
ar
X

iv
:1

91
1.

12
61

2v
4 

 [
m

at
h.

ST
] 

 5
 J

un
 2

02
0

Modified Lomax Model: A heavy-tailed distribution for fitting large-scale

real-world complex networks

Swarup Chattopadhyay 1,3 , Tanujit Chakraborty 2∗, Kuntal Ghosh1 , Asit K. das3

1 Machine Intelligence Unit, Indian Statistical Institute Kolkata-700108, India
2 SQC and OR, Indian Statistical Institute Kolkata-700108, India.

3 Department of C.S., Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India.

Abstract

Real-world networks are generally claimed to be scale-free, meaning that the degree distributions follow
the classical power-law, at least asymptotically. Yet, closer observation shows that the classical power-law
distribution is often inadequate to meet the data characteristics due to the existence of a clearly identifiable
non-linearity in the entire degree distribution in the log-log scale. The present paper proposes a new variant
of the popular heavy-tailed Lomax distribution which we named as the Modified Lomax (MLM) distribution
that can efficiently capture the crucial aspect of heavy-tailed behavior of the entire degree distribution of
real-world complex networks. The proposed MLM model, derived from a hierarchical family of Lomax
distributions, can efficiently fit the entire degree distribution of real-world networks without removing lower
degree nodes as opposed to the classical power-law based fitting. The MLM distribution belongs to the
maximum domain of attraction of the Frechet distribution and is right tail equivalent to Pareto distribution.
Various statistical properties including characteristics of the maximum likelihood estimates and asymptotic
distributions have also been derived for the proposed MLM model. Finally, the effectiveness of the proposed
MLM model is demonstrated through rigorous experiments over fifty real-world complex networks from
diverse applied domains.

Keywords: Complex networks; Degree distribution; Lomax distribution; Heavy-tailed distribution;
Power-law; Statistical properties.

1. Introduction

The modeling and structural aspects of large scale real-world complex networks, including social, infor-
mation, collaboration, communication, etc. have been well studied during the past decade [1, 2, 3, 4, 5] by
many researchers. The World Wide Web, Twitter, Orkut, Youtube, DBLP, Wiki talk, Facebook, LinkedIn
are examples of such large scale real-world complex networks. These networks are characterized by several
important structural, emergent properties like degree distribution, correlation coefficient, average nearest
neighbor, average path length, clustering coefficient, community structure, etc. Recently, the modeling and
statistical aspects of such emergent structural properties, therefore, remain an important research area in the
study of large scale real-world complex networks [6, 4, 7, 8, 9]. In this regard, the node degree distribution
has been well studied and viewed as an important structural characteristic of real-world networks [10]. In
1999, Barabasi and Albert [11, 12] modeled the node degree distribution of the World Wide Web (WWW)
using a power-law. Since then, many researchers have also favored the use of heavy tailed power-law in
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modeling the node degree distribution of real-world networks such as collaboration networks, communica-
tion networks, social networks, biological networks, etc [13, 14]. Mathematically, a quantity x follows a
power-law if it is drawn from a probability distribution P (x) ∝ x−α where, the parameter α is a positive
constant and is known as exponent or scaling parameter of the distribution. Thus it is common to en-
counter the claim that most of the real-world networks are scale-free, meaning that the degree distributions
follow single power-law. Despite this, a closer observation, while fitting, shows that the classical power-law
distribution is often inadequate to meet the data characteristics adequately because of the existence of an
identifiable non-linearity (bend) when the entire degree distribution is considered in log-log scale as shown
in Figures 1a and 1b (elaborated later).

This feature (non-linearity) of the entire degree distribution, depending on when and where it is consid-
ered or ignored, possibly constitute the reason why the universality vis-a-vis scarcity of scale-free networks
has remained controversial ever since its inception [15, 16]. The debate has continued to crop up time and
again throughout the last twenty-one years [17, 18, 13, 14] and in very recent times too whence it has been
claimed through an empirical and extensive study that the power-law distribution does not fit well in most
cases and thereby produces a significant fitting error, followed by counter-claims [19].

This apart, researchers have also argued differently in favor of scale-free structure while suggesting some
softer statistical criteria for scale-freeness [20, 21, 22]. Especially significant in this context is the following
quote [22]: ”The fact that heavy-tailed distributions occur in complex systems is certainly important (be-
cause it implies that extreme events occur more frequently than would otherwise be the case)... However, a
statistically sound power-law is no evidence of universality without a concrete underlying theory to support
it. Moreover, knowledge of whether or not a distribution is heavy-tailed is far more important than whether
it can be fit using a power-law”.

Several other heavy-tailed distributions such as lognormal, Pareto lognormal (PLN), double Pareto log-
normal (DPLN), etc. also have been proposed in modeling the degree distribution of real-world networks
instead of power-law [18, 23]. Recent research also recognized the deviations from a pure power-law dis-
tribution over various network data sets and recommended some other distributions for better modeling
the heavy-tailed node degree distribution [21, 24, 25]. Thus, identifying the reasons for deviation of single
power-law while fitting and looking for the alternative models which can efficiently capture the crucial aspect
of heavy-tailed and long-tailed behaviour of the entire degree distribution of real-worlld complex networks
continue to remain a challenging task of current research in the field of complexity science even as it steadily
gravitates toward data science [20, 21, 22].

(a) Twitter network (b) LiveJournal network

Figure 1: Plot of degree distribution

Motivation: Networks are a powerful way to represent and study the structure of real-world complex
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systems. Across various applied domains of networks, it is common to encounter the claim that most of the
real-world networks are scale-free, meaning that the degree distributions follow single power-law, though the
universality of scale-free networks remains controversial as already discussed above.

Now consider an example where Figures 1a and 1b that depict the plot of entire degree distribution in
the log-log scale of the Twitter and LiveJournal social networks. The horizontal axis represents the unique
degree value (x), and the vertical axis represents the corresponding frequency. In these networks, a node
represents a single user, and an edge represents a follower of that user. From these figures, it is clear that
the pattern of the degree distribution of these networks does not match with the straight-line representation
in the log-log scale through a single power-law. Usually, while fitting the node degree distribution, the single
power-law is applied only for values of degree higher than some minimum (say, xmin) and the exponent
α is estimated from the data using MLE accordingly. Thus power-law distribution provides better fitting
or in other words better inclined to the right tail of the data unless otherwise, some “unimportant” (i.e.,
lower degree) nodes are left out. Analytically, we can say that this inadequacy of fitting a single power-law
occurs because of nonlinear behavior of the degree distribution curve in the log-log scale. This motivates the
researchers to use other heavy-tailed probability models with non-negative exponent for better modeling the
entire degree distribution of real-world networks. To capture these nonlinearities in the degree distribution
of the real-world complex networks in a log-log scale, previous studies used various heavy-tailed probability
distributions [21, 18, 24]. In this current research, we study the behavior of the entire degree distributions
with a new variant of Lomax distribution that has wide applications in the field of actuarial science, reliability
modeling, economics and computer science [26, 27, 28, 29]. The Lomax distribution is essentially a Pareto
Type-II distribution that has been shifted so that its support begins at zero [27, 26]. Some extension and
generalization of the Lomax distribution has been carried out for analyzing reliability and survival data sets
in the past [27, 30, 31]. Recent research also focused on a new generalization of Pareto distribution with
application to the breaking stress data [32]. This paper proposes a modified Lomax (MLM) distribution
to be derived from a hierarchical family of Lomax distributions where the non-negative shape parameter is
assumed to be expressible as a nonlinear function of the data.

Our contribution: The major contribution here is to develop a modified Lomax (MLM) distribution
from a hierarchical family of Lomax distributions for efficient modeling of the entire degree distribution of
real-world complex networks [27, 26]. The reasons for introducing MLM distribution is to provide greater
flexibility and better fitting to the entire node degree distribution of complex networks compared to other
popularly used heavy-tailed distributions. In other words, the proposed MLM model can be used for effective
modeling the degree distribution of complex networks, coming from different disciplines, in the whole range of
the data without discarding some of the lower degree nodes. Moreover, some statistical properties including
extreme value and asymptotic behavior of the proposed MLM distribution have been studied in this context.
We also provide mathematical arguments to explain the behavior of the likelihood surface for this nonlinear
variant of the Lomax distribution, i.e., MLM distribution. A sufficient condition for the existence of the
global maximum for the likelihood estimates is given using the notion of the coefficient of variations (CV)
and discuss the parameter estimation procedures of the proposed MLM distribution. In order to justify the
effectiveness of the proposed MLM distribution, we have compared it with the other common power-law-
type distributions, viz. power-law, Pareto, lognormal, exponential, power-law with exponential cutoff and
Poisson [23, 13, 17]. The goodness-of-fit of the observed degree distribution is evaluated and compared using
a few statistical measures, viz. bootstrap Chi-square, KL-divergence (KLD), mean absolute error (MAE)
and root mean square error (RMSE). Several real-world complex networks from diverse fields have been used
for experimental evaluation. Empirical results confirm the effectiveness of the proposed MLM distribution
compared to other common distributions.

