
(right) over time on simple-to-complex for w = 5 change point(top)
and change-interval (bottom). We observe a clear detection at η̄ηη21

CDP for
change-point. For change-interval we observe η̄ηηtCDP for t = 22, . . . , 25 to have
high variance. A detection is not observed on both η̄ηη21

ACT and η̄ηη21
ACTM .

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 31

Fig. 20: Plot of ηηη21 on CDP, ACT, and ACTM for complex-to-simple
for w = 1, 5, 10 at change-point. For all w, ηηη21

CDP are positive and slightly
increase with w. The ηηη21

ACT and ηηη21
ACTM are negative for all w.

Fig. 21: Observing η̄ηηt on CDP (left), ACT (middle), and ACTM
(right) over time on complex-to-simple for w = 5 change point(top)
and change-interval (bottom). We observe a clear detection at η̄ηη21

CDP for
both change-point and change-interval. A detection is not observed on both
η̄ηη21
ACT and η̄ηη21

ACTM .

32 Hewapathirana et al.
T

ab
le

3:
S

ig
n

te
st

re
su

lt
s

fo
r

co
m

p
a
ri

n
g
ηη η

2
1

ca
lc

u
la

te
d

u
si

n
g

C
D

P
,

A
C

T
,

a
n

d
A

C
T

M
a
t
w

=
5

fo
r

ch
a
n

g
e-

p
o
in

t.

A
lt

er
n

a
ti

v
e

H
y
p

o
th

es
is

g
ro

u
p

-
sp

li
t

m
er

g
e

fo
rm

h
o
m

o
-t

o
-

h
et

er
o
-

si
m

p
le

-t
o

co
m

p
le

x
-

ch
a
n

g
e

h
et

er
o

to
-h

o
m

o
-c

o
m

p
le

x
to

-s
im

p
le

ηη η
2
1
C
D
P
>
ηη η

2
1
A
C
T

2
.0

8
e-

2
3

2
.0

8
e-

2
3

2
.0

8
e-

2
3

1
.0

0
0
0

2
.0

8
e-

2
3

2
.0

8
e-

2
3

2
.0

8
e-

2
3

2
.0

8
e-

2
3

ηη η
2
1
C
D
P
<
ηη η

2
1
A
C
T

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
.0

8
e-

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

ηη η
2
1
C
D
P
6=
ηη η

2
1
A
C
T

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

ηη η
2
1
C
D
P
>
ηη η

2
1
A
C
T
M

2
.0

8
e-

2
3

2
.0

8
e-

2
3

2
.0

8
e-

2
3

1
.0

0
0
0

2
.0

8
e-

2
3

2
.0

8
e-

2
3

2
.0

8
e-

2
3

2
.0

8
e-

2
3

ηη η
2
1
C
D
P
<
ηη η

2
1
A
C
T
M

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

2
.0

8
e-

2
3

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

1
.0

0
0
0

ηη η
2
1
C
D
P
6=
ηη η

2
1
A
C
T
M

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

4
.1

6
e-

2
3

ηη η
2
1
A
C
T
M
>
ηη η

2
1
A
C
T

4
.0

2
e-

1
1

0
.3

0
8
5

0
.3

8
2
1

2
.0

8
e-

2
3

0
.0

0
3
4
7

0
.6

9
1
5

0
.2

4
2
0

0
.0

9
6
8

ηη η
2
1
A
C
T
M
<
ηη η

2
1
A
C
T

1
.0

0
0
0

0
.7

5
8
0

0
.6

9
1
5

1
.0

0
0
0

0
.9

9
8
1

0
.3

8
2
1

0
.8

1
5
9

0
.9

3
3
2

ηη η
2
1
A
C
T
M
6=
ηη η

2
1
A
C
T

8
.0

3
e-

1
1

0
.6

1
7
1

0
.7

6
4
2

4
.1

6
e-

2
3

0
.0

0
6
9

0
.7

6
4
2

0
.4

8
4
0

0
.1

9
3
6

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 33

Table 4: Proportions for comparing ηηη21 calculated using CDP, ACT, and
ACTM at w = 5 for change-point

Categories group- split merge form homo-to- hetero- simple-to complex-
change hetero to-homo -complex to-simple

