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Abstract
To study the effects of online social network (OSN) activity on real-world offline events, researchers need access to OSN 
data, the reliability of which has particular implications for social network analysis. This relates not only to the completeness 
of any collected dataset, but also to constructing meaningful social and information networks from them. In this multidisci-
plinary study, we consider the question of constructing traditional social networks from OSN data and then present several 
measurement case studies showing how variations in collected OSN data affect social network analyses. To this end, we 
developed a systematic comparison methodology, which we applied to five pairs of parallel datasets collected from Twitter 
in four case studies. We found considerable differences in several of the datasets collected with different tools and that these 
variations significantly alter the results of subsequent analyses. Our results lead to a set of guidelines for researchers planning 
to collect online data streams to infer social networks.

Keywords  Social media analytics · Dataset reliability · Social network analysis

1  Introduction

Online activities can be associated with dramatic offline 
effects, such as voter fraud misinformation contributing to 
the 6 January 2020 riots and invasion of the US Capitol 
building in Washington DC (Scott 2021), COVID-19 misin-
formation leading to panic buying of toilet paper (Yap 2020), 
online narratives incorrectly attributing Australia’s “Black 
Summer” bushfires to arson amplifying public attention to 
it via the media (Weber et al. 2020a), and attempts to influ-
ence domestic and foreign politics (Ratkiewicz et al. 2011; 

Woolley 2016; Morstatter et al. 2018; Woolley and Howard 
2018). For researchers to successfully analyse online activ-
ity and provide advice about protection from such events, 
they must be able to reliably analyse data from online social 
networks (OSNs).

Social network analysis (SNA) facilitates exploration of 
social behaviours and processes. OSNs are often considered 
convenient proxies for offline social networks, because they 
seem to offer a wide range of data on a broad spectrum of 
individuals, their expressed opinions and interrelationships. 
It is assumed that the social networks present on OSNs can 
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inform the study of information dissemination and opinion 
formation, contributing to an understanding of offline com-
munity attitudes. Though such claims are prevalent in the 
social media literature, there are serious questions about 
their validity due to an absence of SNA theory on online 
behaviour, the mapping between online and offline phenom-
ena, and the repeatability of such studies. In particular, the 
issue of reliable data collection is fundamental. Collection 
of OSN data is often prone to inaccurate boundary speci-
fications due to sampling issues, collection methodology 
choices, as well as platform constraints. The establishment 
of datasets in which the research community can have con-
fidence, as well as the ability for the replication of stud-
ies, including through common benchmarks, is vital for the 
validation of research findings (Assenmacher et al. 2021).

Previous work has considered the question of data reli-
ability from a variety of perspectives. Broadly speaking, 
questions of how to reason about data quality appeared in the 
late 1960s in statistics but were picked up by management 
research in the 1980s and computer science in the 1990s as 
part of database and data warehouse research (Scannapieco 
et al. 2005). The dimensions described by Scannapieco et al. 
(2005) provide a structured way to reason about data quality 
in terms of accuracy, completeness, time-related measures 
and consistency. It is increasingly apparent that data heavy 
disciplines such as machine learning (ML) cannot rely on 
their techniques and a simple abundance of data to overcome 
these issues (Roccetti et al. 2020). Even if data is available, 
some ML techniques can still struggle if its distribution is 
uneven (Sun et al. 2009) and the ‘cleanliness’ of data can 
be a significant factor in the performance of ML systems 
(Breck et al. 2019; Roccetti et al. 2020). Data quality is also 
especially important for modern Big Data systems (Emani 
et al. 2015), including those underpinning OSNs, but those 
using OSN Application Programming Interfaces (APIs) can 
be assured of high-quality data, at least with regard to the 
completeness of the schemas and validity of the values they 
provide.

Turning to OSN data specifically, relevant research into 
reliability has explored sampling (Morstatter et al. 2013; 
González-Bailón et al. 2014; Joseph et al. 2014; Paik and 
Lin 2015), biases (Ruths and Pfeffer 2014; Tromble et al. 
2017; Pfeffer et al. 2018; Olteanu et al. 2019) and the danger 
of making invalid generalisations while relying on the prom-
ise of Big Data without first developing a nuanced under-
standing of the data (Lazer et al. 2014; Tufekci 2014; Falzon 
et al. 2017; Venturini et al. 2018). Analyses of incomplete 
networks exist (Holzmann et al. 2018), but this paper spe-
cifically considers the questions of data reliability for SNA, 
considering not only the significance of online interactions 
to discover meaningful social networks, but also how sam-
pling and boundary issues can complicate analyses of the 
networks constructed. Through an exploration of modelling 

and collection issues, and a measurement study examining 
the reliability of simultaneously collected, or parallel, data-
sets, this multidisciplinary study addresses the following 
research questions:

•	 To what extent do datasets obtained with social media 
collection tools differ, even when the tools are configured 
with the same search settings?

•	 How do variations in collections affect the results of 
social network analyses?

Our work makes the following contributions: 

1.	 Discussion of the challenges mapping OSN data to 
meaningful social and information networks;

2.	 A methodology for systematic dataset comparison;
3.	 Recommendations for the use and evaluation of social 

media collection tools; and
4.	 Five original social media datasets collected in parallel, 

and relevant analysis code.1

This paper extends Weber et al. (2020b) primarily with the 
introduction of three further case studies, in which we vary 
the use of collection tool features, but also with a dedicated 
discussion section and expanded conclusion with recom-
mendations for social media analysts and researchers. Spe-
cifically, we have added the following: 

Literature	� a broader examination of related 
literature;

Social media data	� a deeper examination of challenges 
arising from the collection of social 
media data; discussion of the balance 
between interactions apparently com-
mon between platforms and their plat-
form-specific semantics when devel-
oping methods with cross-platform 
applicability; a deeper consideration of 
the nuances relating to the mechanics 
of constructing social networks from 
social media interactions;

Datasets	� three more case studies, each with 
parallel datasets, and an experimental 
framework incorporating factors to 
illuminate the effect of certain “value-
added” collection tool features—spe-
cifically, the new case studies explore 
the disruption introduced by ‘smart’ 
features, language and terminology 

1  Source code and datasets are available at https://​github.​com/​weber​
dc/​socmed_​sna.

https://github.com/weberdc/socmed_sna
https://github.com/weberdc/socmed_sna
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clashes, the effect of API credentials, 
and the limits of certain statistics;

Methodology	� further detail regarding the met-
rics employed in the comparison 
methodology;

Analysis	� deeper analyses of the Q&A datasets, 
including examination of their content 
and activity over time; new visualisa-
tions of network statistics that facilitate 
comparison; and a summary of find-
ings in each case study, raising further 
questions, which are then considered in 
the following case studies;

Discussion	� a summary of lessons from the case 
studies regarding the effects observed 
on various statistics, considerations 
regarding language and terminology 
clashes, and effects from query term 
choice, the size of datasets and those 
introduced by the platforms them-
selves; thoughts offered regarding 
the issue of representativeness, which 
related to (perhaps unobtainable) data-
set completeness and a general meas-
ure of dataset ‘reliability’; and

Recommendations	� an expanded conclusion that includes 
observations and recommendations for 
social media analysts and researchers.

This expansion aims to better demonstrate the use of our 
systematic comparison methodology to facilitate research in 
social media analytics.

Five sections follow from this point: Sect. 2 addresses chal-
lenges obtaining and modelling social networks from OSN 
data for SNA; Sect. 3 describes our methodology for system-
atic parallel dataset comparison; Sect. 4 presents results from 
using our methodology in a number of case studies; Sect. 5 
discusses our findings and provides an exploration of the 
notion of a measure of reliability; and finally Sect. 6 offers 
recommendations for social media researchers and analysts, 
plus directions for future research.

2 � Social networks from social media data

Using SNA to explore social behaviours and processes 
from OSN data presents many challenges. Most easily 
accessible OSN data consists of timestamped interactions, 
rather than details of long-standing relationships, which 
form the basis of SNA theory. Additionally, although inter-
actions on different OSNs are superficially similar, how 
they are implemented may subtly alter their interpretation. 
They offer a window into online behaviour only, and any 
implications for offline relations and behaviour are unclear. 
Beyond modelling and reasoning with the data is the ques-
tion of collection—accessing the right data to construct 
meaningful social networks is challenging. OSNs provide 
a limited subset of their data through a variety of mecha-
nisms, balancing privacy and competitive advantage with 
openness and transparency.

2.1 � Interactions and relationships online

SNA provides concepts and tools to model social rela-
tionships among actors. It is based on the premise that 
an actor’s position in the network impacts their ability to 
access opportunities and resources and therefore allows us 
to understand social behaviours and processes in network 
terms (Borgatti et al. 2013). Given the availability, nature 
and structure of much OSN data, the use of network-based 
techniques is a natural choice for the analysis of online 
social behaviour.

There is, however, an important distinction between the 
relatively stable, long-term relationships that are typically 
studied in SNA and the social connections among online 
actors (Wasserman and Faust 1994; Nasim 2016; Borgatti 
et al. 2009). On social media, accounts can easily fulfil the 
role of actors, but precisely what constitutes a relationship 
is unclear. An obvious candidate is the friend or follower 
relationship common to most OSNs, but, due to how OSNs 
present their specific features to users, each online com-
munity develops its own social relation culture. There-
fore, such connections do not necessarily easily translate 
between OSNs. Is a Facebook friendship really the same 

Table 1   Equivalent social 
media interaction primitives

OSN Post Repost Reply Mention Tag Like

Twitter Tweet Retweet Reply tweet @mention #hashtags Favourite
Facebook Post Share Comment Mention #hashtag Reactions
Tumblr Post Repost Comment @mention #tag Heart
Reddit Post Crosspost Comment /u/mention Subreddit Up/down vote
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as a follow on Twitter, even if it is reciprocated? And how 
do each relate to offline friendships?

OSNs offer ways to establish and maintain relations with 
others. This is done through interactions, many of which 
are common between OSNs, such as replying to the posts of 
others, mentioning others (causing the mentioning post to 
appear in the mentioned user’s activity feed), using hashtags 
to reach broader communities, or sharing or reposting 
another’s post to one’s followers or friends. A sample of 
interactions with equivalents on different OSNs is offered in 
Table 1. (N.B. We distinguish interactions from following or 
friending actions, which define information flows (i.e. they 
tell the OSN where to send posts), which are persistent once 
created.) Specific interactions may be visible to different 
accounts, intentionally or incidentally (cf. replying to one 
post versus using a hashtag). Exploration of these differ-
ences may lead to an understanding of the author’s intent 
and the identity of the intended audience. Is replying to a 
politician’s Facebook post a way to connect directly with 
the politician, or is it a way to engage with the rest of the 
community replying to the post, either by specifically engag-
ing with dialogue or merely signalling one’s presence with 
a comment of support or dismay? A reply could be all of 
these things but, in particular, it is evidence of engagement 
at a particular time and indicates information flow between 
individuals (Bagrow et al. 2019). Since most online interac-
tions are directed towards a particular individual or group, 
they offer an opportunity to study the flow of information 
and influence. On the other hand, although friend and fol-
lower connections may indicate community membership, 
they obscure the currency of that connection. Through their 
dynamic interactions, a user who liked a Star Wars page 
ten years ago can be distinguished from one who not only 
liked it, but posted original content to it on a monthly basis. 
Therefore, we specifically focus on interactions rather than 
friend and follower relations in this study.

2.2 � Social network analysis theory

Relationships between individuals in a social network may 
last for extended periods of time, vary in strength, and be 
based upon a variety of factors, not all of which are easily 
measurable. Because of the richness of the concept of social 
relationships, data collection for SNA is often a qualitative 
activity, involving directly surveying community members 
for their perceptions of their direct relations and then per-
haps augmenting that data with observational data such 
as recorded interactions (e.g. meeting attendance, emails, 
phone calls). Just like it is tempting to believe that delving 
into Big Data will bring quick rewards, only to discover that 
extracting semantic information can be remarkably challeng-
ing (Emani et al. 2015), it is tempting to believe that the 
richness of social relationships should be discoverable in the 

vast amount of interaction data provided by OSNs, but there 
are issues to consider: 

1.	 Links between social media accounts may vary in type 
and across OSNs—it is unclear how they contribute to 
any particular relationship;

2.	 What is observed online is only a partial record of inter-
actions in a relationship, where interactions may occur 
via other OSNs or online media, or entirely offline; and

3.	 Collection strategies and OSN constraints may also ham-
per the ability to obtain a complete dataset.

Although many interactions seem common across OSNs 
(e.g. a retweet on Twitter resembles a repost on Tumblr and 
a share on Facebook), nuances in how they are implemented 
and how data retrieved about them is modelled (beyond 
questions of semantics) may confound direct comparison. 
For example, a Twitter retweet refers directly to the original 
tweet, obscuring any chain of accounts through which it has 
passed to the retweeter (Ruths and Pfeffer 2014). There are 
efforts to probabilistically regenerate such chains (Rizoiu 
et al. 2018; Gray et al. 2020), but, in any case, is one account 
sharing the post further evidence of a relationship? What if 
it is reciprocated once, or three times? What if the reciproca-
tion occurs only over some interval of time? These questions 
require careful consideration before SNA can be applied to 
OSN data.

