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Abstract
In this world of information and experience era, microblogging sites have been commonly used to express people feelings 
including fear, panic, hate and abuse. Monitoring and control of abuse on social media, especially during pandemics such as 
COVID-19, can help in keeping the public sentiment and morale positive. Developing the fear and hate detection methods 
based on machine learning requires labelled data. However, obtaining the labelled data in suddenly changed circumstances as 
a pandemic is expensive and acquiring them in a short time is impractical. Related labelled hate data from other domains or 
previous incidents may be available. However, the predictive accuracy of these hate detection models decreases significantly 
if the data distribution of the target domain, where the prediction will be applied, is different. To address this problem, we 
propose a novel concept of unsupervised progressive domain adaptation based on a deep-learning language model generated 
through multiple text datasets. We showcase the efficacy of the proposed method in hate speech and fear detection on the 
tweets collection during COVID-19 where the labelled information is unavailable.
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1  Introduction

Microblogging sites such as Twitter and Tumblr create inter-
esting social networking structures by facilitating users to 
post contents and interact with each other through replies 
and reactions. As one of the biggest social media platforms, 
Twitter facilitates the posting of hundreds of millions of 
tweets daily. These tweets are available to be collected using 
Twitter’s API. The enormous size of tweet data contains 
valuable insights that can be investigated in different ways 

such as tracking conversations, forming subgroups among 
posts (or users) as per common topics (or interests), or build-
ing classifiers to detect abuse.

When a large-scale incidence such as COVID-19 occurs, 
users start to use social media as an additional channel to 
follow official communication sources to create, share, 
validate, and disseminate crisis information 1 (Heverin and 
Zach 2012). With facilitating meaningful ideas and thoughts 
exchange, this infodemic also generates fear and panic due 
to unverified rumours and exaggerated claims and promotes 
abuse and racist forms of digital vigilantism 2 (Brindha et al. 
2020).

Analysis of social media data can give us an immedi-
ate insight into the pandemic, which help in reducing 
costs to the economy over the long term and bringing har-
mony to the society (Bashar et al. 2020; Balasubramaniam 
et al. 2020). For keeping the public sentiment and morale 
positive, the problem of hate and harassment detection 
becomes crucial than ever. Understanding of information 
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on COVID-19-related harassment and automatic detection 
of abuse will bring positive impact to society (Al-garadi 
et al. 2016).

These analyses such as the spread of fear, hate and rac-
ism require labelled data (Al-garadi et al. 2016). However, 
obtaining the labelled data in suddenly changed circum-
stances as the COVID-19 pandemic is expensive and acquir-
ing them in a short time is impractical. Related labelled data 
from other domains or previous incidents is usually available 
(Al-garadi et al. 2016; Mohammad and Kiritchenko 2018). 
However, the predictive accuracy of these detection models 
decreases significantly if the data distribution of the target 
domain, where the prediction will be applied, is different 
(Long et al. 2015; Yosinski et al. 2014; Wang and Schneider 
2014; Ghifary et al. 2014; Long et al. 2013; Baktashmot-
lagh et al. 2013; Gong et al. 2013; Pan et al. 2010; Xu et al. 
2019; Han and Eisenstein 2019; Rietzler et al. 2019). This 
paper proposes an autonomous hate speech detection method 
for datasets where labelled data is not available, which is a 
requirement to build an effective predictive model.

Domain-adaptation-based transfer learning is a common 
approach to utilise data from related domains that may have 
different distributions (Chen et al. 2019; Tzeng et al. 2017; 
Long et al. 2015; Yosinski et al. 2014; Wang and Schneider 
2014; Ghifary et al. 2014; Long et al. 2013; Baktashmot-
lagh et al. 2013; Gong et al. 2013; Pan et al. 2010; Xu et al. 
2019; Han and Eisenstein 2019; Rietzler et al. 2019). The 
goal of domain adaptation is to transfer domain-invariant 
knowledge from the labelled source domain to the unlabelled 
target domain for bridging different domains with substantial 
distribution discrepancy (Pan and Yang 2009). A major chal-
lenge in domain adaptation for predictive models is data dis-
crepancy in the domains (Long et al. 2015). For example, a 
hate speech detection model trained on common hate speech 
data obtained before the COVID-19 pandemic may not be 
able to effectively detect hate speech directed towards the 
East Asian Community during the pandemic. Word clouds 
generated from two such datasets shown in Figs. 1 and 2 

highlight the variations in two distributions, e.g. vocabulary, 
term frequency and the use of language.