The remainder of the paper is organized as follows. Section 2 provides the details of the hierarchical
family of Lomax distributions. We propose and interpret proposed modified Lomax (MLM) distribution in
Section 3. Section 4 discusses the statistical properties, including extreme value and asymptotic behaviors
of the proposed MLM distribution. Section 5 is devoted to the experimental results with a detailed analysis
of the results over several real-world complex networks. Finally, Section 6 concludes the paper with a brief
discussion.
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2. Model

In this section, we first introduce a new family of heavy-tailed Lomax (HLM) distributions. Further, we
propose a relevant model from this newly introduced family to model the real-world heavy-tailed network
data sets in the whole range.

2.1. Genesis

Lomax distribution has been used as an alternative to exponential, power-law, gamma and weibull
distribution for modeling heavy tailed data sets [33, 34, 35, 36]. The cumulative distribution function
(CDF) and the probability density function (PDF) of the Lomax model are defined as follows:

Definition 1. A random variable Z follows Lomax distribution with parameters α and σ if the CDF is of
the form:

F (z) = 1−

(

1 +
z

σ

)−α

; z ≥ 0,

where α (> 0) is the shape parameter (real) and σ (> 0) is the scale parameter (real). The corresponding
PDF is defined as follows:

f(z) =
α

σ

(

1 +
z

σ

)−α−1

; z ≥ 0 (1)

Below we introduce a new family of heavy tailed Lomax distributions which is right tail-equivalent to a
power-law distribution.

Definition 2. A continuous random variable X follows a family of heavy-tailed Lomax (HLM) distributions
if and only if it has the following CDF:

F (x) = 1−
(

1 + x
)−m(x)

; x ≥ 0 (2)

and F (x) = 0 if x ≤ 0, where m : (0,∞) → R
+ is a real, continuous, positive function which is differentiable

on (0,∞) and satisfies the following conditions:

1. The function m is strictly positive and have finite limit at infinity, i.e., lim
x→∞

m(x) = α (> 0).

2. lim
x→0+

(1 + x)m(x) = 1 and lim
x→∞

(1 + x)m(x) = ∞.

3.
m

′

(x)

m(x)
≥ −

1

(1 + x) log(1 + x)
, x > 0.

It can be easily verified that the CDF in (2) satisfying conditions (1), (2) and (3) is a genuine CDF which
can also be expressed as follows:

F (x) = 1− exp [−m(x) log(1 + x)] , x > 0

The PDF of this new family of heavy-tailed Lomax distribution is of the form:

f(x) = (1 + x)−m(x)

[

m(x)

(1 + x)
+m′(x) log(1 + x)

]

, x > 0 and f(x) = 0, x ≤ 0.

There can be a wide variety of choices of m(x) satisfying lim
x→∞

m(x) = α (> 0). It is noted that the simplest

choice of m(x) = α and x = z
σ

corresponds to the Lomax distribution. We further represent this newly
introduced family of Lomax distributions as a hierarchical family in accordance with Pareto distribution
[37].
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Definition 3. (HLM Type-I family of distributions) Supposed that a random variableX folows HLM family
of distributions as defined in (2). Then with a scale parameter σ ∈ (0,∞), the CDF of HLM Type-I family
of distributions takes the following form:

F (x) = 1−
[

1 +
(x

σ
− 1
)]−m( x

σ
−1)

, x > σ

By taking m
(

x
σ
− 1
)

= α (> 0), we obtain the classical Pareto Type-I distribution.

Definition 4. (HLM Type-II family of distribution) Supposed that a random variableX folows HLM family
of distributions as defined in (2). Then with a location parameter µ ∈ R and a scale parameter σ ∈ (0,∞),
the CDF of HLM Type-II family of distributions takes the following form:

F (x) = 1−

(

1 +
x− µ

σ

)−m(x−µ
σ )

, x > µ

By taking m
(

x−µ
σ

)

= α (> 0), we obtain the Pareto Type-II distribution. Also, in addition µ = 0
corresponds to the Lomax distribution.

Definition 5. (HLM Type-III family of distribution) Supposed that a random variable X folows HLM
family of distributions as defined in (2). Then with a location parameter µ ∈ R, scale parameters σ ∈ (0,∞)
and a shape parameter γ (> 0), the CDF of HLM Type-III family of distributions takes the following form:

F (x) = 1−

[

1 +

(

x− µ

σ

)
1
γ

]−m

[
(x−µ

σ )
1
γ

]

, x > µ

By taking
[

m
(

x−µ
σ

)
1
γ

]

= 1, we obtain the Pareto Type-III distribution.

Obviously, the choice of m(·) function is subjective and any function m satisfying conditions (1), (2) and
(3) will give some known (unknown) heavy-tail Lomax distributions.

3. Modified Lomax (MLM) Model

The Lomax distribution does not provide great flexibility in modeling heavy-tailed data sets in the whole
range similar to the power-law distribution. Due to this, the trend of parameter(s) induction to the baseline
Lomax distribution has received increased attention in the recent years. Several generalized classes of
distributions by adding additional parameters such as shape and or scale and or location in the distribution
are available such as exponentiated Lomax (EL) [38], Beta-Lomax (BL) [39], exponential Lomax (ELomax)
[40], Gamma-Lomax (GL) [41] and Gumbel-Lomax (GuLx) model [42].

This paper provides a new modified version of the Lomax distribution called modified Lomax (MLM)
distribution. MLM distribution is shown to be an asymmetric distribution, which provides great fit in
modeling large-scale heavy-tailed data sets. The proposed MLM model is derived from the HLM family of
distributions (in particular, HLM Type-II model) that can efficiently model the entire degree distribution
of real-world networks. In other words, the proposed MLM model can be used for effective modeling the
degree distribution of real-worlld complex networks in the whole range without discarding lower degree nodes.
We define a relevant model from the newly introduced HLM Type-II family with the location parameter
µ = 0 and we choose a flexible m(·) function that depends on two shape parameters α and β satisfying
lim
x→∞

m(x) = α. The rational behind adding an additional shape parameter in the HLM Type-II family of

distribution will make the statistical model more flexible, simple and have physical interpretation. This idea
of generalization should suffice the practical needs of working with the non linear exponent to address the
structural issue (degree distribution) of real-world complex networks.
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Now we choose a nonlinear function m that adds a nonlinear exponents while fitting heavy-tailed HLM
Type-II model in the degree distributions is as follows:

m(x) = α

(

log
(

1 + x
)

1 + log
(

1 + x
)

)β

.

The chosen m(x) approaches to α from below if −1 < β < 0 as x → ∞ and approaches to α from above for
β > 0 as x → ∞. Note that, the function m(x) as defined above includes the constant function (in this case
α) as special cases by setting β = 0. The derivative of m(x) is given by

m′(x) =
αβ

x+ 1

(

log
(

1 + x
)

1 + log
(

1 + x
)

)β−1

.

(

1 + log
(

1 + x
)

)−2

.

Now, we define a relevant model with the above choice of m(·) in the HLM Type-II model with µ = 0
and name it as Modified Lomax Model to be denoted by MLM(α, β, σ). This modification to the Lomax
distribution provides more flexibility in the data modeling since the non-negative shape parameter are
assumed to be expressed as a nonlinear function of the empirical data. Thus the proposed MLM model with
parameters α, β, σ could be useful for modeling the heavy-tailed degree distribution of real-world complex
network data sets in the whole range.

Definition 6. (Modified Lomax Distribution) A continuous random variable X follows MLM(α, β, σ)
distribution with α (> 0) and β (> −1) as the shape parameters and σ (> 0) as the scale parameter if the
CDF takes the following form:

F (x) = 1− exp

[

−α
logβ+1(1 + x/σ)

[1 + log(1 + x/σ)]β

]

, x > 0, (3)

and F (x) = 0 if x ≤ 0. The corresponding PDF is given by,

f(x) =
α
[

β + 1 + log
(

1 + x

σ

)] [

log
(

1 + x

σ

)]β

σ
(

1 + x

σ

) [

1 + log
(

1 + x

σ

)]β+1
exp

[

−α

[

log
(

1 + x

σ

)]β+1

[

1 + log
(

1 + x

σ

)]β

]

, x > 0 (4)

and f(x) = 0 if x ≤ 0.

This MLM model includes Lomax distribution β = 0 as particular case. In addition, it belongs to the
new family of HLM Type-II distribution satisfying the condition: lim

x→∞
m(x) = α (> 0). Due to the addition

of an additional parameter β in the exponents of the Lomax distribution generates various shapes (unimodal
and bimodal) and provides greater flexibility (nonlinearity and heavy-tail) as shown in Figure 2. We study
the monotonicity for the PDF of the proposed MLM model in Theorem 1 below.

Theorem 1. Let X be the random variable follows MLM(α, β, σ) distribution, then the PDF as in (4) is
a decreasing function for −1 < β < 0.