2.3 � Challenges obtaining OSN data

Social media data is typically accessed via an OSN’s APIs, 
which place constraints on how true a picture researchers 
can form of any relationship. Via its API an OSN can 
control: how much data is available, through rate limiting, 
biased or at least non-transparent sampling, and tempo-
ral constraints; what types of data are available, through 
its data model; and how precisely data can be specified, 
through its query syntax. Many OSNs offer commercial 
access, which provides more extensive access for a price, 
though use of such services in research raises questions 
of repeatability (Ruths and Pfeffer 2014; Assenmacher 
et al. 2021). This is done to protect users’ privacy but 
also to maintain competitive advantage. Researchers must 
often rely on the cost-free APIs, which present further 
issues. Twitter’s 1% Sample API has been found to pro-
vide highly similar samples to different clients, and it is 
therefore unclear whether these are truly representative 
of Twitter traffic (Joseph et al. 2014; Paik and Lin 2015). 
If the samples were truly random, then they ought to be 
quite distinct, with only minimal overlap. Studying social 
media data therefore raises questions about the “the cov-
erage and representativeness” (González-Bailón et  al. 
2014, p.17) of the sample obtained and how it therefore 
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“affects the networks of communication that can be recon-
structed from the messages sampled” (González-Bailón 
et al. 2014, p.17).

Empirical studies have compared the inconsistencies 
between collecting data from search and streaming APIs 
using the same or different lists of hashtags. Differences 
have been discovered between the free streaming API and 
the full (commercial) “firehose” API (Morstatter et  al. 
2013). There is general agreement in the literature that the 
consistency of networks inferred from two streaming sam-
ples is greater when there is a high volume of tweets even 
when the list of hashtags is different (González-Bailón et al. 
2014). More concerning is the ability to tamper with Twit-
ter’s sample API to insert messages (Pfeffer et al. 2018), 
introducing unknown biases at this early stage of data col-
lection (Tromble et al. 2017; Olteanu et al. 2019).

Assuming that Big Data will provide easy success with-
out deep understanding of the data can also lead to inap-
propriate generalisations and conclusions (Lazer et al. 2014; 
Tufekci 2014; Emani et al. 2015). This is well illustrated, 
for example, by the range of motivations behind retweeting 
behaviour including affirmation, sarcasm, disgust and disa-
greement (Tufekci 2014). Similarly, in the study of collec-
tive action, there are important social interactions that occur 
offline (Venturini et al. 2018). Furthermore, relying solely on 
observable online behaviours risks overlooking passive con-
sumers, resulting in underestimating the true extent to which 
social media can influence people (Falzon et al. 2017).

Big Data and its precursors in databases and data ware-
houses have had to address issues of data quality since the 
late 1960s (Scannapieco et al. 2005), both in terms of the 
cleanliness of the data (e.g. missing or incorrect values, 
poorly designed schemas, difficulties in the enforcement of 
consistency or other validation practices) as well as tech-
niques to manage the distribution of values within the data. 
ML algorithms have long benefited from techniques to man-
age class imbalance for classifiers (Sun et al. 2009), and 
careful human input is very much needed to guide ML sys-
tem design: Roccetti et al. (2020) describe their experiences 
studying faulty water meters in Italy, finding the contribution 
of subject matter experts invaluable in defining ‘clean’ data 
to train ML classifiers. Others have begun to systematise 
how to study the effect of data quality on the performance of 
ML algorithms (Foidl and Felderer 2019; Breck et al. 2019), 
though the phenomenon is long known (Sessions and Val-
torta 2006).

In the case of OSN data, the quality of the data is high 
(as it has already been processed by the OSN platforms) and 
thus the further challenges are at least twofold:

•	 To determine the completeness of a given dataset; and
•	 To extract meaningful network information (i.e. seman-

tic information) from datasets using OSN-specific sche-

mas, which are provided by OSN-specific APIs, many of 
which have unique and idiomatic characteristics.

For the first challenge, it is unclear when a dataset obtained 
via an OSN’s API is complete, because only the OSN knows 
the extent of its holdings and whether all query results have 
been provided. Repeatability requires that a query returns 
the same results (ignoring other effects, such as the introduc-
tion or removal of data, i.e. adding new posts or losing them 
when rate limits are reached); however, it is not necessary for 
complete results to be returned, only the same results. The 
primary requirement for repeatability comes from bench-
marking, and recent efforts have begun to examine how to 
ensure repeatability for benchmarking without a requirement 
for complete results (Assenmacher et al. 2021). The second 
challenge requires careful design of networks from the data 
available, including an awareness of what information can be 
extracted from particular OSNs’ data models and, therefore, 
how transferable methods applied to the data of one OSN are 
to the data of another.

OSN APIs provide data by streaming it live or through 
retrieval services, both of which make use of OSN-specific 
query syntaxes. Conceptually, therefore, there are two pri-
mary collection approaches to consider: 1) focusing on a 
user or users as seeds (e.g. Gruzd 2011; Morstatter et al. 
2018; Keller et al. 2017) using a snowball strategy to dis-
cover the accounts that surround them (Goodman 1961) 
and 2) using keywords or filter terms, defining the commu-
nity as the accounts that use those terms (e.g. Ratkiewicz 
et al. 2011; Ferrara 2017; Morstatter et al. 2018; Woolley 
and Guilbeault 2018; Bessi and Ferrara 2016; Nasim et al. 
2018). Focusing on seeds can reveal the flow of information 
within the communities around the seeds, while a keyword-
based collection provides the ebb and flow of conversation 
related to a topic. These approaches can be combined, as 
exemplified by Morstatter et al. (2018) in their study of the 
2017 German election: an initial keyword-based collection 
was conducted for eleven days to identify the most active 
accounts, the usernames of which were then used as key-
words in a subsequent six-week collection.

Once a reasonable dataset is obtained, there may be ben-
efit in stripping what Foidl and Felderer (2019) call ‘context-
dependent’ Data Smells. This includes junk content intro-
duced by automated accounts such as bots (Ferrara et al. 
2016; Davis et al. 2016). The question, however, of whether 
to remove content from social bots (bots that actively pre-
tend to be human) depends on the research question at hand; 
because humans are easily fooled by social bots (Cresci et al. 
2017; Nasim et al. 2018; Cresci 2020), their contribution 
to discussions may still be valid (unlike, e.g. that of a sport 
score announcement bot). Several studies have examined 
how humans and bots interact, especially within political 
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discussions (Bessi and Ferrara 2016; Rizoiu et al. 2018; 
Woolley and Guilbeault 2018).

So far, the following has been established:

•	 The OSN information selected and used to form ties in 
social networks requires careful consideration to ensure 
meaningfulness;

•	 Uncertainty regarding the completeness of OSN data 
(due to rates of access, accessibility of data models, 
query construction and OSN owner commercial or other 
priorities) must be accounted for; and

•	 Because OSNs maintain Big Data systems as infrastruc-
ture, researchers can rely on them to have carried out 
many tasks associated with data quality by the time they 
request data from the APIs (e.g. ensuring schema consist-
ency and valid values)—these are tasks that other SNA 
researchers, such as those collecting data through direct 
community interaction, must do themselves.

We are now in a position to empirically examine more 
closely the issue of repeatability, by comparing simultane-
ously retrieved collections.

3 � Methodology

Our initial hypothesis was that if the same collection strat-
egies were used at the same time, then each OSN would 
provide the same data, regardless of the collection tool used. 
Consequently, social networks built from such data using the 
same methodology should be highly similar, in terms of both 
network- and node-level measurements. Our methodology 
consisted of these steps: 

1.	 Conduct simultaneous collections on an OSN using the 
same collection criteria with different tools.2

2.	 Compare statistics across datasets.
3.	 Construct sample social networks from the data col-

lected and compare network-level statistics.
4.	 Compare the networks at the node level.
5.	 Compare the networks at the cluster level.

Examining the parallel datasets in each of these ways pro-
vides the opportunity for the analyst to develop a well-
rounded understanding of the participants in an online dis-
cussion, their behaviour, how they relate to each other and 
the communities they form.

3.1 � Scope

The scope of this work is limited to datasets obtained via 
streaming APIs filtered with keywords. Other collection 
styles may start with seed accounts and collect their data 
and the data of accounts connected to them, either through 
interaction (e.g. via comments, replies or mentions) or via 
follower links, as mentioned above. Such collections (espe-
cially follower networks) often require the collection of 
data that is prohibitive to obtain, is immediately out of date, 
and provides no real indication of strength of relationships, 
as discussed in Sect. 2.1. Additionally, in the absence of a 
domain-focused research question to inform the choice of 
seed accounts, no particular accounts would make sensible 
seeds, so here we rely on keyword-based collections.

3.2 � Data collection

Twitter was chosen as the source OSN due to the availability 
of its data, the fact that the data it provides was thought to 
be highly regular (Joseph et al. 2014), and because it has 
similar interaction primitives to other major OSNs. Twit-
ter is also widely used in academia for research that makes 
predictions, in particular predictions about population-level 
events, behavioural patterns and information flows, such 
as studies of predicting social unrest (Tuke et al. 2020) or 
misinformation (Wu et al. 2016). The validity of these pre-
dictions is fundamentally based on the consistency of the 
underlying (accessible) data. Two very different collection 
tools were chosen:

Twarc3 is an open-source library which wraps Twitter’s 
API and provided the baseline for the study.

RAPID (Real-time Analytics Platform for Interactive 
Data Mining) (Lim et al. 2018) is a social media collection 
and data analysis platform for Twitter and Reddit. It enables 
filtering of OSN live streams, as well as dynamic topic track-
ing, meaning it can update filter criteria in real time, adding 
terms popular in recent posts and removing unused ones.

Both tools facilitate filtering Twitter’s Standard version 
1.1 live stream4 with keywords, providing datasets of tweets 
as JSON objects.

3.3 � Constructing social networks

A social network is constructed from dyads of pairwise rela-
tions between nodes, which in our case are Twitter accounts. 
The node ties denote intermittent relations between accounts, 
inferred from observed interactions (Nasim 2016; Borgatti 

2  Different credentials are used to avoid any effects of account-based 
rate limiting.

3  https://​github.​com/​DocNow/​twarc.
4  https://​devel​oper.​twitt​er.​com/​en/​docs/​tweets/​filter-​realt​ime/​overv​
iew.

https://github.com/DocNow/twarc
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
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et al. 2009). Like any choice of knowledge representation, 
different networks can be constructed to address different 
research questions. For example, a network to study informa-
tion flow could draw an arc from node A to B if account B 
retweets A’s tweet (implying B has read and perhaps agreed 
with A’s tweet); alternatively, the same interaction could be 
used to draw an arc from B to A if the relation is to imply an 
attribution of status or influence (A has influence because 
B has supported it through a retweet). Networks can be 
constructed based on direct or inferred relations, including 
retweeting, replying or mentioning, which we discuss below, 
or through the shared use of hashtags or URLs, reciprocation 
or minimum levels of interaction activity, or friend/follower 
connections. Morstatter et al. (2018) constructed networks of 
accounts based on retweets and mentions to discover com-
munities active during the 2017 German election, valuing 
mentions and retweets equally to mean one account reacting 
to another. URL sharing behaviour is often studied in the 
detection and classification of spam and political campaigns 
(Cao et al. 2015; Wu et al. 2018; Giglietto et al. 2020). Some 
require more complex calculation such as linking accounts 
through their participation in detected events (Nasim et al. 
2018). Of course, applications for social network analysis 
exist outside the online sphere, e.g. in narrative analysis 
(Edwards et al. 2020), and require similar considerations 
with regard to network design. In the absence of clear alter-
native research questions, we will examine the social rela-
tionships implied by direct interactions and retweet networks 
(due to their frequency in the literature), and thus, we will 
focus only on the three types of network construction dis-
cussed below.

Here, we consider three social networks built from inter-
action types common to many OSNs: ‘mention networks’, 
‘reply networks’, and ‘retweet networks’ (retweets are analo-
gous to Facebook shares or Tumblr reposts, and replies are 
analogous to comments on posts on Reddit, as shown in 
Table 1). We define a social network G=(V, E) of accounts 

u ∈ V  linked by directed, weighted edges (ui, uj) ∈ E based 
on the criteria below.

Mention Networks Twitter users can mention one or more 
other users in a tweet. In a mention network, an edge (ui, uj) 
exists iff ui mentions uj in a tweet, and the weight corre-
sponds to the number of times ui has mentioned uj.

Reply networks A tweet can be a reply to one other tweet. 
In a reply network, an edge (ui, uj) exists iff ui replies to a 
tweet by uj , and the weight corresponds to the number of 
replies ui has made to uj ’s tweets.

Retweet networks A user can repost or ‘retweet’ another’s 
tweet on their own timeline, which is then visible to their 
own followers. Though retweets are not necessarily direct 
interactions (Ruths and Pfeffer 2014), they can be used to 
determine an account’s reach and are widely used in the lit-
erature (e.g. Vo et al. 2017; Rizoiu et al. 2018; Woolley and 
Guilbeault 2018; Morstatter et al. 2018; Weber et al. 2020a). 
In a retweet network, an edge (ui, uj) exists iff ui retweets a 
tweet by uj , and its weight corresponds to the number of uj ’s 
tweets ui has retweeted.