ηηη21
CDP > ηηη21

ACT 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
ηηη21
CDP < ηηη21

ACT 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
ηηη21
CDP = ηηη21

ACT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ηηη21
CDP > ηηη21

ACTM 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00
ηηη21
CDP < ηηη21

ACTM 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
ηηη21
CDP = ηηη21

ACTM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ηηη21
ACTM > ηηη21

ACT 0.83 0.53 0.52 1.00 0.64 0.48 0.54 0.57
ηηη21
ACTM < ηηη21

ACT 0.17 0.47 0.48 0.00 0.36 0.52 0.46 0.43
ηηη21
ACTM = ηηη21

ACT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Each change scenario discussed in Section 4, consists of a change in the
behaviour of a subset of vertices in the DCSBM graph: (i) split, merge, homo-
to-hetero, and hetero-to-homo involve the set of vertices, {v1, v2, . . . , v300}, in
the most sparsely connected block in the graph, (ii) group-change, simple-to-
complex, and complex-to-simple involve the set of vertices, {v1, v2, . . . , v600},
that can be considered to be moderately connected in the graph, and (iii) form
and fragment involve the set of vertices, {v601, v602, . . . , v900}, from the most
dense block in the graph. From the results of the experiments conducted, we
observe how CDP detects changes involving each of these subsets of vertices.
ACT and ACTM could only detect the form scenario that involves a change in
the vertices from the most dense block in the graph. However still, ACT and
ACTM failed to detect fragment, which is the reverse of form. From the overall
simulation results we see that, while ACTM is slightly better than ACT, CDP
is the best of the three.

Next, we conduct experiments to evaluate the scalability of CDP and the
other two baseline methods. We select one change scenario, and generate a
sequence of six graphs. At the sixth time instant, we calculate vertex change
scores using a window of size five. We repeat this over 100 simulation runs.
We calculate the average CPU time taken to embed a single graph, and the
average CPU time taken to calculate profile behaviour and change scores at
a given time instant. Following the same procedure, we conduct experiments
on graphs with several sizes. All experiments are implemented on a Windows
server Intel Xeon with two 3.3GHz processors of 128 GB RAM. Our results
are given in Table 5. Figures 22 and 23 plot the average computational time
taken by each method for the embedding step and change score calculation
step, respectively for different graph sizes.

The most computationally efficient methods for embedding a graph are the
ACT and ACTM methods. These methods both perform SVD of the weighted
adjacency matrix to extract a single singular vector. However, as shown in
our previous results, keeping only one singular vector does not provide a good
representation of all vertices in the network. CDP performs SVD to extract

34 Hewapathirana et al.

Table 5: Average CPU time (seconds) taken by each method

Task n CDP ACT ACTM

Spectral embedding 300 0.2425 0.0474 0.0475
900 1.7584 0.4554 0.4832

1500 4.6635 1.4223 1.5394
2100 11.8364 4.5364 3.7637
2700 20.2857 9.8368 7.3115
3300 51.3395 22.0778 18.0710

Profile behaviour and change score calculation 300 0.0063 0.0032 0.0026
900 0.0142 0.0156 0.0144

1500 0.0340 0.0546 0.0570
2100 0.0725 0.1095 0.1140
2700 0.1016 0.1757 0.1817
3300 0.1739 0.2394 0.2382

Fig. 22: Comparison of average CPU time taken to embed a graph using dif-
ferent methods.

d singular vectors from the representation matrix to obtain an optimal rep-
resentation, hence taking more computational time. When comparing change
score calculation times (Figure 23), CDP is clearly more efficient than ACT or
ACTM for graph sizes greater than 900. However, we observe that the change
score times are negligible compared to the respective embedding times. From
the overall simulation results, it can be concluded that CDP method outper-
forms the other two baseline methods, and is the most reliable method in
detecting the different types of change scenarios considered.

5 Case Study: The Enron E-mail Network

The Enron dataset is used in various publications for community detection
and anomaly detection [9, 40, 41]. In this paper, we use the cleaned and pro-
cessed version of the dataset created by [42]. Based on the sent and received

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 35

Fig. 23: Comparison of average CPU time taken to calculate change scores
using different methods.

email addresses in the original Enron corpus, [42] extract a total of 2359 user
email addresses, and construct a time sequence of email-sender networks and a
time sequence of email-receivers networks for each month from December 1999
to March 2002. Based on these two dynamic networks, we construct a time
sequence of 28 undirected graphs (one for each month), where the vertices de-
note user email addresses, and the edge weights denote the number of emails
communicated (either sent or received) by the corresponding pair of users.
Each graph is then represented by an n × n symmetric weighted adjacency
matrix, where n = 2359.