Proof. Differentiating (4) w.r.t. x, we have

f ′(x) = −
α2 [1− F (x)]

[

β + 1 + log
(

1 + x
σ

)]2 [
log
(

1 + x
σ

)]2β

σ2
(

1 + x
σ

)2 [
1 + log

(

1 + x
σ

)]2β+2

−
α [1− F (x)]

{

[

β + 1 + log
(

1 + x
σ

)] [

log
(

1 + x
σ

)]β
+ (1 + β)

[

log
(

1 + x
σ

)]β−1
}

σ2
(

1 + x
σ

)2 [
1 + log

(

1 + x
σ

)]β+1

+
α [1− F (x)] (1 + β)

[

β + 1 + log
(

1 + x
σ

)] [

log
(

1 + x
σ

)]β−1

σ2
(

1 + x
σ

)2 [
1 + log

(

1 + x
σ

)]β+2

(5)
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Figure 2: Plot of the PDFs of MLM distribution

Trivially, if −1 < β < 0, then f ′(x) < 0. Thus, f(x) is decreasing function if β ∈ (−1, 0).

4. Statistical Properties of the MLM distribution

4.1. Characterization and existence of the likelihood

Initially we characterize the maximum likelihood estimates (MLEs) of the parameters α and σ of a
Lomax distribution. Subsequently, we derived a sufficient condition for the existence of MLEs of the MLM
distribution using coefficient of variation (CV). Given a set of samples {xi} of size n, the log-likelihood
function for the Lomax distribution, after dividing it by the sample size n, is given by

ℓ(α, σ) = logα− logσ −
(α+ 1)

n

n
∑

i=1

log
(

1 +
xi

σ

)

(6)

Differentiating (6) w.r.t. α and σ, respectively, we have:

∂ℓ(α, σ)

∂α
=

1

α
−

1

n

n
∑

i=1

log
(

1 +
xi

σ

)

(7)

∂ℓ(α, σ)

∂σ
= −

1

σ
+

(1 + α)

nσ

n
∑

i=1

(

xi

σ + xi

)

(8)
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Equating to zero the derivative of ℓ(α, σ) w.r.t. α in (7), we obtain α̂ = α(σ) as follows:

α̂ = α(σ) =
n

∑n

i=1
log
(

1 + xi

σ

) (9)

Differentiating (9) w.r.t. σ we have,

α′(σ) =
α̂2

nσ

n
∑

i=1

xi

σ + xi

(10)

It is important to note that there is no closed form solution to the likelihood based on (7) and (8), and
a suitable numerical algorithm (for example, Newton-Raphson method) can be employed to obtain the
maximum likelihood estimates (MLEs) of the α and σ. Different estimation procedures of the MLEs have
been discussed in previous literature, for example see [43]. But for small or medium-sized samples, anomalous
behavior of the likelihood surface can be encountered when sampling from the Lomax distribution. In this
paper, we characterize the profile log-likelihood function in terms of the coefficient of variation (CV), defined
as follows:

Definition 7. The CV is the ratio of the standard deviation (s) to the mean (µ),

CV =
s

µ
;

where µ = 1
n

∑n

i=1
xi and s =

√

1
n

∑n

i=1
x2
i − µ2.

By using standard notation, the profile log-likelihood function based on equation 6, is given by

ℓp(σ) = sup ℓ(α̂, σ) = log(α(σ)) − logσ − 1−
1

α(σ)
(11)

Differentiating (11) w.r.t. σ, we have the following:

ℓ
′

p(σ) =
α

′

(σ)

α(σ)
−

1

σ
+

α
′

(σ)
[

α(σ)
]2 (12)

Below we present the following lemmas which will be useful to find the sufficient condition for the existence
for the global maximum of the profile log-likelihood function (11).

Lemma 1. The following limit holds:

1. lim
σ→∞

σ log
(

1 +
x

σ

)

= x;

2. lim
σ→∞

σx

σ + x
= x;

3. lim
σ→∞

σ2

(

log
(

1 +
x

σ

)

−
x

σ + x

)

=
x2

2
.

Proof. The proof is elementary and can easily be done using series expansions.

Lemma 2. The following limit holds:

1. lim
σ→∞

1

α(σ)
= 0;

2. lim
σ→∞

α(σ)

σ
=

1

x̄
, where x̄ is the sample mean;

3. ℓ0 ≡ lim
σ→∞

ℓp(σ) = log

(

1

x̄

)

− 1.
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Proof. The proofs are straightforward and can be done using Lemma (1).

1. lim
σ→∞

1

α(σ)
= lim

σ→∞

1

n

n
∑

i=1

log
(

1 +
xi

σ

)

= lim
σ→∞

O

(

1

σ

)

= 0.

2. lim
σ→∞

α(σ)

σ
= lim

σ→∞

n

σ
∑n

i=1
log
(

1 + xi

σ

) =
n

∑n

i=1
xi

=
1

x̄
.

3. lim
σ→∞

ℓp(σ) = lim
σ→∞

[

log

(

α(σ)

σ

)

− 1−
1

α(σ)

]

= log

(

1

x̄

)

− 1.

A sufficient condition for monotonic increasing (decreasing) for the profile log-likelihood function is
presented in Theorem (2) below, for sufficiently large σ. Also, we present a sufficient condition for the
existence of global maximum corresponding to the likelihood function for the Lomax distribution to be at a
finite point in Corollary (1).

Theorem 2. Let X follows LM(α, σ) distribution with α, σ > 0. A sufficient condition for ℓp(σ) to be
monotonically decreasing function is CV> 1 for σ → ∞, and if CV< 1, it is monotonically increasing.

Proof. Using (9) and (10) in Eqn. (12), we can write ℓ
′

p(σ) as:

ℓ
′

p(σ) = −
1

σ

[

∑n

i=1 log
(

1 + xi

σ

)

−
∑n

i=1
xi

σ+xi
∑n

i=1
log
(

1 + xi

σ

)

]

+
1

nσ

n
∑

i=1

xi

σ + xi

(13)

Using the limits of Lemma (1) in Eqn. (13), we have

− lim
σ→∞

σ2ℓ
′

p(σ) =
1

2
×

∑n

i=1 x
2
i

∑n

i=1
xi

− x̄. (14)

Finally, we note that − lim
σ→∞

σ2ℓ
′

p(σ) > 0 when the R.H.S of Eqn.(14) is strictly greater than 0. Alternatively,

the likelihood function is monotonic decreasing when 1
2n

∑n

i=1
x2
i − x̄2 > 0, or, equivalently, CV> 1. In a

similar way, we can show that if CV< 1, then the ℓp(σ) is monotonic increasing function for sufficiently
large σ.

Remark 1. As a consequence of Theorem (2), it can be immediately concluded that ℓp(σ) tends to ℓ0 based
on Lemma (2) and ℓp(σ) is a monotonic function for sufficiently large σ. The value of CV as a measure that
can be useful to determine when ℓp(σ) will be monotonic increasing or decreasing function for sufficiently
large σ.

Corollary 1. Given a set of samples {xi} of (+)ve numbers with CV> 1, the profile likelihood function for
the LM(α, σ) distribution has a global maximum at a finite point.

Proof. For small or moderate values of σ, using (9), we have

lim
σ→0

α(σ) = lim
σ→0

n
∑n

i=1
log
(

1 + xi

σ

) = 0. (15)

Now, using (15) in (11) we have the following:

lim
σ→0

ℓp(σ) = −∞. (16)

Since ℓp(σ) is a continuous and monotonic decreasing function for sufficiently large σ (as in Theorem 2) and
using (16), we can conclude that a global maximum exists at a finite point when CV> 1.
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Remark 2. Corollary 1 shows that the likelihood function for the Lomax distribution has a global maximum
for the samples {xi} with CV> 1 at a finite point. The calculation of CV is completely based on available
empirical data and easy to compute. The existence of MLE based on CV for the MLM distribution will also
holds as because MLM model reduce to Lomax distribution when lim

x→∞
m(x) = α. This can be empirically

validated in section 55.3 and will be useful useful from practitioner’s point of view.

4.2. MLE of parameters

In this section, the maximum likelihood estimates are derived for parameters α, β, and σ of MLM
distribution. Let x1, x2, ..., xn be a sample of size n from MLM(α, β, σ) distribution. Then the log-likelihood
function for the vector of parameters Θ = (α, β, σ)T is given by

ℓ ≡ ℓ(x;α, β, σ) = n log(α) −

n
∑

i=1

log (σ + xi) +

n
∑

i=1

log
[

β + 1 + log
(

1 +
xi

σ

)]

+ β

n
∑

i=1

log
[

log
(

1 +
xi

σ

)]

− (β + 1)

n
∑

i=1

log
[

1 + log
(

1 +
xi

σ

)]

− α

n
∑

i=1

[log
(

1 + xi

σ

)

]β+1

[1 + log
(

1 + xi

σ

)

]β
,

(17)

The maximum likelihood estimate for the parameters α,β, and σ are given by α̂,β̂, and σ̂, are obtained by
maximizing the likelihood function in Equation (17). The first-order partial derivatives of (1) with respect
to α, β, and σ are

∂ℓ

∂α
=

n

α
−

n
∑

i=1

[

log
(

1 + xi

σ

)]β+1

[

1 + log
(

1 + xi

σ

)]β
(18)

∂ℓ

∂β
=

n
∑

i=1

1

(1 + β + wi)
+

n
∑

i=1

log

(

wi

1 + wi

)

×

[

1−
αwβ+1

i

(1 + wi)
β

]

(19)

∂ℓ

∂σ
= −

n
∑

i=1

1

(σ + xi)
+

n
∑

i=1

xi

σ(σ + xi)

[

β + 1

(1 + wi)
−

β

wi

−
1

(1 + β + wi)

]

+α

n
∑

i=1

xi

σ(σ + xi)

[

(1 + β + wi)w
β
i

(1 + wi)β+1

]

,

(20)
where wi = log

(

1 + xi

σ

)

.
The MLEs of the three parameters of the MLM(α, β, σ) distributions are obtained by setting these above

equations to zero and solving them simultaneously. Closed forms of the solutions are not available for the
equations (18), (19) and (20). So, iterative methods will be applied to solve these equations numerically.