Examining networks of the three types built from the 
same dataset, replies (Fig. 1b) are the least common of the 
three interaction types, and all are dominated by a single 
large component. Mention networks (Fig. 1a) exhibit rela-
tively high cohesiveness. The similarity between retweets 
(Fig. 1c) and mentions is because the data model of a retweet 
includes a mention of the retweeted account, and thus, the 
retweet edges form a subset of the mention edges. Removing 
these implicit mention links, if they are unwanted, would be 
part of data preparation, after collection but prior to network 
construction.

3.4 � Analyses

At this point, comparative analysis can be applied to the 
parallel tweet datasets, initially by examining OSN-specific 
features and then the mention, reply and retweet networks 

(a) Mentions. (b) Replies. (c) Retweets.

Fig. 1   Sample networks of accounts built from 5 min of Twitter data. Nodes may appear in one or more networks, depending on their behaviour 
during the sampled period. The diagrams were constructed with visone (https://​visone.​info)

https://visone.info
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constructed from them. When analysing these networks, it 
is relevant to note that SNA posits two important axioms on 
which most network measures are based: network structure 
affects collective outcomes and positions within networks 
affect actor outcomes (Robins 2015). Furthermore, we 
should expect minor differences in collections to be ampli-
fied in resulting social networks (Holzmann et al. 2018).

3.4.1 � Dataset statistics

To compare the parallel datasets, we examined a number 
of features, their frequencies and several maximums. The 
first of these relate to the absolute count of the following 
features:

•	 Tweets The number of tweets in the corpus.
•	 Accounts The number of unique accounts that posted 

tweets in the corpus (i.e. does not include those that were 
only mentioned or whose tweets were retweeted).

•	 Retweets The number of tweets which were native 
retweets, i.e. created by clicking the ‘retweet’ button on 
the Twitter user interface, rather than manually typing in 
“RT @original_author: original text”, which is another 
valid, though time consuming, way to post a retweet. 
Both include an implicit mention of the account being 
retweeted.

•	 Quotes The number of tweets which were quote tweets 
(non-native retweets, or retweets with comments).

•	 Replies The number of tweets which were replies, includ-
ing replies to tweets outside of the corpus.

•	 URLs The number of tweets using URLs, the number of 
unique URLs used and the number of URL uses.

•	 Hashtags The number of tweets using hashtags, the num-
ber of unique hashtags used and the number of hashtag 
uses.

•	 Mentions The number of tweets containing mentions 
of other accounts, the number of unique mentioned 
accounts, and the number of mentions overall.

The remainder relate to the highest values of the following 
features:

•	 Tweeting account The most prolific account and the num-
ber of tweets they posted.

•	 Mentioned account The most mentioned account and the 
number of times they were mentioned.

•	 Retweeted tweet The most retweeted tweet and how often 
it was retweeted.

•	 Replied-to tweet The tweet with the most direct replies, 
and the number of those replies.

•	 Used hashtags The first and second most used hashtags, 
and the number of times they were used.

•	 URLs The most used URL, and the number of times it 
was used.

Based on these figures, we account for major discrepancies 
between the datasets, which can guide post-processing (e.g. 
spam filtering). Depending on the application domain, it may 
be appropriate to also consider comparing the distributions 
of particular features, rather than just their maximum values.

3.4.2 � Network statistics

The following network statistics are used to assess differ-
ences in the constructed networks: number of nodes, edges, 
average degree, density, mean edge weight, component 
count and the size and diameter of the largest, Louvain 
(Blondel et al. 2008) cluster count and the size of the larg-
est, reciprocity, transitivity and maximum k cores. These 
measures provide us with an understanding of the ‘shape’ of 
the networks in terms of how broad and dense they are and 
the strength of the connections within.

3.4.3 � Centrality values

Centrality measures offer a way to consider the importance 
of individual nodes within a network (Newman 2010). The 
centrality measures considered here include: degree central-
ity, indicating how many other nodes one node is directly 
linked to; betweenness centrality, referring to the number 
of shortest paths between all pairs of nodes in the network 
that a node is on and thus to what degree the node is able 
to control information flowing between other nodes; close-
ness centrality, which provides a sense of how topologically 
close a node is to the other nodes in a network; and eigen-
vector centrality, which measures how connected a node is 
to other highly connected nodes. Eigenvector centrality is 
often compared with Google’s PageRank algorithm (Brin 
and Page 1998), which gives a measure of the importance of 
nodes (e.g. websites) based on references to them by other 
important nodes or by many nodes. The interested reader is 
referred to (Robins 2015; Wasserman and Faust 1994) for 
more details.

Only centrality measures for mention and reply networks 
are considered, as edges in retweet networks are not neces-
sarily direct interactions (Ruths and Pfeffer 2014).

Given the set of nodes in each corresponding pair of net-
works is not guaranteed to be identical, it is not possible 
to directly compare the centrality values of each node, so 
instead we rank the nodes in each network by the centrality 
values, take the top 1000 from each list, further constrain 
the lists to only the nodes common to both lists, and then 
compare the rankings. We initially compare the rankings 
visually using scatter plots, where a node’s rank in the first 
and second list is shown on the x and y axes, respectively. 
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A statistical measure of the similarity of the two rankings 
(of common nodes) is obtained with the Kendall � coeffi-
cient, with Spearman’s � coefficient used as a confirmation 
measure. To classify the strength of the correlations, we fol-
lowed the guidance of Dancey and Reidy (2011, p.175), who 
posit that a coefficient of 0.0–0.1 is uncorrelated, 0.11–0.4 
is weak, 0.41–0.7 is moderate, 0.71–0.90 is strong, and 
0.91–1.0 is perfect.

3.4.4 � Cluster comparison

The final step is to consider the clusters discoverable in 
the mention, reply and retweet networks and compare their 
membership. We first compare the distribution of the sizes 
of the twenty largest Louvain clusters (Blondel et al. 2008) 
visually. The Louvain method was chosen because it works 
well with large and small networks (Yang et al. 2016) and 
is well known in the literature (e.g. Morstatter et al. 2018; 
Nasim et al. 2018; Nizzoli et al. 2020; Weber and Neumann 
2020).

We then use the adjusted Rand index (Hubert and Arabie 
1985) to compare membership. This considers two networks 
of the same nodes that have been partitioned into subsets. 
When considered in pairs, there are nodes that appear in the 
same subset in both partitions (a), and there are (many) pairs 
of nodes that do not appear in the same subsets in either 
partition (b), and the rest appear in the same subset in one of 
the partitions but not in the other. Defining the total of pos-
sible pairings of the n nodes ( n(n−1)

2
 ) as c, the Rand index, R, 

is simply R =
a+b

c
 . The adjusted Rand index (ARI) corrects 

for chance and provides a value in the range [−1, 1] where 
0 implies that the two partitions are random with respect to 
one another and 1 implies they are identical.

4 � Evaluation of case studies

Several case studies were conducted to evaluate the com-
parison methodology, the requirements for which devel-
oped progressively, each new case study’s requirements 
informed by lessons from the previous. The collections 
used different tools to carry out the parallel collections. 
As mentioned, Twarc was employed as a baseline, while 

RAPID was used with topic tracking enabled and disabled, 
and the tool Tweepy5 was used in only one case study as a 
second baseline. The first case study consisted of two paral-
lel Twitter datasets relating to an Australian panel discussion 
television programme with a prominent online community 
(Q&A); the first datasets were collected over the running 
of the programme (4 h) and the second covered the follow-
ing day’s discussion (15 h), both employing RAPID’s topic 
tracking feature to broaden the conversation. The second 
case study examined discussion surrounding the national 
Australian Rules Football competition (the Australian Foot-
ball League, or AFL) over a longer period (3 days), without 
RAPID’s topic tracking. The third also examined the same 
online sports discussion, but over a longer period again (6 
days) and only made use of RAPID without topic tracking. 
The final case study incorporated a third tool to act as a fur-

ther baseline and covered a regional but large Election Day, 
during which a significant amount of activity was expected. 
These conditions are summarised in Table 2. 

Table 2   Summary of data 
collection conditions

Case study Collection Duration Tool 1 Tool 2 Tool 3

1 Q&A Part 1 4 h Twarc RAPID (topic tracking) –
Q&A Part 2 15 h Twarc RAPID (topic tracking) –

2 AFL1 3 days Twarc RAPID (no topic tracking) –
3 AFL2 6 days RAPID (no topic 

tracking)
RAPID (no topic tracking) –

4 Election 1 day Twarc RAPID (topic tracking) Tweepy

Table 3   Summary statistics for the datasets used in this paper

Collection Dataset Tweets Accounts

Q&A Part 1 Twarc 27,389 7057
RAPID 15,930 4970
RAPID-E 17,675 5547

Q&A Part 2 Twarc 15,490 5799
RAPID 11,719 4708
RAPID-E 23,583 8854

AFL1 Twarc 44,470 16,821
RAPID 21,799 11,573

AFL2 RAPID1 30,103 14,231
RAPID2 30,115 14,232

Election Day Twarc 39,297 10,860
Tweepy 36,172 10,242
RAPID 39,556 10,893
RAPID-E 46,526 12,696

5  Tweepy is another open-source library which provides a thin wrap-
per around the TwitterAPI: https://​github.​com/​tweepy/​tweepy.

https://github.com/tweepy/tweepy
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A summary of the corpora collected6 is presented in 
Table 3. As noted above, when topic tracking was employed 
with RAPID, some of the tweets it collected did not con-
tain any of the initial keywords. These datasets are given 
the label ‘RAPID-E’. Prior to comparison with the corre-
sponding Twarc datasets, the RAPID-E datasets were fil-
tered to retain only tweets containing at least one of the 
original keywords. The AFL2 case study used RAPID with 
no topic tracking expansion with two sets of Twitter creden-
tials simultaneously; in this case, the datasets are labelled 
‘RAPID1’ and ‘RAPID2’. The third collection tool, Tweepy, 
was included in the Election Day case study to act as a sec-
ond baseline.

4.1 � Case study 1: Q&A, #qanda and the effect 
of Topic Tracking

Initially, to obtain a moderately active portion of activity, we 
collected data from Twitter’s Standard live stream relevant 
to an Australian television panel show, Q&A, that invites its 
viewers to participate in the discussion live.7 A particular 
broadcast in 2018 was chosen due to the expectation of high 
levels of activity given the planned discussion topic. As a 
result, the filter keywords used were ‘qanda’8 and two terms 
that identified a panel member (available on request). We 
collected two parallel datasets over two periods:

Q&A Part 1 Four hours starting 30 min before the hour-
long programme, to allow for contributions from the coun-
try’s major timezones; and

Q&A Part 2 From 6 am to 9 pm the following day, captur-
ing further related online discussions.

Twarc acted as the baseline collection as it provides direct 
access to Twitter’s API, while RAPID was configured to use 
topic tracking via co-occurrence keyword expansion (Lim 

et al. 2018), meaning it would progressively add keywords 
to the original set if they appeared sufficiently frequently 
(five times in 10 min). Expanded datasets such as these 
are referred to as ‘RAPID-E’; it was filtered back to just 
the tweets containing the original keywords and labelled 
‘RAPID’ to enable fair comparison with the ‘Twarc’ data-
set. We expected the moderate activity observed would not 
breach rate limits, and thus, RAPID should capture all tweets 
captured by Twarc. This was not the case.

4.1.1 � Comparison of collection statistics

The first striking difference between the datasets was the 
number of tweets collected and the effect on the number 
of contributors (Table 4). RAPID collected fewer tweets 
by fewer accounts, but the datasets were close to subsets 
of the Twarc datasets. Between 26 and 42% of the tweets 
collected by Twarc were missed by RAPID, but the pro-
portion of retweets in each part is similar (52% and 55% 
for Part 1 and 69% and 71% for Part 2). In both parts, very 
few accounts appear in only the RAPID collections. Discus-
sions with RAPID’s developers revealed it dumps tweets 
that miss the filter terms from the textual parts of tweets 
(e.g. the body, the author’s screen name and the author’s 
profile description). The extra tweets RAPID collected were 
relevant and in English9 (based on manual inspection) but 
posted by different accounts (unique to RAPID-E). Of the 
tweets that RAPID collected which contained the keywords, 
they were posted by almost the same accounts as Twarc, but 
simply did not contain the same tweets.

The benefit of topic tracking via keyword expansion is yet 
to be strongly evaluated, but this study indicates there are 
benefits (relevant tweets that omit the original filter terms 
are picked up once related terms are added) as well as costs 
(tweets that include the original filter terms but are not col-
lected). RAPID’s expansion strategies are modifiable to opti-
mise data collection; however, we chose not to make use of 
this capability to prevent obscuring the current comparative 

Table 4   Summary statistics for 
the Q&A Parts 1 and 2 datasets

Dataset All Unique Retweets All Unique

Tweets Tweets Accounts Accounts

Q&A Part 1 Twarc 27,389 11,481 (41.9%) 14,191 (51.8%) 7057 2090 (29.6%)
(20:00-00:00) RAPID 15,930 22 (0.1%) 8744 (54.9%) 4970 3 (0.1%)

RAPID-E 17,675 1767 (10.0%) 9767 (55.3%) 5547 527 (9.5%)
Q&A Part 2 Twarc 15,490 4089 (26.4%) 10,988 (70.9%) 5799 1128 (19.5%)
(06:00-21:00) RAPID 11,719 318 (2.7%) 8051 (68.7%) 4708 37 (0.8%)

RAPID-E 23,583 12,180 (51.6%) 13,679 (58.0%) 8854 4007 (45.3%)

7  The Australian Broadcasting Commission’s “Q&A” observes the 
hashtag #QandA, which Twitter treats as equivalent to #qanda.
8  The ‘#’ was omitted to catch mentions of ‘@qanda’, the pro-
gramme’s Twitter account.