We applied CDP, ACT, and ACTM on this data with a window of length
1 (we used w = 1 as the time instants correspond to months). Each of the
methods, CDP, ACT, and ACTM returns an n × 1 vector of vertex change
scores for each time instant. Our goal is to detect vertices which have changed
most during a given time instant. To achieve this goal, we employ the follow-
ing simple procedure: Let zt be the vector of vertex change scores obtained

for a given method. Each zti is converted to a z-score, ẑti =
(zti−z̄

t)
σzt

, where

z̄t = 1
n

∑n
i=1 z

t
i , and σ2

zt = 1
n−1

∑n
i=1(zti − z̄t)2. We threshold each z-score dis-

tribution, ẑt, at 5 to detect the vertices which changed the most at that time
instant (we investigate and find that the threshold 5 for this dataset ensures
the percentage of vertices detected at each time instant is less than two percent
for all three methods). The Enron time-line contains a detailed description of
the key players, and events that took place during the rise and fall of the
Enron company [43]. Based on the assumption that the email communication
patterns within the company were affected by the events associated with the
scandal, we evaluate the performance of our change detection method.

We find Timothy Beldon (chief trader of Enron’s West Coast power desk
and convicted of wire fraud) to be one of the entities which changed the
most, using CDP for the time instants corresponding to September-2000 and
October-2000. According to the Enron time-line, this is the time when an at-

36 Hewapathirana et al.

Fig. 24: Rate of change in the number of emails sent and received by Timothy
Beldon between consecutive months

torney from Enron travelled to Portland to discuss Timothy Beldon’s strategies
of boosting energy prices. Figure 24 shows the rate of change in the number of
emails sent and received by Beldon throughout the whole time period consid-
ered. First, in September-2000, we observe a noticeable drop in the number of
emails communicated, which then suddenly increases in October-2000. Figures
25, 26, and 27 further show the subgraphs consisting of the vertices correspond-
ing to Timothy Beldon and his connections for time instants, August-2000,
September-2000 and October-2000 respectively. It is observed that Beldon,
who communicated with many employees in various job roles in August-2000,
limited his communications mostly to the top level executives and CEO’s dur-
ing September-2000. He then starts communicating with many employees in
different job roles in October-2000. CDP successfully detects this change in
degree as well as community membership by giving high change scores to
Timothy Beldon during the respective time instants.

Enron announced that current CEO Kenneth Lay was to be replaced by
Jeffry Skilling in December-2000. CDP successfully detects Rosalie Fleming,
who was the assistant of Kenneth Lay, as one of the top changed entities for
this time instant. The subgraph in Figure 28 show Fleming’s connections in
November-2000 which are mostly with the employees in the company. Figure
29 shows how she starts communicating with people with different job roles
such as CEO’s, directors, etc. in December-2000. We observe how Fleming’s
connectivity patterns drastically change during this transition. CDP success-
fully detects this change at the corresponding time instant.

During the time instants between October-2001 to February-2002, CDP
gives high change scores to employees in job roles such as risk analysts, senior
specialists, presidents, vice presidents, and traders. This is justifiable as this
was the time period where Enron’s stocks started to fall, and bankruptcy was
declared.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 37

Fig. 25: Subgraph of the vertex corresponding to Timothy Beldon
for August-2000. Beldon is represented by the enlarged blue vertex in the
centre, and the edges connected to it are highlighted in red.

Fig. 26: Subgraph of the vertex corresponding to Timothy Beldon for
September-2000. Beldon is represented by the enlarged blue vertex in the
centre, and the edges connected to it are highlighted in red.

For the transition from September-2000 to October-2000, both ACT and
ACTM give high change scores to Sara Shackleton (previous vice president to
Enron North America). Figure 30 shows the histogram of the emails sent and
received by Shackleton throughout this time period considered. We observe
how Shackleton maintains a large number of overall communications, hence
acts as a hub in the network. We observe a decrease in the degree at the time
instant denoting October-2000 with respect to September-2000. Furthermore,
our investigations show that there is approximately a 66% overlap in Shackle-
ton’s connections for these two time instants. Hence it is justifiable to assume
that the change detected by ACT and ACTM simply reflects the change in
degree for the corresponding vertex.