4.3. Asymptotic distribution

Fisher information matrix, a measure of the information content of the data relative to the parameters
to be estimated, plays an important role in parameter estimation. The Fisher information matrix (F ) can
be obtained by taking the expected values of the second-order and mixed partial derivatives of ℓ(α, β, σ)
w.r.t. α, β, and σ. Since, the analytical expression is hard to compute. Thus, it can be approximated by
numerically investing the the F = (Fij) matrix. The asymptotic F matrix can be given as follows:

F =







− ∂2ℓ
∂α2 − ∂2ℓ

∂α∂β
− ∂2ℓ

∂α∂σ

− ∂2ℓ
∂α∂β

− ∂2ℓ
∂β2 − ∂2ℓ

∂β∂σ

− ∂2ℓ
∂α∂σ

− ∂2ℓ
∂β∂σ

− ∂2ℓ
∂σ2
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The second and mixed partial derivatives of the log likelihood function are obtained as follows:

∂2ℓ

∂α2
= −

n

α2
(21)

∂2ℓ

∂α∂β
=

n
∑

i=1

log

(

1 + wi

wi

)

×

[

wβ+1
i

(1 + wi)β

]

(22)

∂2ℓ

∂α∂σ
=

n
∑

i=1

xi

σ(σ + xi)
×

[

wβ
i (1 + β + wi)

(1 + wi)β+1

]

(23)

∂2ℓ

∂β2
= −

n
∑

i=1

1

(1 + β + wi)2
− α

n
∑

i=1

log2
(

wi

1 + wi

)

[

wβ+1
i

(1 + wi)β

]

(24)

∂2ℓ

∂β∂σ
=

n
∑

i=1

xi

σ(σ + xi)(1 + β + wi)2
−

n
∑

i=1

xi

σ(σ + xi)
×

[

(1 + wi)
β − αwβ+1

i

wi(1 + wi)β+1

]

+ α

n
∑

i=1

xi

σ(σ + xi)

[

(1 + β + wi)w
β
i

(1 + wi)β+1

]

[

log

(

wi

1 + wi

)]

(25)

∂2ℓ

∂σ2
=

n
∑

i=1

1

(σ + xi)2
+

n
∑

i=1

x2
i

σ2(σ + xi)2

[

β + 1

(1 + wi)2
−

β

w2
i

−
1

(1 + β + wi)2

]

+

n
∑

i=1

xi(2σ + xi)

σ2(σ + xi)2

[

β

wi

+
1

(1 + β + wi)
−

β + 1

(1 + wi)

]

− α

n
∑

i=1

x2
i (1 + β)

σ2(xi + σ)2

[

wβ−1
i (β + wi)

(1 + wi)β+1

]

− α

n
∑

i=1

xi

σ2(σ + xi)2

[

wβ
i (1 + β + wi) [(2σ + xi)(1 + wi)− xi(β + 1)]

(1 + wi)β+2

]

(26)

The variance-covariance matrix is approximated by M = (Mij) where Mij = F−1
ij . The asymptotic

distribution of MLEs for α, β, and σ can be written as

[

(α̂ − α), (β̂ − β), (σ̂ − σ)
]

∼ N3(0, F
−1(θ̂))

Then the approximate 100(1 − k)% confidence intervals for α, β, and σ are given by α̂ ± Z k
2

√

V ar(α̂),

β̂ ± Z k
2

√

V ar(β̂), and σ̂ ± Z k
2

√

V ar(σ̂), where Θ̂ = (α̂, β̂, σ̂) and Zk is the upper 100 k-th percentile of the

standard normal distribution.

4.4. Extreme value properties

Here we study some of the interesting extreme value theoretic properties. The concept of regular variation
is an important notion of extreme value theory. Below we show the extreme value results for the MLM
distribution that can characterize the asymptotic behavior of extremes along with well grounded statistical
theory.

Definition 8. (Maximum domain of attraction) A function F is said to be regularly varying at infinity, if
for every t > 0,

lim
x→∞

1− F (tx)

1− F (x)
= t−α; α > 0.
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Then we say that F is a function with regularly varying tails with α > 0 as the tail index and F belongs to
the maximum domain of attraction (MDA) of the Frechet distribution with index α.

Theorem 3. The CDF (Eqn. 3) of the MLM distribution is a function with regularly varying tails and it
belongs to MDA of the Frechet distribution with index α.

Proof.

1− F (tx) = exp

[

− α.
logβ+1

(

1 + tx
σ

)

(

1 + log
(

1 + tx
σ

)

)β

]

; t > 0 (27)

Now, we have (using expansions of log(1− x) and exp(x)):

(

log
(

1 + tx
σ

)

1 + log
(

1 + x
σ

)

)β

=

(

1−
1

1 + log
(

1 + tx
σ

)

)β

= exp

[

β log

(

1−
1

1 + log
(

1 + tx
σ

)

)]

= exp

[

β

(

−
1

log
(

1 + tx
σ

) +O

(

1

log2
(

1 + tx
σ

)

)

)]

= 1−
β

log
(

1 + tx
σ

) +O

(

β

log2
(

1 + tx
σ

)

)

(28)

Using Eqn. (27) and (28) together, we get

1− F (tx) = exp

[

− α log

(

1 +
tx

σ

)

{

1−
β

log
(

1 + tx
σ

) +O

(

β

log2
(

1 + tx
σ

)

)

}]

(29)

Similarly for t = 1, Eqn. (29) becomes

1− F (x) = exp

[

− α log

(

1 +
x

σ

)

{

1−
β

log
(

1 + x
σ

) +O

(

β

log2
(

1 + x
σ

)

)

}]

(30)

Now,

lim
x→∞

1− F (tx)

1− F (x)
= lim

x→∞
exp

[

− α log

(

1 + tx
σ

1 + x
σ

)

+O

(

1

log2
(

1 + tx
σ

) +
1

log2
(

1 + x
σ

)

)]

= exp
(

− α log t
)

= t−α.

Thus, F ∈ MDA(Φα).

Now we study the tail-equivalent and heavy-tailed behaviour of the proposed MLM distribution as
follows:

Definition 9. (Tail-equivalent) Two distributions F and G are said to be tail-equivalent if

lim
x→∞

1− F (x)

1−G(x)
= c; 0 < c < ∞.

Theorem 4. The MLM(α, β, σ) distribution, defined in Eqn. (3), is right tail-equivalent to the power-law
distribution.

12



Proof. Let G(x) be the CDF of the power-law distribution, i.e.,

1−G(x) =

(

1 +
x

σ

)−α

and F (x) is the CDF of MLM distribution as given in Eqn.(3). Then,

lim
x→∞

1− F (x)

1−G(x)
= lim

x→∞

exp

[

− α log
(

1 + x
σ

)

+ αβ +O

(

1

log
(

1+ x
σ

)

)]

exp

[

− α log
(

1 + x
σ

)

] (Using Eqn. (30))

= lim
x→∞

exp

[

αβ +O

(

1

log
(

1 + x
σ

)

)]

= exp
(

αβ
)

= c < ∞.

Definition 10. (Heavy-tailed distribution) A distribution function F is heavy-tailed if

lim
x→∞

exp{λx}
(

1− F (x)
)

= ∞, for any λ > 0.

Theorem 5. The MLM(α, β, σ) distributions, defined in Eqn. (3), are heavy-tailed distributions.

Proof.

lim
x→∞

exp{λx}
(

1− F (x)
)

= lim
x→∞

exp

[

λx − α log

(

1 +
x

σ

)

+ αβ +O

(

1

log
(

1 + x
σ

)

)]

= ∞,

since log
(

1 + x
σ

)

≍ xǫ for any ǫ > 0 and for sufficiently large x.

There are two other important class of distributions [44] viz. the class D of dominated-variation distri-
butions and and the class L of long-tailed distributions that are used in the risk theory and queueing theory.
The proposed MLM distributions also follows these two properties.

Definition 11. A distribution F belong to the class D of dominated-variation distributions if

lim sup
x→∞

1− F (x)

1− F (2x)
< ∞.

Theorem 6. If α > 0, then MLM(α, β, σ) distribution, defined in Eqn. (3), belongs to the class D of
dominated-variation distributions.
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Proof.

lim
x→∞

1− F (x)

1− F (2x)
= lim

x→∞

exp

[

− α log
(

1 + x
σ

)

+ αβ +O

(

1

log
(

1+ x
σ

)

)]

exp

[

− α log
(

1 + 2x
σ

)

+ αβ +O

(

1

log
(

1+ 2x
σ

)

)]

= lim
x→∞

exp

[

α log

(

1 + 2x
σ

1 + x
σ

)

+O

(

1

log
(

1 + x
σ

) +
1

log
(

1 + 2x
σ

)

)]

= exp
(

α log 2
)

= 2α < ∞.

where α > 0.