9  Sometimes short or obscure filter terms, like ‘qanda’, have mean-
ings in non-target languages.

6  All data were collected, stored, processed and analysed according 
to two ethics protocols #170316 and H-2018-045, approved by the 
University of Adelaide’s human research and ethics committee.
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study. The rest of this analysis explores how much of a dif-
ference the keyword expansion makes with regard to SNA.

Table 5 reveals that although feature counts vary signifi-
cantly, many of the most common values are the same (e.g. 

most retweeted tweet, most mentioned account, most used 
hashtags). Many are approximately proportional to corpus 
size (Twarc is 1.72 and 1.32 times larger than RAPID for 
Parts 1 and 2, respectively), but with notable exceptions 

Table 5   Detailed statistics of 
Q&A Parts 1 and 2

Q&A Part 1 Q&A Part 2

RAPID Twarc RAPID Twarc

Tweets 15,930 27,389 11,719 15,490
Quotes 325 1203 498 1232
Replies 1446 2067 1715 1731
Tweets with hashtags 10,043 15,591 3912 3961
Tweets with URLs 2470 4029 3106 4074
Most prolific account Account a1 Account a1 Account a2 Account a3
Tweets by most prolific account 103 146 57 68
Most retweeted tweet Tweet t1 Tweet t1 Tweet t2 Tweet t2
Most retweeted tweet count 260 288 385 385
Most replied to tweet Tweet t3 Tweet t3 Tweet t4 Tweet t4
Most replied to tweet count 55 121 58 58
Tweets with mentions 11,314 18,253 10,472 13,514
Most mentioned account Account a4 Account a4 Account a4 Account a4
Mentions of most mentioned account 2883 3853 2753 2752
Hashtags uses 15,700 23,557 7672 7862
Unique hashtags 1015 1438 960 1082
Most used hashtag #qanda #qanda #qanda #qanda
Uses of most used hashtag 10,065 15,644 2545 2549
Next most used hashtag #auspol #auspol #auspol #auspol
Uses of next most used hashtag 1381 2103 1652 1349
URLs uses 913 1650 1602 2411
Unique URLs 399 560 658 790
Most used URL http://​wp.​me/​

p2WW3S-​Gg
http://​wp.​me/​

p2WW3S-​Gg
Tweet t5 URL Tweet t6 URL

Uses of most used URL 49 128 71 81

Table 6   The top ten most used hashtags in the Q&A datasets (ignoring case and anonymising names)

Q&A Part 1 Q&A Part 2

RAPID Twarc RAPID Twarc

15,930 tweets 27,389 tweets 11,719 tweets 15,490 tweets

Hashtag Count Hashtag Count Hashtag Count Hashtag Count

qanda 10,065 qanda 15,644 qanda 2545 qanda 2549
auspol 1381 auspol 2103 auspol 1652 auspol 1349
ulurustatement 179 nbn 223 Surname of a4 179 Surname of a4 179
nbn 178 ulurustatement 187 nbn 135 nbn 133
Surname of a4 137 Surname of a4 179 breaking 85 ulurustatement 73
marriageequality 125 marriageequality 145 ulurustatement 72 pmlive 71
felizjueves 114 felizjueves 128 qldpol 65 qldpol 64
climate 73 ssm 80 nswpol 65 nswpol 63
8kasımdünyadelilergünü 61 climate 77 pmlive 64 marriageequality 53
ssm 60 libspill 76 marriageequality 53 springst 49

http://wp.me/p2WW3S-Gg
http://wp.me/p2WW3S-Gg
http://wp.me/p2WW3S-Gg
http://wp.me/p2WW3S-Gg
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and no apparent pattern. Some values are remarkably simi-
lar, despite the size of the corpora they arise from being so 
different. For example, Twarc picked up nearly 8000 more 
hashtag uses than RAPID in Part 1, but fewer than 200 more 
in Part 2. Notably, although the most prolific account is dif-
ferent in Part 2, the most mentioned account is the same for 
both Parts 1 and 2, potentially implying that account has 
had similarly high influence in both parallel datasets. Fur-
thermore, both datasets shared almost all the same top ten 
hashtags, though in different orders (see Table 6). Approxi-
mately 5000 of the extra hashtag uses are of ‘#qanda’. In Part 
2, again, the top ten hashtags are nearly the same, but this 
time the usage counts are similar, except for ‘#auspol’ being 
used 22% more often in RAPID (1652 times compared with 
1349), which would account for the overall difference of 190 

uses when combined with the noise of lesser used hashtags. 
The most used URL in Part 1 is a shortened form of a link 
to a political party policy comparison resource prepared by 
an account prominent in the #auspol Twitter discussion.10 
In the longer collection, the most prominent URL is over-
taken by retweets, one by @QandA (Tweet t5 ) and one by 
@SkyNewsAust, an official news media account (Tweet t6).

Moving beyond the bare statistics, the timelines shown 
in Fig. 2a, b show the clear differences in tweets retrieved. 
Though the Twarc and pared back RAPID timelines appear 
at least proportionately similar, it is firstly notable that 

(a) Q&A Part 1. (b) Q&A Part 2.

Fig. 2   Twitter activity in the Q&A Parts 1 and 2 dataset over time (in 15 min blocks)

Fig. 3   Word clouds of the 50 most used terms (anonymised) in the first and last 5000 tweets of the Q&A Part 2 RAPID-E dataset, and the top 
100 terms unique to the last 5000 tweets

10  https://​otios​e94.​wordp​ress.​com/​2015/​05/​30/​nett_​news-​by-​otios​
e94/.

https://otiose94.wordpress.com/2015/05/30/nett_news-by-otiose94/
https://otiose94.wordpress.com/2015/05/30/nett_news-by-otiose94/
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the RAPID-E dataset captured so much less data in Part 1 
(Fig. 2a) and so much more in Part 2 (Fig. 2b), particularly 
from approximately 4 a.m. onwards (UTC). One possible 
explanation for this is that the discussion on the night of the 
episode was far more directly focused on the episode themes 
and had less opportunity to drift to other issues, especially 
while informed and guided by what was being broadcast at 
the time. In contrast, those discussing the episode the fol-
lowing day would have had more opportunity to broaden 
the discussion to other topics, and RAPID’s topic tracking 
attended to that, apparently at the cost of tweets matching the 
exact filter terms. Word clouds of the terms drawn from the 
first and last 5000 tweets of the RAPID-E dataset appear to 
offer mild support for this (Fig. 3). Terms are sized accord-
ing to their frequency. The discussion across the day focuses 

on the #auspol hashtag, but #qanda is more prominent 
early on. Mentions of anonymised IDs 1 and 18 are promi-
nent early but shift to ID 6 later. All of these IDs refer to the 
same individual,11 but by Twitter handle and first name early 
on and by surname later in the day. Figure 3c, showing the 
top terms unique to the evening discussion, indicates that 
the discussion shifts to humanitarian concerns (e.g. “kid-
soffnauru”, “[asylum] seeker”, “shameful”, “cried”, “sad-
ness”), perhaps due to events of the day. The early discus-
sion (Fig. 3a) seems to mention individuals much more than 
later, as indicated by the greater size of anonymised IDs. 
This fact alone implies that the early discussion was focused 

Table 7   Q&A Part 1 network 
statistics

Retweet Mention Reply

RAPID Twarc RAPID Twarc RAPID Twarc

Nodes 3234 4426 4535 6119 1184 1490
Edges 7855 12,327 13,144 19,576 1231 1631
Average degree 2.429 2.785 2.898 3.199 1.040 1.095
Density 0.001 0.001 0.001 0.001 0.001 0.001
Mean edge weight 1.113 1.151 1.268 1.300 1.175 1.267
Components 74 95 86 108 164 192
Largest component 3061 4115 4326 5819 829 1081
- Diameter 12 12 10 11 15 15
Clusters 93 115 109 134 186 219
Largest cluster 318 540 731 1348 169 229
Reciprocity 0.004 0.007 0.025 0.025 0.106 0.099
Transitivity 0.026 0.034 0.065 0.063 0.024 0.021
Maximum k core 11 14 13 16 2 3

Fig. 4   The proportional balance between Twarc and RAPID statistics of the retweet, mention and reply networks built from the Q&A Part 1 
datasets

11  Variants of this individual’s name were used as filter terms.
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more directly on the Q&A episode, as the topics it covered 
related to particular relationships and events involving those 
individuals.

The second notable feature is that the RAPID tool 
appeared to miss many of the available tweets in the first 
half an hour of the Part 1 collection. RAPID-E’s first half 
hour includes only six tweets, the first of which was at 9 a.m. 
(UTC), while RAPID’s only includes four tweets, the first of 
which was at 9:15 a.m. It is unclear why the tool missed the 
tweets that Twarc captured, but a discrepancy such as this 
suggests it was not by design. The reason that the RAPID-E 
included tweets without the key terms early on in the speci-
fied timeframe is that the collection was running prior to 
the cut-off at 9 a.m. (UTC), tracking topics while it ran, as 
a ‘burn-in’ period, and we have extracted just these specific 

periods (UTC 0900 to 1300, and UTC 1900 to 1000 the next 
day) to study, post-collection.

4.1.2 � Comparison of network statistics

Given the differences in datasets, we expect differences in 
the derived social networks (Tables 7 and 8) (Holzmann 
et  al. 2018). We also present the proportional balance 
between each dataset’s statistics in Figs. 4 and 5. Each net-
work is dominated by a single large component, compris-
ing over 90% of nodes in the retweet and mention networks 
and around 70% in the reply networks. The distributions of 
component sizes appear to follow a power law, resulting in 
corresponding high numbers of detected clusters.

Table 8   Q&A Part 2 network 
statistics

Retweet Mention Reply

RAPID Twarc RAPID Twarc RAPID Twarc

Nodes 3594 4591 5198 6205 1492 1507
Edges 7344 10,110 14,802 18,184 1560 1576
Average degree 2.043 2.202 2.848 2.931 1.046 1.046
Density 0.001 0.000 0.001 0.000 0.001 0.001
Mean edge weight 1.096 1.087 1.245 1.222 1.099 1.098
Components 118 176 123 179 196 201
Largest component 3308 4085 4854 5612 1073 1080
- Diameter 12 11 10 10 15 15
Clusters 138 197 158 210 221 226
Largest cluster 471 727 1090 1513 122 123
Reciprocity 0.004 0.004 0.024 0.025 0.072 0.071
Transitivity 0.027 0.026 0.084 0.079 0.016 0.016
Maxmium k core 9 10 11 14 3 3

Fig. 5   The proportional balance between Twarc and RAPID statistics of the retweet, mention and reply networks built from the Q&A Part 2 
datasets
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Network structure statistics like density, diameter (of the 
largest component in disconnected networks), reciprocity 
and transitivity may offer insight into social behaviours such 
as influence and information gathering. The high component 
counts in all networks lead to low densities and correspond-
ingly low transitivities, as the potential number of triads is 
limited by the connectivity of nodes. That said, the largest 
components were consistently larger in the Twarc datasets, 
but the diameters of the corresponding largest components 
from each dataset were remarkably similar, implying that the 
extra nodes and edges were in the components’ centres rather 
than on the periphery. This increase in internal structures 
improves connectivity and therefore the number of nodes to 
which any one node could pass information (and therefore 
influence) or, at least, reduces the length of paths between 
nodes so information can pass more quickly. The similari-
ties in transitivity imply the increase may not be significant, 
however, with networks of these sizes. Reciprocity values 
may provide insight into information gathering, which often 
relies on patterns of to-and-fro communication as a person 
asks a question and others respond. Interestingly, the only 
significant difference in reciprocity is in the Part 1 retweet 
networks, with the Twarc dataset having a reciprocity nearly 
double that of the RAPID dataset (though still small). The 
Twarc dataset includes 60% more retweets than the corre-
sponding RAPID dataset and 40% more accounts (Table 4), 
which may account for the discrepancy. Given the network 
sizes, the reciprocity values indicate low degrees of con-
versation, mostly in the reply networks. Interestingly, mean 
edge weights are very low (1.3 at most), implying that most 
interactions between accounts in all networks happen only 
once, despite these being corpora of issue-based discussions.

The proportional statistical differences between the cor-
responding datasets are highlighted in Fig. 4 for Part 1 and 
Fig. 5 for Part 2. Part 1’s Twarc networks were larger, both 
in nodes and edges, but less dense, than the RAPID ones, 
and the largest component in each network is larger by a 
significant proportion of the extra nodes (it is not clear 
what portion of the extra nodes are members of the larg-
est components, however). An increase in components also 
led to an corresponding increase in detected clusters, and 
an increase in the size of the largest detected cluster. As 
mentioned earlier, the increase in internal structures leads 
to a higher maximum k core value. Though the proportional 
differences in reciprocity in the retweet networks are high, 
the values themselves remain low. Part 2’s reply networks 
are remarkably similar despite the Twarc dataset having 26% 
more tweets. The differences in Part 2’s retweet and mention 
networks are similar to those of Part 1.