38 Hewapathirana et al.

Fig. 27: Subgraph of the vertex corresponding to Timothy Beldon
for October-2000. Beldon is represented by the enlarged blue vertex in the
centre, and the edges connected to it are highlighted in red.

Fig. 28: Subgraph of the vertex corresponding to Rosalie Fleming for
November-2000. Fleming is represented by the enlarged blue vertex in the
centre, and the edges connected to it are highlighted in red.

Christopher Calger (former executive in Enron’s trading business) is also
detected by ACT and ACTM for the transition from January-2001 to February-
2001. However, when comparing the subgraph around the vertex corresponding
to Calger in January-2001 (Figure 31) and February-2001 (Figure 32), we do
not see a considerable change in his connections. Our further calculations show
a 54% overlap in his connections. However, when observing the rate of change
in the degree of the same vertex throughout the whole time period (Figure
33), February-2001 shows a slight increase.

In summary, CDP successfully detects some key players involved in the
scandal as vertices which change the most during time instants corresponding
to suspicious events in the Enron time-line. ACT and ACTM are focused

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 39

Fig. 29: Subgraph of the vertex corresponding to Rosalie Fleming for
December-2000. Fleming is represented by the enlarged blue vertex in the
centre, and the edges connected to it are highlighted in red.

Fig. 30: Number of emails sent and received by Sarah Shackleton during the
28 months

mostly on change in the degree of the vertices, while CDP detects different
types of changes.

6 Summary

In this paper, we present a novel method, CDP, to detect changes in vertex
behaviour in a dynamic network represented as a time sequence of undirected
and weighted graphs. We adopt a spectral embedding approach for this pur-
pose.

Although there already exist change detection methods based on spectral
embedding, such as ACT [1], they are mainly designed to detect changes oc-
curring in dense, well-connected graphs. Hence, when applied to sparse and

40 Hewapathirana et al.

Fig. 31: Subgraph of the vertex corresponding to Christopher Calger
for January-2001. Calger is represented by the enlarged blue vertex in the
centre and the edges connected to it are highlighted in red.

Fig. 32: Subgraph of the vertex corresponding to Christopher Calger
for February-2001. Calger is represented by the enlarged blue vertex in the
centre and the edges connected to it are highlighted in red.

heterogeneous graphs, they focus on the behaviour of highly active, dominant
vertices. Changes occurring in vertices with moderate connectivity go unno-
ticed by these methods. Our approach adapts spectral techniques, commonly
used in the area of spectral clustering, to obtain an embedding that represents
all vertices in the graph. Our graph regularization method addresses sparse-
ness and heterogeneity that are common in most real-world graphs. We apply
a Procrustes analysis method to the embeddings to calculate change scores
for vertices at each time instant. This is a novel application of Procrustes
analysis. According to the results of our simulation experiments and experi-
ments on the Enron email dataset, CDP successfully detects various changes
involving vertices in a time evolving graph. These changes include changes
in vertex degree, changes in community structure and unusual increases or

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 41

Fig. 33: Rate of change in the number of emails sent and received by Christo-
pher Calger during the 28 months

decreases in edge weights. In all experiments, the performance of CDP was
compared against two other spectral-based change detection methods, ACT
and ACTM, which did not address sparsity and heterogeneity issues in the
embedding stage. These baseline methods failed to detect the changes in the
majority of experiments.

Several possible future research directions emerged from the work of this
paper. Deciding the dimension of the embedding is one of the most critical
steps of our method. An optimal low dimension, d, ensures that the embed-
ded points amplify the connectivity structure of the graph and remove noise
and redundant information. We adapted [26]’s low-rank matrix approxima-
tion method to determine d. From our discussions and experimental results,
this method is a good alternative to the traditional scree-plot method in esti-
mating the correct value for d especially in real-world graphs. However, when
applied to large graphs, a drawback is the high computational cost associated
with this method. It would be interesting to investigate other faster methods
to estimate d in our algorithms. Several dimensionality selection methods are
summarised in [44] and [45] that can be used for this purpose. However, as the
truncation dimension, d, plays a major role in the accuracy of the change de-
tection algorithm, careful investigation is required to understand the trade-off
between accuracy and scalability in the selection of an alternative method.