Definition 12. A distribution F is said to belong to the class L of long-tailed distributions if F has right
unbounded support and, for any fixed y > 0,

lim
x→∞

1− F (x+ y)

1− F (x)
= 1.

Theorem 7. The MLM(α, β, σ) distribution, defined in Eqn. (3), belongs to the class L of long-tailed
distributions.

Proof.

lim
x→∞

1− F (x+ y)

1− F (x)
= lim

x→∞
exp

[

− α log

(

1 +
(y/σ)
(

1 + x
σ

)

)

+O

(

1

log
(

1 + x
σ

) +
1

log
(

1 + x+y
σ

)

)]

= 1, since σ > 0.

We have shown that the proposed MLM distributions are heavy-tailed and also possess the additional
regularity property of subexponentiality [45] as given below. Essentially this corresponds to good tail
behaviour under the operation of convolution.

Definition 13. (Subexponential distribution) We say that a distribution F is subexponential if

lim
x→∞

1− F ∗ F (x)

1− F (x)
= 2,

where ∗ denotes the convolution operation.

Theorem 8. The MLM(α, β, σ) distribution, defined in Eqn. (3), is subexponential.

Proof. Form Theorem 6 and Theorem 7, the MLM(α, β, σ) distribution belongs to D ∩ L. Using [46],
D ∩ L ⊂ S, where S is the class of subsexponetial distribution. Hence the theorem.

Definition 14. (Von-Mises type function) A distribution function F is called a Von-Mises type function if

lim
x↑r(F )

x
d

dx

[

1− F (x)

xf(x)

]

= 0,

where r(F ) = sup{x : F (x) < 1} denotes the right extremity of the distribution function F [44].
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Theorem 9. The MLM(α, β, σ) distribution, defined in Eqn. (3), satisfies the Von-Mises condition.

Proof.

lim
x→∞

x
d

dx

[

1− F (x)

xf(x)

]

=
α

σ
lim
x→∞

x
d

dx

[

(

1 + x
σ

) [

1 + log
(

1 + x
σ

)]β+1

x
[

β + 1 + log
(

1 + x
σ

)] [

log
(

1 + x
σ

)]β

]

=
α

σ
lim
x→∞

[

1 + log
(

1 + x
σ

)]β+1

[

β + 1 + log
(

1 + x
σ

)] [

log
(

1 + x
σ

)]β

×

[

−
1

x
+

1 + β

σ
(

1 + log
(

1 + x
σ

)) −
1

σ
(

1 + β + log
(

1 + x
σ

)) −
β

σ log
(

1 + x
σ

)

]

= 0.

5. Experimental Analysis

5.1. Description of data sets

We present here the results of fitting modified Lomax (MLM) distribution over 50 real-worlld complex
networks [47, 48] coming from broad variety of different disciplines such as Social Networks, Collaboration
Networks, Communication Networks, Citation Networks, Temporal Networks, Web Graphs, Product co-
purchasing Networks, Biological Networks, Brain Networks, etc. Please go through the supplementary
materials for more details about the data sets under consideration. Some statistical measures of the data
sets and the detailed experimentation of the performances of the proposed MLM distribution compared to
the other common power-law related distribution such as Lomax, Pareto, Log-normal, power-law cutoff,
Exponential and Poisson are discussed in the following sub sections.

5.2. Performance measures

Here we use some evaluation measures which justify that the degree distribution of a real-world complex
network can plausibly been drawn from the proposed MLM distribution. As here the actual distribution is
discrete, we can quantify the goodness-of-fit test (i.e., how closely a hypothesized distribution resembles the
actual distribution) by calculating the Chi-square statistic value based on bootstrap resampling by generating
50000 synthetic data sets. The Chi-square test will return a p value which quantifies the probability that our
data were drawn from the hypothesized distribution. If the p value is small (less than the significance level),
we can reject the null hypothesis that the data come from the MLM distribution. We have also computed
few other statistical measures such as KL-divergence, RMSE and MAE for quantifying the goodness-of-fit
of the proposed MLM distribution model in comparison to the other standard distribution functions related
to other heavy-tailed distributions.

5.3. Analysis of results

Table 1 represents some of the statistical measures corresponding to the network data and also provides
the statistical evidences of the proposed fitting over the node degree distribution in the whole range using
MLM distribution. CV is also calculated corresponding to each of the degree distribution data and it gives
us the sufficient condition for the existence of the global maximum at finite point of the MLM(α, β, σ)
distribution. From Table 1 it is clear that that the value of CV is greater than 1 in all the network data sets
under consideration. Thus it confirms that the maximum likelihood estimates for the parameters (α, β, σ) of
the proposed MLM distribution attain at the finite points which has been theoretically described in Section
44.1. To estimate the parameters (α, β, σ) of the MLM distribution numerically, we have used ”optim”
function along with the quasi-Newton L-BFGS-B algorithm in R statistical software by taking the initial
parameters value (α, β, σ) = (1, 0, 1). The estimated values of the parameters for all the data sets satisfied
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Table 1: Performance of the proposed MLM model over different real-worlld networks

Data No. of No. of Stat. Prop. Estimated Bootstrap
sets nodes edges parameters chi-square

value

s µ s
µ

α̂ β̂ σ̂ (p)

Social ego-Twitter(In) 81,306 1,768,149 57.965 21.747 2.6654 1.9922 -0.3591 30.543 0.9920
Networks ego-Gplus(In) 107,614 13,673,453 1404.8 283.42 4.9568 0.7108 -0.4983 23.077 0.9963

soc-Slashdot 70,068 358,647 35.069 10.237 3.426 0.8663 -0.6228 1.0461 0.9955
soc-Delicious(In) 536,108 1,365,961 39.826 10.673 3.7312 1.3630 -0.6819 5.3709 0.9960

soc-Digg(In) 770,799 5,907,132 166.61 46.584 3.5765 0.7931 -0.6928 5.5163 0.9890
soc-Academia 200,169 1,398,063 48.297 14.259 3.3871 2.7429 -0.3737 36.644 0.6087

LiveJournal(In) 4,847,571 68,993,773 44.969 15.368 2.926 2.6892 -0.7272 51.933 0.8983
Dogster-Friendship 426,821 8,546,581 284.06 40.033 7.095 1.5634 0.3108 14.057 0.9500
Higgs-Twitter(In) 456,626 14,855,842 350.91 54.786 6.4051 1.6797 -0.0347 36.204 0.9870
Artist-Facebook 50,615 819,307 63.427 32.366 1.9596 2.0117 -0.1445 39.337 0.9812

Athletes-Facebook 13,866 86,859 17.978 12.438 1.4453 3.1229 0.1406 21.180 0.9640

Citation cit-HepTh(In) 27,770 352,807 43.139 15.220 2.8342 1.8410 -0.3093 16.416 0.8730
Networks cit-HepPh(In) 34,546 421,578 27.286 14.933 1.8271 2.5553 -0.3622 34.349 0.9900

cit-Patents(In) 3,774,768 16,518,948 6.9125 5.0687 1.3637 4.4822 -0.2534 21.689 0.8080
cit-Citeseer(In) 227,320 814,134 9.8260 5.4322 1.8088 2.2630 -0.2788 7.4150 0.6350

Collaboration ca-CondMat 23,133 93,497 10.671 8.0189 1.3308 3.1068 0.3615 10.5353 0.9896
Networks ca-AstroPh 18,772 198,110 30.568 21.103 1.4484 16.434 37.276 0.0101 0.9990

ca-GrQc 5,242 14,496 7.9186 5.5284 1.4322 2.2624 3.5861 0.6765 0.7849
ca-HepPh 12,008 118,521 46.654 19.696 2.3687 0.9798 2.8780 0.6791 0.8163
ca-HepTh 9,877 25,998 6.1867 5.2618 1.1757 2.9417 5.2791 0.4825 0.9332

Web Google(In) 875,713 5,105,039 43.320 7.1444 6.0634 1.1999 -0.6399 2.0429 0.9780
Graphs BerkStan(In) 685,230 7,600,595 300.08 12.316 24.364 1.4129 1.8449 0.7592 0.6250

Wikipedia2009(In) 1,864,433 4,507,315 12.846 4.8903 2.6268 1.3988 -0.6291 1.9658 0.9891
WikipediaLinkFr(In) 4,906,478 113,122,279 1864.4 48.608 38.356 1.0988 -0.7123 9.8888 0.9152

Hudong(In) 1,984,484 14,869,483 199.28 16.467 12.101 1.1567 10.921 0.0013 0.9883

Biological Yeast-PPIN 2,361 7,182 8.0800 6.0838 1.3281 10.535 -0.4527 175.29 0.9930
Networks Diseasome 3,926 7,823 9.1009 5.5334 1.6447 10.9688 -0.9493 134.52 0.8090

Bio-Mouse-Gene 45,101 14,506,199 856.67 643.27 1.3317 6.3e-08 -1.2e-02 2.1e+00 0.9898
Bio-Dmela 7,393 25569 10.782 6.9170 1.5587 14.979 -0.5053 498.27 0.9806