That the differences in retweet and mention networks 
are so proportionately similar across both Parts 1 and 2 is 
notable because the retweet network is not based on direct 
interactions, while the mention network is. Retweeting a 

tweet links a retweeter, X, back to the original author, Y, 
of a tweet, rather than any intermediate account, even if the 
retweet passed through several accounts on its way between 
Y and X. It is possible that these datasets were sufficiently 
constrained both in size and timespan and focus of the par-
ticipants (by which we mean they engaged in the discus-
sion by following the #qanda hashtag), that there was little 
opportunity to build up chains of retweets.

Next we look at two major categories of network analysis: 
indexing, for the computation of node-level properties, such 
as centrality, and grouping, for the computation of specific 
groups of nodes, such as clustering.

4.1.3 � Comparison of centralities

Centrality measures can tell us about the influence an indi-
vidual has over their neighbourhood, though the timing of 
interactions should ideally be taken into account to get a 
better understanding of their dynamic aspects (e.g. Falzon 
et al. 2018). If networks are constructed from partial data, 
network-level metrics (e.g. radius, shortest paths, cluster 
detection) and neighbourhood-aware measures (e.g. eigen-
vector and Katz centrality) may vary and not be meaningful 
(Holzmann et al. 2018).

We compare centralities of corresponding networks 
using scatter plots of node rankings, as per Sect.  3.4 
(Fig.  6). The symmetrical structures come from cor-
responding shifts in order: if an item appears higher in 
one list, then it displaces another, leading to the evident 
fork-like patterns. There is considerable variation in most 
centrality rankings for both mention and reply networks 
in Part 1 (Fig. 6a) but much less in Part 2 (Fig. 6b), apart 
from the ranking of eigenvector centralities for the men-
tion networks, which lacks almost any alignment between 
the RAPID and Twarc node rankings, despite the high 
number of common nodes (825). This implies that the 
neighbourhoods of nodes differ between the Twarc and 
RAPID mention networks, but the top-ranked nodes are 
similar though their orders differ greatly. Furthermore, the 
relatively few common nodes in Part 1’s Twarc mention 
networks (521 to 585) and greater edge count (Table 7) 
could indicate that the extra edges significantly affect the 
node rankings. However, Part 2’s Twarc mentions net-
works also had many more edges, but many more nodes 
in common (approximately 900). Thus, it must have been 
how the mentions were distributed in the datasets that dif-
fered, rather than simply their number. It is not clear that 
Part 1’s four-hour duration (cf. Part 2’s 15 h) explains this. 
Instead, if we look at the 11,480 tweets unique to Twarc 
in Part 1 (cf. fewer than 4000 are unique to Twarc in Part 
2, Table 4), only 622 are replies, whereas 6915 include 
mentions. There are also 34% more unique accounts in 
the Part 1 Twarc dataset, but only 19% more in the Part 
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2 Twarc dataset (Table 4). Each mention refers to one of 
these accounts and forms an extra edge in the mention 
network, thus altering the network’s structure and the cen-
trality values of many of its nodes; this is likely where the 
variation in rankings originates.

The Kendall � and Spearman’s � coefficients were cal-
culated comparing the corresponding lists of nodes, each 
pair ranked by one of the four centrality measures (Fig. 7). 
Although somewhat proportional, it is notable how differ-
ent the coefficient values are, especially in Part 2. While 
Twarc produced more tweets than RAPID (Table 4), and 

Fig. 6   Centrality ranking comparison scatter plots of the mention and 
reply networks built from the Q&A Parts 1 and 2 datasets. In each 
plot, each point represents a node’s ranking in the RAPID and Twarc 

lists of centralities (common nodes amongst the top 1000 of each 
list). The number of nodes appearing in both lists is inset. Point dark-
ness indicates rank on the x axis (darker = higher)
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Fig. 7   Centrality ranking comparisons using Kendall � and Spearman’s � coefficients for corresponding mention and reply networks made from 
the Q&A Parts 1 and 2 datasets

Fig. 8   The largest retweet, mention and reply clusters built from the Q&A Parts 1 and 2 datasets
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more unique accounts, the corresponding mention and reply 
node counts are not significantly higher (Tables 7 and 8). In 
fact, the node counts in the Part 1 reply networks are cor-
respondingly lower than in the Part 2 reply networks, even 
though both Part 2 datasets were smaller. Edge counts in 
the mention networks were very different (Twarc had many 
more) but were quite similar in the reply networks.

The biggest variation was in the mention networks from 
Part 1 (Fig. 6a and Table 7), due to the large number of extra 
mentions from Twarc. It is notable that the Kendall’s � was 
low for all mention networks (Fig. 7), especially for degree 
and closeness centrality. It is worth noting the minor dif-
ferences in the degree and immediate neighbours of nodes 
impacts degree and closeness centralities significantly, and, 
correspondingly, their relative rankings. In contrast, rank-
ings for betweenness and eigenvector centrality, which rely 
more on global network structure, remained relatively stable.

4.1.4 � Comparison of clusters

We finally compare the networks via largest clusters (Fig. 8). 
The reply network clusters are relatively similar, and the 
largest mention and reply clusters differ the most. The ARI 
scores (Table 9) confirm that the reply clusters were most 
similar for Parts 1 and 2 (0.738 and 0.756, respectively), 
possibly due to the small size of the reply networks. The 
mention and retweet clusters for Part 2 were more similar 
than those of Part 1 (0.437 and 0.468 compared to 0.320 
and 0.350), possibly due to the longer collection period. In 
Part 1, there is a chance the networks are different due to 
RAPID’s expansion strategy. Changes to filter keywords may 
have collected posts of other vocal accounts not using the 
original keywords, at the cost of the posts which did.

4.1.5 � Summary of findings

Overall, Twarc and RAPID provided very different views 
into the Twitter activity surrounding the Q&A episode in 
question, both on the evening of and the day after. This 
includes variations in basic collection statistics, network sta-
tistics for retweet, mention and reply networks built from the 
collected data, centrality measures of the nodes in the net-
works and comparison of detected clusters. The extra tweets 
collected by the Twarc collections appear to have resulted in 
greater numbers of connections internal to the largest com-
ponents, which may have implications for the analysis of 
influence, as reachability correspondingly increases. Deeper 
study of reply content is required to inform patterns of infor-
mation gathering.

We are left with the open question of how reliable social 
media can be as a data source, if conducting simultaneous 
collection activities with the same query criteria can provide 
such different networks. Is the variation due to the platform 
providing a random sample of the overall data or an effect 
of the tool being used?

We next considered a more tightly controlled comparison 
of Twarc and RAPID, disabling RAPID’s expansion strate-
gies so that the tools performed as similarly as possible.

4.2 � Case study 2: a weekend of AFL without topic 
tracking

RAPID’s topic tracking feature broadens the scope of of 
the collection at the cost of strictly matching tweets, result-
ing in distinctly different corresponding corpora. Although 
the rankings of the most central nodes in networks built 
from the corpora appear relatively stable, the question 
remains of why the corpora were so different in size. In 
this section, we discuss a case study in which we disabled 
RAPID’s topic tracking feature, expecting the resulting 
corresponding corpora to increase in similarity, especially 
over a longer period collection. Figure 9 indicates that 
again, initially at least, it appeared that Twarc and RAPID 
produced very different, but proportional over time, data-
sets. Constraining the datasets to only those tweets with a 
“lang” property of “en” or “und” resulted in much more 
similar datasets.

Table 9   Adjusted Rand index scores for the clusters found in the cor-
responding retweet, mention and reply networks built from the Q&A 
Parts 1 and 2 datasets

Retweet Mention Reply

Q&A Part 1 0.320 0.350 0.738
Q&A Part 2 0.437 0.468 0.756

Table 10   Summary dataset 
statistics of the AFL1 collection

Dataset All Unique Retweets All Unique

Tweets Tweets Accounts Accounts

Twarc 44,461 22,731 (51.1%) 11,482 (25.8%) 16,821 5274 (31.4%)
RAPID 21,799 69 (0.3%) 7047 (32.3%) 11,573 26 (0.2%)
Twarc-en 25,231 4065 (16.1%) 8531 (33.8%) 12,399 1187 (9.6%)
RAPID-en 21,235 69 (0.3%) 6849 (32.3%) 11,238 26 (0.2%)
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4.2.1 � Comparison of collection statistics

We conducted two parallel collections under the term “afl” 
over a three-day period in March 2019 (the start of the AFL 
season) using RAPID without topic tracking and Twarc. This 
collection is labelled “AFL1” in Tables 2 and 3, and further 

details are offered in Table 10. The datasets obtained appear 
to be dramatically different: RAPID collected just shy of 
22,000 tweets while Twarc found approximately twice that 
number with around 45,000 tweets, with 21,730 in com-
mon. Interestingly, as can be seen in Fig. 9, the extra tweets 
appear to occur relatively evenly and consistently over time, 

Fig. 9   Twitter activity in the AFL1 dataset over time (in 60 min blocks)

Fig. 10   Distributions of tweet language values (specified in the lang property) in the RAPID and Twarc datasets, collected using the filter term 
“afl”
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rather than spiking. On closer inspection, it became apparent 
that the balance in languages was different, with 36% of the 
Twarc collection having lang property of ‘jp’ (Japanese) 
and 52% ‘en’ (English), while RAPID consisted of 94% Eng-
lish tweets (Fig. 10). When both collections were trimmed 
to tweets with a lang property of ‘en’ or ‘und’ (undefined), 
they reduced to 25,231 tweets (Twarc) and 21,235 tweets 
(RAPID), with 21,166 in common, which still leaves more 
than 4000 tweets specific to Twarc (Fig. 11). The “AFL1” 

dataset, reduced to only posts with a lang property of ‘en’ 
or ‘und’ is referred to as “AFL1-en” henceforth.

As previously mentioned, RAPID does not retain tweets 
which do not contain filter terms in text-related portions of 
the tweets. In the Twarc collection, the term ‘afl’ appeared 
in the domain of a website that many of the Japanese tweets 
referred to, belonging to an online marketplace. These tweets 
were dropped by RAPID and did not appear in the final 
collection.

Only 69 tweets were unique to the RAPID AFL1-en data-
set, and they appear to be AFL-related sports discussions. 
The 4065 tweets unique to the Twarc dataset comprise 2595 
English tweets and 1470 with “und” for the lang value. 
This field is populated by Twitter based on language detec-
tion algorithms. When a language cannot be detected, such 
as when there is not sufficient free text to analyse, the value 
“und” is used. Inspection of the tweets indicates the reason 
for this: the undefined tweets include 884 retweets, 1366 
tweets with URLs, 116 with hashtags, and 916 with men-
tions. Of the “und” tweets with URLs, the vast majority 
(1188) refer to a Japanese online electronics marketplace 
(771) and a Japanese online media platform (417). The next 
largest group refer to 38 retweets, some of the official @
AFL account (9), though there are 16 and 5 retweets of two 
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Fig. 11   Tweet counts of the RAPID and Twarc datasets in the AFL1 
and AFL1-en collections, obtained using the filter term “afl”

Table 11   Statistics of the 
AFL1-en RAPID and Twarc 
datasets

Property Twarc-en RAPID-en

Tweets 25,231 21,235
Accounts 12,399 11,238
Retweets 8531 6849
Quotes 2291 1615
Replies 6185 5936
Tweets with hashtags 7606 6911
Tweets with URLs 10,266 7345
Most prolific account Account a5 Account a5
Tweets by most prolific account 363 362
Most retweeted tweet Tweet t5 Tweet t5
Most retweeted tweet count 529 529
Most replied to tweet Tweet t6 Tweet t6
Most replied to tweet count 141 141
Tweets with mentions 17,467 15,230
Most mentioned account Account a6 Account a6
Mentions of most mentioned account 7131 7130
Hashtag uses 17,352 15,886
Unique hashtags 2381 2249
Most used hashtag #afl #afl

Most used hashtag count 4523 4522
Next most used hashtag #aflpiescats #aflpiescats

Uses of next most used hashtag 1575 1482
URL uses 6557 3552
Unique URLs 2843 2043
Most used URL http://​watch​rugby.​net/​AFL/ http://​watch​rugby.​net/​AFL/
Uses of most used URL 494 251

http://watchrugby.net/AFL/
http://watchrugby.net/AFL/
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accounts that Botometer (Davis et al. 2016) scored at 4.2 
and 4.4 out of 5, respectively, as bot-like, and both refer to 
the previously mentioned Japanese electronics marketplace. 
The top 12 most used hashtags in the English subset relate to 
the AFL, while the top 14 for the “und” subset are all Japa-
nese terms, except for “iphone” (at number 9). The top term 
(in Japanese) is the name of the marketplace. The English 
tweets are mostly related to the AFL, though there is consid-
erable obvious content from bot-like accounts, with several 
accounts posting the same content (offers of live streams of 
the matches) repeatedly within a short space of time (their 
messages appear adjacent in the timeline).