CDP use generalized orthogonal Procrustes analysis techniques to calculate
a profile embedding from the embeddings inside the window. If the window
contains embedded points that are highly variable across time instants, the
noise added by these points may prevent a change from being detected. To
address this issue, it is possible to use a weighted Procrustes analysis pro-
cedure [46]. The weights can be selected to give higher importance to those
points that are more stable and lesser importance to those points that have
high variability inside the window. We believe that it would be worthwhile

42 Hewapathirana et al.

to investigate whether the use of weighted Procrustes analysis can improve
change detection performance.

To conclude, this paper presents a novel change detection method com-
bining spectral embedding and Procrustes analysis techniques. Our method
successfully detects a wide range of vertex-based changes that closely relate
to changes occurring in most real-world dynamic networks.

References

1. Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based anomaly detection
in computer systems. In Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 440–449.
ACM, 2004.

2. Isuru U Hewapathirana. Change detection in dynamic attributed net-
works. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 9(3):e1286, 2019.

3. Kumar Sricharan and Kamalika Das. Localizing anomalous changes in
time-evolving graphs. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data, pages 1347–1358. ACM, 2014.

4. David Skillicorn. Understanding complex datasets: data mining with ma-
trix decompositions. CRC press, 2007.

5. Marco Saerens, Francois Fouss, Luh Yen, and Pierre Dupont. The principal
components analysis of a graph, and its relationships to spectral clustering.
In European Conference on Machine Learning, pages 371–383. Springer,
2004.

6. Joshua Neil, Curtis Hash, Alexander Brugh, Mike Fisk, and Curtis B Stor-
lie. Scan statistics for the online detection of locally anomalous subgraphs.
Technometrics, 55(4):403–414, 2013.

7. Nicholas A Heard, David J Weston, Kiriaki Platanioti, David J Hand, et al.
Bayesian anomaly detection methods for social networks. The Annals of
Applied Statistics, 4(2):645–662, 2010.

8. Panagiotis Papadimitriou, Ali Dasdan, and Hector Garcia-Molina. Web
graph similarity for anomaly detection. Journal of Internet Services and
Applications, 1(1):19–30, 2010.

9. Carey E Priebe, John M Conroy, David J Marchette, and Youngser Park.
Scan statistics on enron graphs. Computational & Mathematical Organi-
zation Theory, 11(3):229–247, 2005.

10. Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han. Integrating com-
munity matching and outlier detection for mining evolutionary community
outliers. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 859–867. ACM, 2012.

11. Lisha Yu, William H Woodall, and Kwok-Leung Tsui. Detecting node
propensity changes in the dynamic degree corrected stochastic block
model. Social Networks, 54:209–227, 2018.

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 43

12. Leman Akoglu and Christos Faloutsos. Event detection in time series of
mobile communication graphs. In Army Science Conference, pages 77–79,
2010.

13. Tsuyoshi Idé, Spiros Papadimitriou, and Michail Vlachos. Computing
correlation anomaly scores using stochastic nearest neighbors. In Data
Mining, 2007. ICDM 2007. Seventh IEEE International Conference on,
pages 523–528. IEEE, 2007.

14. Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is
more: Sparse graph mining with compact matrix decomposition. Statistical
Analysis and Data Mining, 1(1):6–22, 2008.

15. Jimeng Sun, Spiros Papadimitriou, and S Yu Philip. Window-based ten-
sor analysis on high-dimensional and multi-aspect streams. In ICDM,
volume 6, pages 1076–1080, 2006.

16. Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
Parcube: Sparse parallelizable tensor decompositions. In Machine Learn-
ing and Knowledge Discovery in Databases, pages 521–536. Springer, 2012.

17. Srijan Sengupta and Yuguo Chen. Spectral clustering in heterogeneous
networks. Statistica Sinica:Vol. 25, No. 3, 1081-1106, 2015.

18. Ian L Dryden and Kanti V Mardia. Statistical shape analysis, volume 4.
Wiley Chichester, 1998.

19. Bryan Klimt and Yiming Yang. Introducing the enron corpus. In CEAS,
2004.

20. Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space
approaches to social network analysis. Journal of the american Statistical
association, 97(460):1090–1098, 2002.