Bio-WormNet-v3 16,347 762,822 138.17 93.328 1.4805 5.6496 -0.9801 704.71 0.9938

Product amazon0601(In) 403,394 3,387,388 15.279 8.3989 1.8191 3.8261 -.7137 19.522 0.6010
co-purchasing amazon0505(In) 410,236 3,356,828 15.313 8.1826 1.8714 3.8367 -0.8006 19.984 0.6880

networks amazon0312(In) 400,727 3,200,444 15.073 7.9865 1.8873 3.7631 -0.8179 18.747 0.5890

Temporal sx-mathoverflow(In) 24,818 506,550 31.476 10.424 3.0195 1.4452 2.4236 0.8241 0.9846
Networks sx-stackoverflow(In) 2,601,977 63,497,050 186.00 27.647 6.7278 1.0218 -0.8224 4.4865 0.9490

sx-superuser(In) 194,085 1,443,339 23.782 5.8239 4.0836 1.7401 2.1405 0.7284 0.9780
sx-askubuntu (In) 159,316 964,437 18.404 4.3856 4.1966 2.1923 2.2069 0.7665 0.9300

Communication Email-Enron 36,692 183,831 36.100 10.021 3.6027 1.2417 -0.1275 2.9045 0.9641
Networks Wiki-Talk(In) 2,394,385 5,021,410 12.259 2.1195 5.7844 1.5167 -0.2846 0.0016 0.9900

Rec-Libimseti(In) 220,970 17,359,346 413.71 102.85 4.0227 2.5008 -0.8496 331.18 0.9670

Ground-truth Wiki-Topcats 1,791,489 28,511,807 283.78 15.915 17.831 1.1811 0.1998 2.6412 0.8310
Networks com-Friendster 65,608,366 1,806,067,135 137.81 55.056 2.5031 4.5863 -0.9188 590.01 0.9000

com-LiveJournal 3,997,962 34,681,189 42.957 17.349 2.4759 2.8206 -0.6020 65.638 0.7980
com-Orkut 3,072,441 117,185,083 154.78 76.281 2.0291 3.7049 0.1292 167.93 0.9890

com-Youtube 1,134,890 2,987,624 50.754 5.2650 9.6398 1.6113 8.3355 0.0094 0.8410

Brain Human25890-session1 177,584 15,669,036 319.01 176.47 1.8078 1.6098 -0.2076 168.75 0.8710
Networks Human25890-session2 723,881 158,147,409 667.91 436.94 1.5286 14.423 -0.3466 18886.3 0.9980

Human25864-session2 692,957 133,727,516 554.48 385.96 1.4366 16.250 -0.3379 19217.8 0.9660
Human25913-session2 726,197 183,978,766 446.92 258.99 1.7256 7.1013 -0.4681 5779.8 0.9290
Human25886-session1 780,185 158,184,747 558.41 405.50 1.3771 21.591 -0.3119 26975.9 0.9768

the condition, i.e., (α > 0, β > −1 and σ > 0) as clearly seen in Table 1, for the complete characterization
of the proposed MLM distribution. Empirically it is observed that in almost all the cases the estimated
value of the parameter σ attains the higher values as compared to the estimated value of α. On the other
hand, the estimated value of the parameter β lies between (0, 1) lies between −1 and 1 except a few which
can be clearly seen from Table 1.

Furthermore, we leverage one of the popular statistical method viz. bootstrapping chi-square test to
evaluate the goodness-of-fit test of the proposed MLM distribution. From Table 1, it is clear that the
proposed MLM distribution produces higher p values (i.e. closure to 1) in almost all the data sets which
suggest that the null hypothesis i.e. the data drawn from MLM distribution cannot be ruled out at the
0.05 level of significance. This indicates that the observed degree distribution is plausibly drawn from the
MLM distribution. Thus from Table 1 it can be concluded that the proposed MLM distribution is effective
in modeling the entire degree distribution of real-worlld complex networks without ignoring some of the
lower degree nodes as oppose to the procedure of fitting power law distribution. In addition, we also used
some other statical measures viz. KLD, RMSE and MAE in order to compare the performance of the
proposed MLM distribution with the each of the other common power-law related distributions as given in
the following Tables 2 and 3.

Tables 2 and 3 depict the values of different statistical measures (viz. RMSE, MAE and KLD) which
has been used for the measure of performances of the MLM distribution in comparison to the competitive
distributions while modeling the data. RMSE and MAE are two different variants, carrying information
about the differences between actual and predicted degree frequencies corresponding to a network. Higher
similarity between actual and mapped distributions is achieved by generating smaller values of RMSE and
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Table 2: Table of different statistical measures of different competitive models over real-worlld networks

Data MLM Lomax Power-law Pareto
sets

RMSE KLD MAE RMSE KLD MAE RMSE KLD MAE RMSE KLD MAE

Social ego-Twitter(In) 16.800 0.00819 1.3498 29.366 0.01354 2.4701 204.35 0.1831 10.847 354.25 0.2857 15.603
Networks ego-Gplus(In) 1.6115 0.05601 0.1825 10.491 0.06444 0.3033 53.064 0.2299 0.9221 86.955 0.3113 1.1847

soc-Slashdot 31.527 0.01365 2.3951 32.065 0.014102 2.4658 247.87 0.1007 10.074 247.84 0.1007 10.073
soc-Delicious(In) 79.809 0.00839 3.7730 91.993 0.01326 4.8060 349.66 0.2021 14.867 471.02 0.1349 17.874

soc-Digg(In) 13.634 0.02182 0.8440 24.841 0.02391 1.0269 208.01 0.1601 4.2185 212.87 0.1601 4.2312
soc-Academia 16.323 0.00351 0.5705 48.951 0.01019 1.6178 229.54 0.2027 6.3889 440.15 0.274 10.464

LiveJournal(In) 243.99 6.13e-04 5.4026 1764.9 0.02111 54.400 5025.2 0.1614 127.98 8100.9 0.1785 164.18
Dogster-Friendship 32.203 0.01328 0.8502 36.449 0.01700 1.0755 358.27 0.2926 5.6815 549.57 0.4618 7.6734
Higgs-Twitter(In) 19.821 0.00785 0.4710 20.609 0.00793 0.4621 260.32 0.2492 4.8938 524.96 0.4806 7.6938
Artist-Facebook 11.708 0.01079 2.1381 12.923 0.01199 2.6173 100.49 0.1643 14.552 350.05 0.4010 26.467

Athletes-Facebook 4.4304 0.00879 1.3252 9.2379 0.00966 1.8260 100.16 0.2049 13.387 204.91 0.4164 23.839

Citation cit-HepTh(In) 3.2640 0.01354 0.5071 7.9393 0.01585 0.7585 73.531 0.1741 4.0821 122.79 0.2566 5.997
Networks cit-HepPh(In) 9.6810 0.00821 1.9016 21.303 0.01317 3.1135 128.55 0.1825 13.234 257.41 0.2689 21.445

cit-Patents(In) 445.80 1.61e-04 47.603 2577.5 0.00192 230.35 27.5K 0.2266 2049.5 34.8K 0.2366 2533.2
cit-Citeseer(In) 40.728 0.00228 3.3778 28.032 0.00278 3.3902 889.88 0.3308 49.467 1156.2 0.2916 62.026

Collaboration ca-CondMat 14.830 0.00479 4.1570 36.094 0.00814 7.3904 107.86 0.1025 26.092 469.12 0.3738 63.075
Networks ca-AstroPh 23.890 0.02756 5.9796 32.799 0.03457 7.4448 92.255 0.1753 15.158 251.03 0.3816 27.707

ca-GrQc 15.850 0.03055 7.2247 35.935 0.04013 12.286 124.24 0.2554 27.137 202.33 0.2741 44.221
ca-HepPh 13.944 0.06959 4.1919 19.607 0.07266 4.7763 75.071 0.1769 8.0906 144.39 0.2569 14.668
ca-HepTh 23.280 0.00896 10.851 61.797 0.01353 20.391 268.91 0.2346 66.108 437.19 0.2829 106.36

Web Google(In) 360.62 0.01368 13.845 337.68 0.01546 14.201 1809.1 0.124 45.023 1809.2 0.124 45.023
Graphs BerkStan(In) 71.819 0.03116 0.9478 105.20 0.0346 1.1962 615.03 0.1863 4.0722 615.01 0.1863 4.0721

Wikipedia2009(In) 86.510 0.00169 7.7498 103.94 0.00197 8.5289 4371.9 0.1352 164.58 4371.9 0.1352 164.58
WikipediaLinkFr(In) 124.98 0.01776 0.3174 146.14 0.03082 0.4465 248.09 0.1518 0.7857 397.39 0.1521 1.0815

Hudong(In) 8.0517 0.00433 0.2508 25.163 0.00525 0.4600 587.21 0.0868 4.6828 587.22 0.0868 4.6828

Biological Yeast-PPIN 4.3766 0.01487 2.6321 12.651 0.02389 5.4529 75.325 0.1999 19.013 77.455 0.1998 19.079
Networks Diseasome 8.8683 0.08000 2.7445 12.451 0.10202 3.4575 26.006 0.2248 5.3567 26.005 0.2248 5.3566