Once reduced to a relatively comparable state, the 
“AFL1-en” parallel datasets can be examined in more 
detail. It is understood that the tweets they consist of will 

differ, given that rate-limiting constraints may have caused 
each to receive different tweets. The statistics in Table 11 
bear this out with the Twarc dataset statistics being 
approximately proportionately larger when compared with 
the RAPID dataset statistics. The author IDs have been 
anonymised, but the most mentioned account is the official 
@AFL account, while the most prolific author appears to 
be automated to some degree, having posted nearly 35,000 
tweets in two years and a Botometer (Davis et al. 2016) 
Complete Automation Probability (CAP12) of 68% , many 
seemingly promote the AFL, tennis, and a singer. The most 

Table 12   Comparative statistics 
for networks generated from the 
RAPID and Twarc datasets for 
the ALF1-en collection

Retweet Mention Reply

RAPID-en Twarc-en RAPID-en Twarc-en RAPID-en Twarc-en

Number of nodes 5584 6430 11,566 12,525 4705 4759
Number of edges 5881 6977 22,310 23,937 4928 5005
Average degree 1.053 1.085 1.929 1.911 1.047 1.052
Density 0.000 0.000 0.000 0.000 0.000 0.000
Mean edge weight 1.165 1.223 1.308 1.329 1.205 1.236
Components 494 536 666 713 791 798
Largest component 3946 4233 9416 9789 2951 3017
- Diameter 16 16 17 17 16 16
Clusters 544 579 736 781 861 863
Largest cluster 659 753 2177 2125 851 844
Reciprocity 0.004 0.005 0.057 0.055 0.139 0.131
Transitivity 0.035 0.038 0.143 0.152 0.039 0.034
Maximum k core 4 4 9 11 4 4

Fig. 12   The proportional balance between Twarc and RAPID statistics of the retweet, mention and reply networks built from the AFL1-en data-
sets

12  See https://​botom​eter.​osome.​iu.​edu/​faq#​which-​score.

https://botometer.osome.iu.edu/faq#which-score
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replied to tweet was posted by an Australian NBA13 player 
and the most retweeted tweet was of an amusing video of 
an AFL supporter.

4.2.2 � Comparison of network statistics

The network statistics Table 12 indicate that the networks 
were much more similar than in the Q&A case study, though 
there are still notable differences. The largest components of 

the retweet, mention and reply networks are, at most, 15% 
larger by node count, and the largest components are cor-
respondingly similar, though their diameters and densities 
indicate they are much more sparse than the corresponding 
Q&A ones, with corresponding implications for the oppor-
tunity to influence. In contrast, in sporting discussions, there 
is less motivation to attempt to convert fellow sports fans 
to cheer for one’s team than there is in a political discus-
sion. Certainly in this study, politics has tended to gener-
ate more discussion than sports in general, and the nature 
of the discussions is also different. The reciprocity values 
here are much higher than in the Q&A case study, implying 

Fig. 13   Centrality ranking comparison scatter plots of the mention 
and reply networks built from the AFL1-en datasets. In each plot, 
each point represents a node’s ranking in the RAPID-en and Twarc-

en lists of centralities (common nodes amongst the top 1000 of each 
list). The number of nodes appearing in both lists is inset. Point dark-
ness indicates rank on the x axis (darker = higher)

Fig. 14   Centrality ranking comparisons from the RAPID and Twarc datasets of the AFL1-en collection using Kendall � scores and Spearman’s 
coefficients

13  United States National Basketball Association.
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the presence of more communication among the communi-
ties that do exist. Another difference that lends weight to 
this interpretation is the average degree of nodes in the net-
works. In the Q&A retweet and mention networks, the aver-
age degrees were around 2-2.5 and 3, respectively, implying 
some repetition in connectivity, whereas in the sporting dis-
cussing the average degrees are around 1 and 2, respectively, 
implying much less continued interaction. As indicated in 
Fig. 12, the degree values of the Twarc and RAPID networks 
are highly similar.

The number of tweets and accounts in the AFL1-en 
datasets (Table 11), coupled with the number of nodes and 
edges in the derived mention and reply networks (Table 12), 
indicates that although the AFL1-en collections differed by 
nearly 4000 tweets, the number of accounts was not signifi-
cantly different (approximately 10% more in Twarc) with a 
corresponding increase in nodes and edges in the mention 
network (8.3% and 7.3%, respectively) but only 54 and 77 
(1.1% and 1.6%, respectively) more in the reply network.

4.2.3 � Comparison of centralities

Considering the similarity of interaction networks con-
structed from the respective AFL1-en datasets, we compare 
the relative ranking of the top network nodes by various 
centrality values (with an upper bound of 1000 nodes). Fig-
ure 13 shows scatterplots of the relative rankings of nodes 
common to corresponding networks, and Fig. 14 plots the 
Kendall � and Spearman’s coefficients of the correspond-
ing relative rankings. As with the Q&A collection, the cen-
tralities of nodes in the reply networks show more similarity 
than those in the mention networks, which is likely due to 
their relative size; Table 12 indicates a significant discrep-
ancy in the reply and mention network sizes and average 
degree. Closeness is notably low in similarity, though the 
high component count would account for that. It is apparent 
the most central nodes in both network types mostly main-
tain their ordering for the first several hundred nodes, but all 
begin to diverge at some point. A few isolated nodes change 
their ranking significantly, such as those in the top left of 
the mentions betweenness and closeness plots, degrading 

their rankings (appearing above the diagonal), and those in 
the reply closeness and eigenvector plots, improving their 
rankings (appearing below the diagonal), but the majority 
diverge in a trident pattern, implying lower-ranked nodes 
improve their rankings swapping out higher-ranked nodes at 
progressively greater distances. The reason for the consist-
ency is unclear. Minor variations would ensure that nodes’ 
centrality values varied, and thus, their rankings could easily 
vary significantly, especially due to the high number of com-
ponents. The high k core values for the mention networks 
are likely to explain the high betweenness and eigenvector 
centrality values, as the highest ranked of these will reside 
in the larger components, which will have the greater likeli-
hood of being similar across the networks.

4.2.4 � Comparison of clusters

Comparing the clusters detected with the Louvain method 
(Blondel et al. 2008) in the retweet, mention and reply net-
works results in ARI values in Table 13. This implies that 
although the networks consisted of many components, the 
clusters they formed were highly similar for retweet and 
reply networks, and only slightly less so for the mention 
networks, despite the fact that the Twarc mention network 
included more than 2000 more mention edges.

4.2.5 � Summary of findings

This case study makes it clear that the tool used for collec-
tion can have a significant effect on the data collected and 
the resulting analytic results. It was serendipitous that the 
filter term chosen was “afl”, because a more specific term 
or set of terms is unlikely to have captured the non-English 
content that Twarc did. This highlighted the fact that RAPID 
was post-processing and filtering the tweets it collected, and 
raises general questions for social media data collection: Do 
other collection tools, especially commercial ones, do this 
post-processing too, as a “convenience” or “value-add” to 
their users? Do they make it clear if and when they do? The 
validity of evidence-based conclusions rests on these details. 
Even when both datasets were filtered to ensure some degree 
of consistency, there remained large differences in the net-
works constructed from them. Minor differences in datasets 
may result in amplified differences in analyses.

A further, even more fundamental, question remained 
after this case study, which is addressed by the next 

Table 13   Adjusted Rand index 
scores for the clusters found 
in the networks built from the 
RAPID and Twarc datasets for 
the AFL1-en collection

Retweet Mention Reply

0.818 0.675 0.853

Table 14   Summary dataset 
statistics of the AFL2 collection

Dataset All Unique Retweets All Unique

Tweets Tweets Accounts Accounts

RAPID1 30,103 – (0.0%) 9215 (30.6%) 14,231 – (0.0%)
RAPID2 30,115 12 (0.0%) 9215 (30.6%) 14,232 1 (0.0%)
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Fig. 15   Twitter activity in the AFL2 dataset over time (in 60-min blocks). Thick and dashed lines are used here to highlight how the timeseries 
overlap almost exactly. The timestamps of tweets unique to RAPID2 are shown as blue points

Table 15   Statistics of two 
parallel datasets collected using 
RAPID with the filter term 
“afl” over a six-day period with 
different API credentials

Property RAPID1 RAPID2

Tweet count 30,103 30,115
Retweet count 9215 9215
Account count 14,231 14,232
Quote count 2340 2341
Reply count 9229 9229
Tweets with hashtags 8623 8627
Tweets with URLs 11,467 11,474
Most prolific account Account a7 Account a7
Most prolific account tweet count 612 612
Most retweeted tweet Tweet t7 Tweet t7
Most retweeted tweet count 269 269
Most replied to tweet Tweet t8 Tweet t8
Most replied to tweet count 206 206
Tweets with mentions 22,083 22,083
Most mentioned account Account a6 Account a6
Most mentioned account count 10,468 10,468
Hashtag uses 20,136 20,140
Unique hashtags 3337 3337
Most used hashtag #afl #afl

Most used hashtag count 5096 5096
Next most used hashtag #afldeesdons #afldeesdons

Uses of next most used hashtag 759 759
URL uses 5702 5709
Unique URLs 3580 3587
Most used URL http://​watch​rugby.​net/​AFL/ http://​watch​rugby.​net/​AFL/
Most used URL count 341 341

http://watchrugby.net/AFL/
http://watchrugby.net/AFL/
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subsection: Does the same tool provide the same data over 
two simultaneous collections with identical filter terms?

4.3 � Case study 3: tracking AFL Twitter activity 
with RAPID

Given it appeared that different collection tools could 
produce different results using the same inputs, the ques-
tion of whether APIs are delivering consistent content 
for all clients remained. A second collection (Table 14) 
was initiated over a longer period (6 days) using the same 
filter term and tool (RAPID), but with different API cre-
dentials. One set of credentials belonged to a relatively 
new and unused account (created in 2018 having posted 
only 3 tweets) and the other to a well-established account 
(created in 2009 and having posted approximately 17,000 
tweets). This resulted in two highly similar, but not quite 
identical, datasets, with sizes 30,103 and 30,115 tweets; 
their timeline is shown in Fig. 15. The first dataset was a 
proper subset of the second, so the difference of 12 posts 
can be regarded as due to noise or minor differences in 
timing. A brief examination revealed these extra tweets 
(shown in blue in the Figure) were all about AFL or other 
sports in Australia, and their timing appeared random. 
Further confirmation of the similarity between datasets 
can be seen in Table 15 where the most prolific account, 

most retweeted tweet, most replied to tweet and most men-
tioned account details are all identical. Again, the most 
mentioned account is the official @AFL account.

4.3.1 � Comparison of network statistics

Due to the similarity of the datasets, the retweet, mention 
and reply networks generated from them were almost iden-
tical, and only a summary of the structures is provided in 
Table 16. Details of the networks are provided in Fig. 16, 
which show that the only differences occur in the detected 
clusters. In particular, the largest cluster detected in the 
RAPID2 mention network is around 3% larger than the cor-
responding cluster from the RAPID1 mention network. This 
is likely due to an element of randomness used in the Lou-
vain algorithm (Blondel et al. 2008).

4.3.2 � Comparison of centralities and clusters

The similarity of the networks based on their statistics 
is further confirmed by a comparison of their centrality 
rankings, which indicates that their structures are all but 
identical. A visual inspection of their respective rankings 
in Fig. 17 reveals no major differences, and the Kendall � 

Table 16   Selected comparative 
statistics for networks generated 
from the two RAPID datasets 
for the AFL2 collection

Dataset Tweets Accounts Mention Reply

Nodes Edges Nodes Edges

RAPID1 30,103 14,231 15,323 31,859 6778 7655
RAPID2 30,115 14,232 15,323 31,859 6778 7655

Fig. 16   The proportional balance between the RAPID1 and RAPID2 statistics of the retweet, mention and reply networks built from the AFL2 
datasets
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and Spearman’s coefficients indicate their rankings are, 
in fact identical (Fig. 18).

Interestingly, the high degree of similarity does not 
extend to the membership of detected clusters using the 
ARI measure (Table 17). Presumably, the sensitivity of 
the measure indicates that these scores must be as close 
to the maximum as we could expect due to the degree of 

randomness inherent in Louvain clustering. For a score 
of 1.0, each pair of detected clusters would need to match 
perfectly, across the thousands of nodes in the networks, 
so any minor variation will reduce that score.

4.3.3 � Summary of findings

This evidence suggests that the results provided by the Twit-
ter API (if not other platforms’ APIs) are consistent, regard-
less of the consumer. It is clearly important that a researcher 
understand how their collection tool works to guarantee their 
understanding of the results returned. In this regard, open-
source solutions are, as the name implies, more transparent 
than closed-source solutions. The benefit gained as a result 

Fig. 17   Centrality ranking comparison scatter plots of the mention 
and reply networks built from the AFL2 datasets. In each plot, each 
point represents a node’s ranking in the RAPID1 and RAPID2 lists of 

centralities (common nodes amongst the top 1000 of each list). The 
number of nodes appearing in both lists is inset. Point darkness indi-
cates rank on the x axis (darker = higher)

Fig. 18   Centrality ranking comparisons from the two RAPID datasets of the AFL2 collection using Kendall � scores and Spearman’s coefficients

Table 17   Adjusted Rand index 
scores for the clusters found 
in the networks built from the 
RAPID and Twarc datasets for 
the AFL2 collection

Retweet Mention Reply

0.916 0.808 0.865
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of more tailored filtering must be balanced against the initial 
effort required to understand how the APIs are employed by 
the tool used and what modifications tools make to the data 
they collect.