21. Christine Leigh Myers Nickel. Random dot product graphs: A model for
social networks, volume 68. 2007.

22. Antony Joseph and Bin Yu. Impact of regularization on spectral clustering.
arXiv preprint arXiv:1312.1733, 2013.

23. Fan RK Chung. Spectral graph theory, volume 92. American Mathematical
Soc., 1997.

24. Arash A Amini, Aiyou Chen, Peter J Bickel, Elizaveta Levina, et al.
Pseudo-likelihood methods for community detection in large sparse net-
works. The Annals of Statistics, 41(4):2097–2122, 2013.

25. Matthew Brand and Kun Huang. A unifying theorem for spectral embed-
ding and clustering. In Proceedings of the Ninth International Workshop
on Artificial Intelligence and Statistics, 2003.

26. Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank
matrix approximations. Journal of the ACM (JACM), 54(2):9, 2007.

27. Mikkel B Stegmann and David Delgado Gomez. A brief introduction
to statistical shape analysis. Informatics and mathematical modelling,
Technical University of Denmark, DTU, 15:11, 2002.

28. Lei Tang, Xufei Wang, and Huan Liu. Community detection via hetero-
geneous interaction analysis. Data Mining and Knowledge Discovery, 25
(1):1–33, 2012.

44 Hewapathirana et al.

29. Milena Mihail and Christos Papadimitriou. On the eigenvalue power law.
In International Workshop on Randomization and Approximation Tech-
niques in Computer Science, pages 254–262. Springer, 2002.

30. Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina.
Pseudo-likelihood methods for community detection in large sparse net-
works. Ann. Statist., 41(4):2097–2122, 08 2013. doi: 10.1214/13-AOS1138.
URL http://dx.doi.org/10.1214/13-AOS1138.

31. Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering1
analysis and an algorithm. Proceedings of Advances in Neural Information
Processing Systems. Cambridge, MA: MIT Press, 14:849–856, 2001.

32. Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416, 2007.

33. Lisha Yu, Inez M Zwetsloot, Nathaniel T Stevens, James D Wilson, and
Kwok Leung Tsui. Monitoring dynamic networks: a simulation-based
strategy for comparing monitoring methods and a comparative study.
arXiv preprint arXiv:1905.10302, 2019.

34. Yu Wang, Aniket Chakrabarti, David Sivakoff, and Srinivasan
Parthasarathy. Fast change point detection on dynamic social networks.
arXiv preprint arXiv:1705.07325, 2017.

35. Brian Karrer and Mark EJ Newman. Stochastic blockmodels and com-
munity structure in networks. Physical Review E, 83(1):016107, 2011.

36. Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law
distributions in empirical data. SIAM review, 51(4):661–703, 2009.

37. Simon De Ridder, Benjamin Vandermarliere, and Jan Ryckebusch. Detec-
tion and localization of change points in temporal networks with the aid
of stochastic block models. Journal of Statistical Mechanics: Theory and
Experiment, 2016(11):113302, 2016.

38. Travis Martin, Xiao Zhang, and MEJ Newman. Localization and centrality
in networks. Physical Review E, 90(5):052808, 2014.

39. David Poole. Linear algebra: A modern introduction. Cengage Learning,
2014.

40. Leto Peel and Aaron Clauset. Detecting change points in the large-scale
structure of evolving networks. In Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

41. Ryan A Rossi, Brian Gallagher, Jennifer Neville, and Keith Henderson.
Modeling dynamic behavior in large evolving graphs. In Proceedings of
the sixth ACM international conference on Web search and data mining,
pages 667–676. ACM, 2013.

42. Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. Community
evolution in dynamic multi-mode networks. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 677–685. ACM, 2008.

43. C William Thomas. The rise and fall of enron. JOURNAL OF
ACCOUNTANCY-NEW YORK-, 193(4):41–52, 2002.

44. Donald A Jackson. Stopping rules in principal components analysis: a
comparison of heuristical and statistical approaches. Ecology, pages 2204–

http://dx.doi.org/10.1214/13-AOS1138

Change Detection in Noisy Dynamic Networks: A Spectral Embedding Approach 45

2214, 1993.
45. Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.
46. Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Gra-

ham. Training models of shape from sets of examples. In BMVC92, pages
9–18. Springer, 1992.

	1 Introduction
	2 Brief Overview
	3 Problem Framework
	4 Simulation Experiments
	5 Case Study: The Enron E-mail Network
	6 Summary