Bio-Mouse-Gene 7.6919 0.18941 2.2557 14.654 0.19473 2.3919 41.371 0.4566 3.9018 92.539 0.5373 4.7342
Bio-Dmela 16.173 0.01305 4.0968 10.579 0.01759 3.8219 143.71 0.1907 21.415 143.67 0.1907 21.414

Bio-WormNet-v3 14.054 0.04648 2.6066 13.018 0.09249 3.7468 46.259 0.2761 6.8867 101.89 0.3744 9.0163

Product amazon0601(In) 94.347 0.00374 8.1863 147.602 0.00695 10.928 1495.4 0.2708 70.281 2539.8 0.4022 114.59
co-purchasing amazon0505(In) 109.95 0.00412 9.1836 94.048 0.00499 8.7882 1572.9 0.2463 73.003 2494.5 0.3711 111.56

networks amazon0312(In) 100.89 0.00430 8.5465 92.525 0.00495 8.5742 1564.4 0.2425 71.875 2462.9 0.3686 109.21

Temporal sx-mathoverflow(In) 19.706 0.01879 2.4647 38.764 0.02621 3.7877 213.91 0.2131 13.600 213.82 0.2132 13.612
Networks sx-stackoverflow(In) 39.654 0.00336 0.8694 62.254 0.00345 1.0741 1877.5 0.2016 14.007 1884.7 0.2017 14.017

sx-superuser(In) 79.777 0.00654 4.5409 136.85 0.01045 6.8313 900.04 0.1808 33.837 900.33 0.1808 33.839
sx-askubuntu(In) 106.04 0.01100 6.2022 176.58 0.01707 9.3509 949.66 0.2091 39.419 949.73 0.2091 39.420

Communication Email-Enron 74.667 0.03523 5.2075 76.155 0.03531 5.2347 246.51 0.1779 14.886 245.25 0.1778 14.859
Networks Wiki-Talk(In) 670.47 0.00356 25.871 671.76 0.00357 25.898 9669.4 0.3376 293.63 9669.4 0.3376 293.63

Rec-Libimseti(In) 23.341 0.02163 0.4953 66.434 0.09978 1.7923 77.081 0.2198 2.1486 133.91 0.2096 2.7441

Ground-truth Wiki-Topcats 11.375 0.00190 0.1011 14.955 0.00201 0.1347 565.21 0.1377 2.6145 930.44 0.1612 3.8073
Networks com-Friendster 8266.8 0.00126 411.15 41.69K 0.06401 3385.2 71.5K 0.1498 4575.6 129K 0.1498 5591.7

com-LiveJournal 165.79 0.00084 6.9832 1741.3 0.02462 50.318 4102.9 0.1823 106.85 7116.4 0.2147 150.46
com-Orkut 197.89 0.00793 7.0113 207.43 0.01049 9.9761 2443.6 0.5498 80.712 4299.3 0.8033 101.64

com-Youtube 53.288 0.00122 0.6984 81.409 0.00175 1.0862 1380.5 0.1342 15.690 1380.5 0.1342 15.691

Brain Human25890-session1 17.309 0.01920 3.7439 19.545 0.02264 4.0023 305.41 0.3397 22.537 588.71 0.5598 30.333
Networks Human25890-session2 46.276 0.01024 5.8781 97.122 0.04774 15.303 794.95 0.4462 50.379 1623.8 0.6513 63.754

Human25864-session2 64.037 0.01321 9.8670 111.45 0.05335 20.876 1120.3 0.4967 68.172 1711.3 0.6419 78.736
Human25913-session2 112.661 0.01347 11.574 119.54 0.04719 20.971 904.76 0.2764 58.999 1892.4 0.4566 81.206
Human25886-session1 65.181 0.01471 12.051 116.78 0.05476 23.396 978.66 0.4664 69.517 1873.6 0.6805 86.597

MAE. From Tables 2 and 3, it is clear that the proposed MLM distribution provides smaller RMSE and MAE
values compared to other competitive distributions in almost all the networks except a few where the power-
law cutoff distribution outperforms the others. The worst performance observed for the poisson distribution
in minimizing the RMSE and MAE values compared to the other competing distributions over all the real-
worlld networks as clearly seen from Table 3. The Kullback-Leibler divergence (KLD), or relative entropy,
is a quantity which measures the dissimilarity between two probability distributions. Thus the smaller
value of KLD represents the higher similarity between the actual and the predicted distribution. From
Tables 2 and 3 it is clear that the proposed MLM distribution generates smaller KLD values compared to
other competitive distributions in almost all the networks except a few where power-law cutoff distribution
outperforms the others. This indicates that the observed degree distribution satisfactorily matches the
proposed MLM distribution in almost all the networks. Note that, in terms of KLD, the Poisson and
Exponential distributions always perform worse than the others in all the networks as in the case RMSE
and MAE. The performance of the proposed MLM distribution is always superior to the competitive in
terms of KLD over almost all the networks. Thus overall, by considering RMSE, MAE and KLD values,
the performance of the proposed MLM distribution for all the networks is found to be better than the other
competing distributions which suggest that the observed distribution plausibly comes from the proposed
MLM distribution.
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Table 3: Table of different statistical measures of different competitive models over real-worlld networks

Data Log-normal Poisson Power-law Exponential
sets Cutoff

RMSE KLD MAE RMSE KLD MAE RMSE KLD MAE RMSE KLD MAE

Social ego-Twitter(In) 53.863 0.0169 2.9494 410.93 10.452 36.645 68.004 0.0397 4.1974 157.98 0.2733 11.567
Networks ego-Gplus(In) 10.155 0.0678 0.2523 95.967 25.317 3.0371 30.925 0.1475 0.6821 50.098 1.3131 1.8328

soc-Slashdot 237.63 0.1058 10.549 684.36 10.069 42.407 19.598 0.0075 1.3599 434.25 0.6381 22.275
soc-Delicious(In) 281.34 0.0579 10.781 957.82 6.8432 56.634 66.896 0.0185 4.2366 535.11 0.4626 25.304

soc-Digg(In) 69.438 0.0552 1.9087 323.59 21.541 15.134 65.713 0.0441 1.9042 204.50 0.8907 8.0015
soc-Academia 91.003 0.0169 2.0921 542.38 7.2349 22.153 62.376 0.0255 1.9845 198.11 0.1924 6.6739

LiveJournal(In) 3473.6 0.0355 70.64 13.61K 9.1120 481.38 808.79 0.0101 24.501 7017.9 0.3449 186.01
Dogster-Friendship 42.539 0.0272 1.1459 494.49 14.575 15.309 182.47 0.1862 4.1579 165.19 0.4765 5.4623
Higgs-Twitter(In) 41.955 0.0134 0.5995 448.91 16.309 14.753 118.23 0.0914 2.8051 134.68 0.3163 4.4689
Artist-Facebook 24.071 0.0154 3.026 323.46 12.537 53.920 56.801 0.0458 6.6452 88.351 0.1799 13.623

Athletes-Facebook 15.461 0.0127 2.5674 175.95 4.7428 35.815 25.099 0.0324 4.3180 28.388 0.0586 6.2610

Citation cit-HepTh(In) 22.59 0.0255 2.331 153.39 8.0679 13.774 25.42 0.0464 2.816 58.74 0.2778 4.5286
Networks cit-HepPh(In) 44.951 0.0189 4.4405 303.32 7.9234 46.775 36.887 0.0221 4.5287 107.32 0.1801 14.145

cit-Patents(In) 9612.7 0.0192 725.71 38.2K 1.6549 3657.1 2424.5 0.0061 271.89 13.2K 0.0659 1147.5
cit-Citeseer(In) 353.26 0.0299 21.921 1507.6 2.566 109.15 195.67 0.0131 13.877 629.02 0.1486 44.301

Collaboration ca-CondMat 42.665 0.0082 6.5746 378.65 2.7263 80.781 62.929 0.0287 13.362 64.985 0.0472 16.873
Networks ca-AstroPh 28.209 0.0312 6.8565 229.81 9.8703 55.51 50.604 0.0384 7.4579 68.185 0.1235 14.361

ca-GrQc 30.184 0.0515 12.148 193.94 2.3256 63.61 58.305 0.0659 18.259 69.169 0.1418 25.759
ca-HepPh 29.993 0.1011 6.8958 185.48 11.609 39.673 50.717 0.1128 8.2477 89.936 0.5187 17.589
ca-HepTh 55.618 0.0178 21.032 370.15 1.5051 133.68 89.425 0.0245 27.613 109.96 0.0551 43.882

Web Google(In) 1514.5 0.0878 40.067 4442.6 4.712 154.92 188.01 0.0157 9.6549 2589.4 0.4419 76.441
Graphs BerkStan(In) 185.04 0.1002 2.0198 993.01 7.0379 11.9628 322.63 0.1037 2.8203 595.53 0.7438 6.6185

Wikipedia2009(In) 2720.9 0.0798 116.43 8425.7 3.6475 398.72 781.87 0.0082 35.531 4727.1 0.3431 213.66
WikipediaLinkFr(In) 240.18 0.0543 0.5234 762.72 25.726 4.0278 121.31 0.0622 0.5006 534.61 1.0217 2.0471