4.4 � Case study 4: Election Day

This final case study highlights the importance of continuous 
network connectivity, and awareness of when that condition 
is not met. Given the social media researcher can offload 
many other aspects of data quality to the OSN (e.g. well-
designed schemas, data consistency, value validity, Scan-
napieco et al. 2005; Foidl and Felderer 2019), it is important 
to note that this is an aspect for which the researcher must 
retain responsibility.

To consider a more focused collection activity and to con-
sider a second open-source collection tool (thus similar to 
the baseline tool, Twarc), a collection was conducted over 
an Election Day (24-h period) in early 2019, using RAPID, 
Twarc and Tweepy, each configured with the same filter 
terms: #nswvotes, #nswelection, #nswpol, and 
#nswvotes2019. RAPID and Twarc collected slightly 
below 40,000 tweets each while Tweepy collected around 
36,000 tweets, but suffered from network outages on two 
occasions for approximately 110 and 96 min each time (see 
Fig. 19). In the resulting datasets (highlights of which are 
shown in Table 18), 285 tweets were unique to RAPID, three 

to Twarc, and 19 were shared by Twarc and Tweepy but not 
RAPID. The vast majority of the Tweepy dataset’s 36,172 
tweets appeared in all three datasets, while Tweepy missed 
the 3118 further tweets that appeared in both Twarc and 
RAPID datasets. In fact, by examining the periods where 
Tweepy lost its connection, around 6 p.m. (UTC) and again 
approximately 6 h later, Twarc retained 3036 tweets while 
RAPID retained 3055 tweets (RAPID-E collected 3918 dur-
ing these periods), so it is possible that if Tweepy’s connec-
tion had stayed up, the Tweepy dataset might have been very 
similar to Twarc and RAPID, especially as the remainder of 
the collection behaviour of the tools appears almost identical 
in the timeline.

4.4.1 � Comparison of collection statistics

The collection statistics are highly similar and are pro-
vided primarily for completeness. The effect of Tweepy’s 
disconnection is highlighted by the differences in its statis-
tics from Twarc as the baseline. Although more than 3000 
tweets were missed, only a few hundred accounts, quotes, 
replies and tweets with URLs were missed. Several thou-
sand retweets were missed as well as tweets with hashtags 
and mentions, but the effect on the features with the high-
est counts is limited. The most prolific account, most 
retweeted tweet, most replied to tweet, most mentioned 
accounts, hashtags and URLs are all the same (Table 19).

Fig. 19   Twitter activity in the Election Day dataset over time (in 15-min blocks). Dashed and dotted lines are used here to highlight how the 
timeseries overlap almost exactly

Table 18   Summary dataset 
statistics of the Election Day 
collection

Dataset All Unique Retweets All Unique

Tweets Tweets Accounts Accounts

Twarc 39,293 3 (0.0%) 26,412 (67.2%) 10,860 1 (0.0%)
RAPID 39,556 285 (0.7%) 26,612 (67.3%) 10,893 36 (0.3%)
RAPID-E 46,526 7255 (15.6%) 30,735 (66.1%) 12,696 1839 (14.5%)
Tweepy 36,172 0 (0.0%) 24,276 (67.1%) 10,242 0 (0.0%)
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4.4.2 � Comparison of network statistics

Continuing the similarities in the collection statistics, statis-
tics drawn from retweet, mention and reply networks built 

from the Election Day datasets are also strikingly resilient, 
despite the Tweepy networks including several hundred 
fewer nodes (Table 20). This is borne out by the proportional 
differences between Twarc and RAPID in Fig. 20, where the 

Table 19   Statistics of the 
Twarc, RAPID, and Tweepy 
datasets collected in parallel 
over a 24-h period

∗https://​www.​fiverr.​com/​s2/​ee030​ef08d

Property Twarc RAPID Tweepy

Tweets 39,297 39,556 36,172
Accounts 10,860 10,893 10,242
Retweets 26,412 26,612 24,276
Quotes 3590 3610 3363
Replies 1374 1381 1252
Tweets with hashtags 21,582 21,686 19,977
Tweets with URLs 7829 7860 7194
Most prolific account Account a8 Account a8 Account a8
Tweets by most prolific account 212 211 212
Most retweeted tweet Tweet t9 Tweet t9 Tweet t9
Most retweeted tweet count 368 367 278
Most replied to tweet Tweet t10 Tweet t10 Tweet t10
Most replied to tweet count 25 26 24
Tweets with mentions 30,626 30,848 28,154
Most mentioned account Account a9 Account a9 Account a9
Mentions of most mentioned account 2442 2443 2187
Hashtag uses 51,288 51,470 47,106
Unique hashtags 2450 2458 2306
Most used hashtag #nswvotes #nswvotes #nswvotes

Most used hashtag count 11,739 11,731 10,901
Next most used hashtag #nswvotes2019 #nswvotes2019 #nswvotes2019

Uses of next most used hashtag 7606 7602 6968
URL uses 3766 3761 3478
Unique URLs 1374 1374 1258
Most used URL URL 1∗ URL 1∗ URL 1∗

Uses of most used URL 100 100 100

Table 20   Comparative statistics 
for networks generated from 
the Twarc, RAPID and Tweepy 
datasets for the Election Day 
collection

Retweet Mention Reply

Twarc RAPID Tweepy Twarc RAPID Tweepy Twarc RAPID Tweepy

Number of nodes 8620 8649 8193 10,117 10,161 9600 1234 1238 1147
Number of edges 22,895 23,056 21,122 36,360 36,589 33,595 1174 1181 1074
Average degree 2.656 2.666 2.578 3.594 3.601 3.500 0.951 0.954 0.936
Density 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001
Mean edge weight 1.154 1.154 1.149 1.217 1.218 1.209 1.170 1.169 1.166
Component count 183 183 183 183 183 178 298 297 286
Largest component 8199 8228 7779 9687 9731 9146 642 648 569
- Diameter 13 13 13 12 12 12 18 18 19
Clusters 207 210 210 209 209 204 319 316 304
Largest cluster 1243 1503 1405 1507 1585 1582 54 53 53
Reciprocity 0.009 0.009 0.009 0.020 0.020 0.019 0.012 0.012 0.011
Transitivity 0.035 0.035 0.032 0.060 0.060 0.058 0.001 0.001 0.001
Maximum k core 15 15 14 20 20 19 2 2 2

https://www.fiverr.com/s2/ee030ef08d
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only significant difference is the size of the largest detected 
cluster (again, likely due to the randomness inherent in the 
Louvain algorithm, Blondel et al. 2008) and then in the pro-
portional differences in all the statistics across the Twarc and 
Tweepy networks in Fig. 21.

4.4.3 � Comparison of centralities

Examining the centralities of the mention and reply networks 
built from the Election Day datasets, comparing RAPID and 
Tweepy against the Twarc baseline shows, as expected, only 

minor variations in the RAPID dataset which only occur 
among the lower ranked nodes (Fig. 22) and more wide-
spread differences with the Tweepy networks (Fig. 23). Sta-
tistically, Twarc and RAPID’s mention network centrality 
rankings, shown in Fig. 24, had Kendall � values around 
0.35 to 0.4 and Spearman’s coefficients around 0.45 to 0.6, 
while the reply networks’ values were higher, with � around 
0.5 and Spearman’s coefficient around 0.7, possibly due 
to the smaller size of the reply networks. These values are 
all approaching or exceeding the � value of 0.4 to 0.6 that 
was regarded as reasonably to highly similar, mentioned 

Fig. 20   The proportional balance between Twarc and RAPID statistics of the retweet, mention and reply networks built from the Twarc and 
RAPID datasets

Fig. 21   The proportional balance between Twarc and RAPID statistics of the retweet, mention and reply networks built from the Twarc and 
Tweepy datasets
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in Sect. 3.4. The ranking similarity statistics calculated by 
comparing the Twarc and Tweepy baselines are notably 
lower (Fig. 25, though even the reply networks’ between-
ness and closeness comparisons are moderately similar with 
� around 0.4 and Spearman’s coefficient around 0.5 to 0.6.

4.4.4 � Comparison of clusters

Despite the similarities between the Twarc and RAPID net-
works, the cluster membership still varies significantly, with 
the highest similarity being found amongst the (smaller) 

Fig. 22   Centrality ranking comparison scatter plots of the mention 
and reply networks built from the Twarc and RAPID Election Day 
datasets. In each plot, each point represents a node’s ranking in the 
RAPID1 and RAPID2 lists of centralities (common nodes amongst 

the top 1000 of each list). The number of nodes appearing in both 
lists is inset. Point darkness indicates rank on the x axis (darker = 
higher)

Fig. 23   Centrality ranking comparison scatter plots of the mention 
and reply networks built from the Twarc and Tweepy Election Day 
datasets. In each plot, each point represents a node’s ranking in the 
RAPID1 and RAPID2 lists of centralities (common nodes amongst 

the top 1000 of each list). The number of nodes appearing in both 
lists is inset. Point darkness indicates rank on the x axis (darker = 
higher)
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reply networks, as can be seen in the ARI scores in Table 21. 
The clusters found in the Twarc and Tweepy networks are 
less similar, almost in line with the differences in network 
sizes: the retweet networks had fewer nodes than the mention 
networks, and the ARI scores are less different, and the reply 
networks were the smallest and had the smallest difference 
between ARI scores.

4.4.5 � Summary of findings

This final case study provides us with further confidence that 
the differences observed early on in the Q&A datasets are 
primarily caused by enhancements provided by the RAPID 
platform and the differences in the AFL1 datasets were due, 
in part, to the choice of “afl” as the lone filter term. The 
Election Day collection used several specific filter terms 
and ran long enough to collect several tens of thousands of 
tweets, enough time to avoid minor differences in start and 
stop times. Even the differences that did occur did not result 
in significant effects on several networks constructed from 
the data or on network analysis measures calculated over 
those networks.

Fig. 24   Centrality ranking comparisons from the Twarc and RAPID datasets of the Election Day collection using Kendall � scores and Spear-
man’s coefficients

Fig. 25   Centrality ranking comparisons from the Twarc and Tweepy datasets of the Election Day collection using Kendall � scores and Spear-
man’s coefficients

Table 21   Adjusted Rand index scores for the clusters found in the 
corresponding retweet, mention and reply networks built from the 
Election Day datasets

Retweet Mention Reply

Twarc/RAPID 0.547 0.656 0.737
Twarc/Tweepy 0.453 0.534 0.703
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5 � Discussion

A number of points worthy of further discussion have been 
raised by these case studies, and here we consider the statis-
tical effect of the case study variations, specifically, but then 
also more general questions regarding the size of datasets, 
the effects of language and terminology, and the influence 
of the platforms.

5.1 � Regarding statistics

The case studies presented highlight how decisions regard-
ing collection specification, such as the filter terms used or 
their number, and the collection duration, can result in data-
sets that trigger features in complex collection tools, quite 
apart from configuration of such tools to dynamically change 
the collection specification (e.g. use of RAPID’s topic track-
ing feature). The primary variations explored here involved 
filter terms although collection duration also varied, depend-
ing on the collection event. The biggest variations in paral-
lel datasets appeared when few filter terms were used and 
when they were short (i.e. having few characters), result-
ing in incidental noise from posts in unexpected languages 
(#qanda) or with unexpected acronyms and from elements 
in post metadata (#afl). When multiple terms were used, 
and when those terms were not valid words in a language 
(e.g. variations on #nswelec), the parallel datasets were 
much more similar. Although it might be common sense to 
encourage careful design of collection specifications, these 
case studies highlight the value in (and danger in not) being 
more specific, by dictating the language of posts required as 
well as using multiple filter terms.

When variations in datasets occurred, the extra tweets 
resulted in the introduction of new nodes (accounts) in 
retweet, mention and reply networks, the majority of which 
were located within the largest connected network compo-
nents (relatively few appeared as new, independent compo-
nents). This consistently reduced the density of the retweet, 
mention and reply networks, but rarely affected the diameter 
of the largest component (Q&A Part 2’s retweet network is 
an exception here), implying that the new nodes appear in 
the core of the components, rather than on the periphery. 
Consequently, the extra nodes increased reciprocity, tran-
sitivity, and sometimes maximum k core values in retweet 
and mention networks, but rarely changed reply networks. 
Reply interactions occurred least frequently in all datasets, 
and so reply networks were the least different in raw size 
(nodes and edges).

The effects of collection variation were most prominent 
in centrality scores, particularly when the collection event 
involved direct interaction between participants (e.g. issue- 
or theme-based discussions such as during Q&A and over 

weekends of football) and less straightforward information 
dissemination (e.g. during an election campaign). The rank-
ing of nodes by centrality varied most in the mention and 
reply networks of Q&A Part 1, even though more than half 
the top thousand ranked nodes in each pair of parallel net-
works were the same (an average of 560.5 for mentions and 
991 for replies). The forking patterns appearing in scatter 
plots imply the presence of groups of nodes with adjacent 
centrality rankings, which then swapped when new nodes 
were added, possibly through impacting the internal topol-
ogy of the largest components in some way. Spearman’s 
� and Kendall � correlation coefficients were consistently 
higher for reply networks than mention networks, possibly 
due to their smaller size. No particular patterns in differ-
ences between centrality types were observed, which implies 
the differences between pairs of parallel networks did not 
result in significantly different topologies.

A final lesson regarding network statistics can be drawn 
from the use of ARI scores is that even clustering of highly 
similar (e.g. almost identical) networks (in Case Study 4) 
results in ARI scores around 0.7, meaning that ARI scores 
around 0.4 can be seen as confirmation cluster membership 
is, in fact, quite similar.

5.2 � Regarding dataset size

Social media datasets analysed in the literature are often 
much larger than the datasets we have used in this study. For 
example, Cao et al. collected over a billion URLs sourced 
from Twitter alone in their study of URL sharing (Cao et al. 
2015). There is significant power in such datasets to examine 
the flow of information and influence, but their scale can 
hamper more granular examinations focusing on accounts 
and the communities they form. The study of conversations 
can rely on direct interactions, such as replies or comments 
on posts and mentions, or indirect interactions such as the 
shared use of hashtags (e.g. Ackland 2020). Such studies 
examine both the structure and dynamics of conversations 
and their prevalence, but those structures can be found in 
small, targeted datasets as well as larger ones. Information 
sharing via retweet or repost or URLs can reveal patterns of 
information dissemination and related research can certainly 
benefit from larger datasets, especially when relying on 
mathematical models of behaviour (e.g. Lee et al. 2013; Cao 
et al. 2015; Bagrow et al. 2019). Depending on researchers’ 
access to privileged APIs and data access rates, generating 
large datasets can often encounter API rate limits, raising 
the question of completeness, which may or may not be an 
issue depending on the research questions under investiga-
tion. Assuming that collections activities are rate limited in 
a consistent way, we expect larger parallel datasets to exhibit 
many of the same patterns we have observed here, but this 
remains an open question for future research.
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(a) Q&A Part 1 RAPID dataset.

(b) Q&A Part 1 Twarc dataset.

Fig. 26   Semantic networks (Radicioni et  al. 2020) of co-mentioned 
hashtags (i.e. hashtags appearing in the same tweet) built from the 
RAPID and Twarc Q&A Part  1 datasets. The node for the hashtag 
#qanda has been excluded, as all tweets included it, and the mini-
mum edge weight (i.e. times hashtags needed to co-occur in a tweet) 

was set to 3. Nodes are coloured according to Louvain clusters 
(Blondel et  al. 2008), and labels identifying individuals have been 
anonymised. It is clear that non-English clusters of tweets have been 
captured due to a clash with the term ‘qanda’
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5.3 � Regarding language and terminology clashes

Most popular OSNs have been developed in the English-
speaking world, primarily for an English-speaking audience 
(at least initially), and even though most now have significant 
non-English-speaking users (e.g. 56.5% of internet use origi-
nates in Western, Southern, Eastern and South Eastern Asia, 
Kemp 2021, slide 27), English enjoys significant support. 
Though many OSNs support many languages and alphabets 
now, anglicised spelling variants for many non-English lan-
guages exist because the major mobile operating systems 
(Apple iOS and Google Android) originate in America. For 
these reasons, if terms (essentially combinations of letters) 
that are meaningful in multiple languages are used to filter 
streams or in queries, it is possible that non-English posts 
may be captured, especially if preferred languages are not 
specified as part of the filter or query. This was certainly the 
case for the Q&A case study (Fig. 26). RAPID attempts to 
address this oversight by ensuring that filter terms appear 
in text-related fields in the posts it captures, but our experi-
ences with the AFL datasets raise questions about what other 
terms can capture posts unexpectedly. Depending on how 
OSN queries are interpreted, using “http”, “#” or “March” as 
filter terms could return every post including a URL, using 
a hashtag or posted in March—these are also questions for 
further research.

A secondary form of more common clash is semantic 
in nature, rather than lexicographical. A prime example of 
this is found in Weber and Neumann’s study of an Austral-
ian election in which the filter term #liberals (referring 
to a political party) clashed with the use of the term during 
student protests against gun violence in America, where the 
term refers more to political ideology, resulting in a spike 
of American tweets in a predominantly Australian discus-
sion (Weber and Neumann 2020). Similarly, the hashtag 
#voteno clashed in a study of the 2017 Australian postal 
plebiscite on same sex marriage, drawing in American com-
mentary on a healthcare Bill before the US Congress (Nasim 
2019). To remove such Data Smells (Foidl and Felderer 
2019), co-occurring hashtag networks, otherwise known as 
semantic networks (Radicioni et al. 2020), can be used to 
identify the out-of-scope content, but any use of automa-
tion is likely to require human oversight to avoid removing 
relevant content.

5.4 � Regarding platform influences

Two of the biggest impediments to credibility in social 
media datasets are confidence that they are complete and, if 
they are known to be incomplete, knowledge of the sampling 
biases; both of these rely on openness and transparency on 
the part of the OSNs. Case study 3 (Sect. 4.3) at least con-
firms that different credentials, when used with the same 

collection tool against the same OSN with the same network 
boundaries (i.e. filter expression), result in approximately 
identical datasets (assuming some minor variation for the 
timing of network connections). OSNs are commercial enti-
ties and thus it stands to reason that they would bias samples 
to maintain users’ attention, which could mean that if Case 
study 3 was repeated by running collections in different parts 
of the world, regional preferences (e.g. languages, topics 
of discussion) could influence the datasets, causing greater 
divergence. That said, studies of Twitter’s 1% Sample API 
seem to offer evidence contrary to that (Joseph et al. 2014; 
Paik and Lin 2015). The Sample API is different from a key-
word-based query or stream filter, however, and is primarily 
designed to support research. Query term–based APIs might 
be more likely to exhibit regional differences, as the queries 
they service could originate from user-facing applications or 
market analysts, and not just academic researchers. Though 
these studies are all focused on Twitter, most other OSNs are 
under similar commercial pressures and regional popularity 
is vital to management of their brand.

5.5 � Regarding measures for reliability 
and representativeness

The central purpose of this paper is to draw attention to 
unexpected variations in datasets collected from social 
media streams and the networks constructed from them. 
This is especially relevant when it is known that the stream 
is limited (either through platform rate-limiting or through 
platform algorithms, as occurs with, say, Twitter’s 1% sam-
ple stream). An obvious follow-up question is whether or not 
an objective measure of reliability is feasible. This relates 
closely to the question of how representative samples pro-
vided by platforms are of their entire data holdings (e.g. 
as studied by Morstatter et al. 2013; González-Bailón et al. 
2014; Joseph et al. 2014), but that question relies on exam-
ining the choices made by the platform in deciding what to 
include in the sample they offer. Here, similar to Paik and 
Lin (2015), our interest is in confirming that the data we 
request from a platform (with filter terms) matches what it 
has, or is at least representative of what it has (if rate-limits 
are encountered). Such a measure might rely on compar-
ing the distributions of various features in our result data-
set and the complete dataset (known only to the platform), 
such as the accounts and the number of tweets they post, the 
number of hashtags, URLs, and mentions used and replies, 
quotes and retweets made. Only the platform has sufficient 
information to calculate this measure, and there may be sig-
nificant value in them providing it for the free or low cost 
streams they offer to researchers, analysts and other social 
media mass consumers. Providing a measure of representa-
tiveness (indicating reliability) alongside query and filter 
results could: (1) encourage consumers to pay for the higher 
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cost streams, while also (2) providing consumers with more 
certainty in any conclusions they draw from the results they 
analyse. A measure of reliability rather than representative-
ness could, in fact, be more useful because there may be 
good reasons for results to not be truly representative—this 
would be the case when the complete dataset includes sig-
nificant amounts of spam, pornography or other objection-
able content.14 The reliability measure would indicate how 
representative the provided results are when compared with 
the complete results.

6 � Conclusion

Under a variety of conditions, the collection tools employed 
in several use cases provided different views of specific 
online discussions. These differences manifested as varia-
tions in collection statistics, and network-level and node-
level statistics for retweet, mention and reply social networks 
built from the collected data. Extra tweets were most often 
collected by Twarc, and these appear to have resulted in 
more connections within the largest components without 
affecting their diameters. This may affect results of infor-
mation diffusion analysis, as reachability correspondingly 
increases. Deeper study of reply content is required to 
inform discussion patterns.

How reliable social media can be as a source for research 
without deep knowledge of the effects of collection tools on 
analyses is an open question. If a tool adds value through 
analytics or data cleaning features, what is the nature of the 
effect? This paper provides a methodology to explore those 
effects. A canonical measure of the reliability of a dataset 
would be valuable to the research and broader social media 
analysis community. This measure would explain how com-
plete the results of a search or filter of live posts is, and if 
it is not complete, how representative the provided sample 
results are of the complete results. Only the platforms have 
this information, however there would be benefits for them 
to do so, including as an enticement to consumers to pay for 
greater access to platform data holdings, as well as helping 
inform consumers of the degree to which they can depend 
on analyses of the data they receive. Twitter, in particular, 
has recently introduced changes as part of their API version 
2.0 that facilitate academic research.15

We recommend the following to those using OSN data:

•	 Be aware of tool biases and their effects.

•	 Take care to specify filter and search conditions with key-
words that capture relevant data and avoid irrelevant data, 
and make use of metadata filters to avoid unwanted con-
tent, e.g. constraining language codes. Beware of short 
filter terms and ones that are meaningful in non-target 
languages.

•	 Check the integrity of data. We observed gaps and minor 
inconsistencies in the Election case study due to con-
nection failures as well as the appearance of duplicate 
tweets, identical in data and metadata.

There are a number of avenues by which to expand this 
research:

•	 Consolidate and expand the methodology so that it may 
be applied to other OSNs and collection tools, especially 
proprietary ones. A method to shed light on the biases of 
tools would be of great value to the community.

•	 Introduce content analysis to the comparison. If social 
networks built from parallel datasets vary, what is the 
effect on analyses of the discussion? Are text analysis 
methods robust enough to overcome differences or is it 
possible to draw entirely different conclusions, depend-
ing on the method used?

•	 Examine differences in information flow based on clus-
ters rather than just individual nodes to help inform ques-
tions about broad information flow within the networks. 
If the differences are moderate, then we may draw con-
fidence that overall flows of influence in a network may 
remain relatively steady, even with variations in the col-
lection.

•	 Although OSNs are similar when the interaction primi-
tives they offer are considered, the way in which their 
feature sets are presented in user interfaces create a 
platform-specific interaction culture, and that affects 
the observable behaviour of its users, which may in 
turn affect analyses. An exploration of how platform 
culture manifests itself and differs would help inform 
the search for higher level social activities such as 
coordination (Grimme et al. 2018; Pacheco et al. 2020; 
Weber and Neumann 2020; Graham et al. 2020).

•	 Key for future social media research is to develop pro-
cesses for repeatable analysis, including access to com-
mon datasets, both of which underpin the practice of 
benchmarking. Currently, OSN terms and conditions16 
often hamper researchers exchanging datasets, so new 
techniques cannot easily be evaluated on the same 
data, raising questions of fair comparison. For exam-
ple, Twitter requires that only tweet IDs are shared, 

14  This raises the question of how one could deliberately study such 
topics, however.
15  https://​devel​oper.​twitt​er.​com/​en/​produ​cts/​twitt​er-​api/​acade​mic-​
resea​rch.

16  E.g. https://​devel​oper.​twitt​er.​com/​en/​devel​oper-​terms/​agree​ment-​
and-​policy#​id8.

https://developer.twitter.com/en/products/twitter-api/academic-research
https://developer.twitter.com/en/products/twitter-api/academic-research
https://developer.twitter.com/en/developer-terms/agreement-and-policy#id8
https://developer.twitter.com/en/developer-terms/agreement-and-policy#id8
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forcing the next researcher to ‘re-hydrate’ the tweets 
by downloading them again from Twitter’s servers. By 
the time a new researcher does this, the data may have 
changed: metadata, such as retweet and like counts are 
constantly incremented; tweets and entire accounts may 
have been deleted or removed through suspension or 
account closure; or accounts may become private and 
inaccessible. Assenmacher et al. (2021) recently pro-
posed a benchmarking system addressing this issue, to 
which algorithm implementations can be submitted for 
execution over a dataset, leaving the dataset within the 
possession of the researcher who collected it, but who 
is now responsible for executing submitted algorithms. 
Until a more extensive solution is available, concern 
will remain over the repeatability of (and confidence 
in) social media analytics.

Finally: Does it matter if a streamed collection is not nec-
essarily either complete or representative? As long as a 
researcher makes clear how they conducted a collection 
and using what tools and configuration, does it not still 
result in an analysis of behaviour that occurred online? The 
answer is that it very much depends on the conclusions 
being drawn. Yes, the collection represents real activity 
that occurred, but the potential for its incompleteness may 
cause conclusions drawn from it to be unintentionally mis-
informed and lacking in nuance. This is especially impor-
tant for benchmarking efforts (Assenmacher et al. 2021). 
We have seen that variations in collections have an impact 
on network size and structure. This may result in different 
community compositions and affect centrality analyses, 
consequently misleading influential account identification 
and expected diffusion patterns. A firm understanding of 
the data and how it was obtained is therefore vital.
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