Hudong(In) 746.47 0.1593 6.5493 1975.73 11.088 25.837 75.362 0.0063 0.8323 1494.8 1.1798 15.836

Biological Yeast-PPIN 29.928 0.0496 9.3869 109.62 2.5149 39.181 4.9595 0.0175 2.9178 45.462 0.1234 13.786
Networks Diseasome 23.282 0.1552 4.8906 55.985 3.0101 12.001 9.3332 0.0822 2.8587 31.709 0.2979 5.7013

Bio-Mouse-Gene 17.199 0.1878 2.5372 101.23 15.318 10.254 9.277 0.0943 1.6036 31.649 0.4882 3.6376
Bio-Dmela 46.271 0.0426 9.2857 206.44 3.6221 45.991 24.091 0.0162 5.0541 86.659 0.1724 18.048

Bio-WormNet-v3 17.726 0.0851 3.9352 104.46 18.563 21.927 6.7764 0.0419 2.2424 40.795 0.3082 7.0826

Product amazon0601(In) 286.61 0.0102 16.881 2064.6 2.7267 140.46 297.39 0.0382 22.199 308.32 0.0574 24.114
co-purchasing amazon0505(In) 358.59 0.0125 19.123 2172.5 3.0551 144.34 260.85 0.0342 20.136 390.13 0.0628 26.178

networks amazon0312(In) 338.03 0.0116 17.742 2131.9 2.6839 140.75 273.39 0.0352 20.381 383.82 0.0639 26.299

Temporal sx-mathoverflow(In) 41.934 0.0634 5.3161 281.78 8.0773 32.868 92.603 0.0861 7.9912 129.69 0.4636 15.172
Networks sx-stackoverflow(In) 341.96 0.0286 4.4267 2469.6 18.054 42.111 740.18 0.0685 7.2275 1324.4 0.6829 19.362

sx-superuser(In) 243.42 0.0616 13.199 1246.2 3.8103 68.010 354.72 0.0570 16.613 609.40 0.3891 34.655
sx-askubuntu(In) 212.91 0.0649 12.451 1228.7 2.6253 68.973 389.14 0.0719 20.113 555.44 0.3433 33.693

Communication Email-Enron 121.47 0.0873 8.445 426.39 6.8601 38.373 95.468 0.0689 7.664 230.41 0.5405 18.139
Networks Wiki-Talk(In) 7978.6 0.1902 246.26 21.9K 1.2506 646.54 672.32 0.0036 25.905 16.5K 0.4879 542.31

Rec-Libimseti(In) 87.472 0.0755 1.4021 281.18 30.222 8.0019 28.059 0.0359 0.6971 166.18 0.8547 3.9402

Ground-truth Wiki-Topcats 272.99 0.0464 1.5159 1477.2 8.7468 12.121 389.86 0.0629 2.2289 832.23 0.6767 5.8936
Networks com-Friendster 101K 0.0762 4022.8 280K 24.658 22.1K 17.8K 0.0052 1025.5 193K 0.7216 10.1K

com-LiveJournal 2629.9 0.0299 51.656 10.9K 9.5778 401.89 497.89 0.0104 18.559 5230.3 0.2889 139.74
com-Orkut 452.92 0.0459 19.624 3118.1 11.839 135.17 261.75 0.0479 16.197 228.83 0.0599 14.496

com-Youtube 1422.2 0.1416 17.219 3838.9 3.4522 51.118 143.79 0.0045 2.2564 2515.4 0.6241 31.101

Brain Human25890-session1 27.703 0.0222 4.1822 472.32 16.412 52.714 65.972 0.0509 7.8146 92.649 0.2272 15.977
Networks Human25890-session2 78.483 0.0471 14.289 1326.6 16.151 112.92 83.707 0.0162 6.709 183.06 0.1701 26.302

Human25864-session2 83.489 0.0495 18.215 1433.3 17.298 143.91 106.20 0.0156 9.8828 212.96 0.1605 33.272
Human25913-session2 99.615 0.0292 15.796 1614.4 18.899 171.16 223.39 0.0219 15.122 440.58 0.3331 59.629
Human25886-session1 89.805 0.0568 20.819 1568.3 13.481 153.03 102.34 0.0154 11.296 207.52 0.1354 33.287
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Figure 3: Degree distribution of soc-Academia and ego-Twitter networks in log-log scale
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Figure 4: Degree distribution of Higgs-Twitter and ego-Gplus networks in log-log scale
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Figure 5: Degree distribution of cit-HepTh and cit-Citeseer networks in log-log scale
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Figure 6: Degree distribution of ca-CondMat and ca-AstroPh networks in log-log scale
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Figure 7: Degree distribution of Web-Google and Web-Hudong networks in log-log scale
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Figure 8: Degree distribution of sx-stack overflow and sx-mathoverflow networks in log-log scale
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Figure 9: Degree distribution of Bio-Dmela and Bio-Wormnet-V3 networks in log-log scale
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Figure 10: Degree distribution of LiveJournal and Wiki-Topcats networks in log-log scale

The effectiveness of the proposed MLM distribution can also be verified through the plotting of the fitted
results of competitive distributions. For this purpose, the log-log plots of the of the original frequency dis-
tribution, the estimated frequency by MLM distribution and the frequency estimated by power-law, pareto,
log-normal, power-law cutoff and exponential distributions are drawn for all the networks under considera-
tion. Twenty four such examples have been provided in Figures 3-10. These are the soc-Academia network,
ego-Twitter network, Higgs-Twitter network, ego-Gplus network, cit-HepTh network, cit-Citeseer network,
ca-CondMat network, ca-AstroPh network, Web-Google network, web-Hudong network, sx-stackoverflow,
sx-mathoverflow, Bio-Dmela network, Bio-Wormnet-V3 network, com-LiveJournal and- com-Wiki-Topcats
network. Few more plotted results are also provided in the supplementary section. We have omitted the
plot of the poisson distribution due to its poor performances over all the networks. It is visually clear From
Figures 3-10 that the proposed MLM distribution provides better fit compared to the other competitive
distributions in almost all of the networks since the proposed curve always passes through the middle of
the scatter plot of the observed distribution. In a few cases the power-law cutoff and log-normal provide a
better fit than the proposed distribution. It is visually clear from observing the social, biological, brain and
citation networks that the entire node degree distribution can be better represented by the MLM distribu-
tion compared to other heavy tailed distributions. Thus the proposed MLM distribution, a modification
of the Lomax distribution with non linear exponent in the shape parameter, can be used for effective and
efficient modeling of the entire degree distribution of real-worlld networks without ignoring the lower degree
nodes. The proposed MLM distribution provides more flexibility in the degree distribution modeling since
the non-negative shape parameter are assumed to be expressed as a nonlinear function of the data. Empiri-
cal results also suggests the effectiveness of the proposed MLM distribution compared to others as depicted
through Tables 1-3 and Figures 3-10.

6. Conclusion and Discussion

In this article, we have proposed a modified Lomax (MLM) distribution derived from a hierarchical family
of Lomax distributions for flexible and efficient modeling of the entire node degree distribution of real-world
complex networks. The proposed MLM distribution can be thought of as a generalization of the Lomax
distribution with the nonlinear exponent in the shape parameter. We have theoretically established that the
MLM distribution is heavy-tailed and right-tailed equivalent to the power-law distribution. Furthermore,
we have shown a sufficient condition for the existence of the MLE for the parameters of MLM distribution
using the notion of CV. The proposed MLM distribution can find MLE for the parameters at finite points
when the value of CV> 1. We also theoretically justified that the MLM distribution is a function with
regularly varying tails which belongs to the Maximum domain of attraction of the Frechet distribution. We
have further studied the asymptotic behaviors of the MLM distribution in this context.

The proposed MLM distribution captures the heavy-tailed and nonlinear behavior of the entire degree
distributions of real-world networks in the original and the log-log scale more adroitly. It also enables us
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to accurately characterize the degree distribution pattern which may have a significant impact on analyzing
real-world networks in terms of their social or biological aspects, as the case may be. We have applied the
proposed MLM distribution in modeling the entire degree distribution over 50 different real-world empirical
data sets taken from diverse fields. Empirical results suggest that as compared to the power-law distribution
or any other well-known distribution, our proposed MLM distribution produces a lower fitting error in
terms of three statistical tests, viz. RMSE, KL-divergence, and MAE. We also demonstrated the statistical
significance of the estimated MLM distribution with the help of the bootstrap Chi-square value. This
generalization of the Lomax distribution by adding an additional parameter in the base model results in
flexible modeling to the entire degree distribution of a real-world network compared to other heavy-tailed
distributions unlike power-law. The proposed fit distribution sometimes helps us in better characterization
of the evolution process of large scale real-world networks instead of explicitly performing the empirical
study at each time step. Thus, by simulating the parameters of a proposed fit MLM distribution, one can
easily capture the spatial structure and dynamical pattern of a real-world network as the network evolves
over time. The dynamic pattern analysis of such structural properties in real-world networks is one of the
future scopes of research.
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