Significant progress has been made in computer vision 
on domain-invariant knowledge transfer using deep learning 
models. A common approach is to learn models from data 
that can bridge the source and target domains in an isomor-
phic latent feature space (Long et al. 2013, 2015; Yosinski 
et al. 2014; Wang and Schneider 2014; Ghifary et al. 2014; 
Baktashmotlagh et al. 2013; Gong et al. 2013; Pan et al. 
2010). This research showed, in image data, deep neural 
networks can disentangle features with factors of variations 
underlying the data distribution and group features hierarchi-
cally according to their relatedness to invariant factors. This 
leads to the conjecture that features learned by deep repre-
sentation have the potential for domain adaptation. However, 
research shows that the deep features transition occurs from 
general to specific along the network (Long et al. 2015). The 
degree of generalisation in the later layers depends on the 
specificity in the early (i.e. lower) layers. Because lower lay-
ers learn domain-specific features, the feature transferability 
drops significantly in higher layers if domain discrepancy 
increases significantly (Yosinski et al. 2014). Intuitively, 
features learned by pretraining a model in a general domain 
could increase generalisation along with the network and 
enhance transferability in the task-specific layers.

Latest computer vision research in transferability of deep 
features implies enhancing transferability in the task-specific 
layers of the deep neural network by explicitly reducing the 
domain discrepancy (Long et al. 2015). To obtain this objec-
tive in an unsupervised setting, we propose to progressively 
transfer learn a language model from the general domain to 
source-specific domain. This will allow the language model 
learning domain invariant features from general domain 
datasets and progressively include additional features from 
source-specific domain datasets as necessary. This is our 
first contribution in proposing an effective autonomous hate 
speech detection method for unlabelled or small labelled 
datasets.

Fig. 1   Word cloud obtained from the random hate data (i.e. Source 
data)

Fig. 2   Word cloud obtained from the East Asian hate data (i.e. target 
data)
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Another issue in transfer learning-based classifiers is 
faced as follows. Disentangling the variational factors in 
higher layers of the network (through transfer learning to 
source domain) can enlarge the domain discrepancy between 
source and target as the model progressively adapts to the 
source domain. This is because deep feature representations 
progressively become more compact to source domain and 
mutually distinguishable (Glorot et al. 2011) from target 
domain. To address this issue, we propose to progressively 
transfer learning the language model from the source domain 
to target domain datasets. This will allow the language 
model to learn domain invariant features from the source to 
target domain datasets and adapt them to the target domain. 
This is our second contribution in proposing an effective 
autonomous hate speech detection method for unlabelled or 
small labelled datasets.

Limited research has been conducted in text process-
ing for domain adaptation in deep learning (Xu et al. 2019; 
Han and Eisenstein 2019; Rietzler et al. 2019). Existing 
research use a huge model, BERT with 110 million param-
eters (Devlin et al. 2018). Pretraining and fine-tuning such a 
huge model and making inference with it is computationally 
expensive and impractical to deploy in a standard hardware 
environment.

In this paper, we propose a novel concept of progressive 
domain adaptation based on transfer learning of a language 
model through multiple text datasets. We propose to learn 
a deep feature representation that can capture necessary 
domain invariance and disentanglement for target domain 
adaptation by bridging between general domain, source 
domain and target domain. We apply the proposed method 
for hate speech detection during the COVID-19 pandemic 
on a large Twitter dataset where the labelled information is 
unavailable. We effectively use both labelled and unlabelled 
datasets in different stages of the learning process intending 
to discover tweets that contain signs of fear and hate.

To our best of knowledge, the idea of progressive domain 
adaptation through a language model has not been inves-
tigated before in machine learning. This method is highly 
applicable to pandemics like COVID-19 where there is no 
prior information available and the detection systems are 
critical for social goods and policy making. We propose this 
novel approach to deal with the problem of lack of labelled 
data and present a systematic study learning its effects and 
dependencies in text processing.

Firstly, we investigate whether adaptation can be sen-
sitive to the domain knowledge of the pretraining corpus. 
Should a language model be adapted from a general domain 
to a source domain and then the source domain to a target 
domain to capture domain invariant features?

Secondly, there exist several neural network models for 
possible domain adaptation options. Because of different 
underlying assumptions and varying architectures, the right 

choice heavily depends on the problem at hand. We sys-
tematically instigate the suitability of deep learning models 
for this task. For example, a pretrained convolutional neural 
network (CNN) has been found effective in image classi-
fication (Sharif Razavian et al. 2014), whereas a language 
model-based pretrained model has been found effective for 
in-domain (i.e. trained and tested in the same domain) text 
classification (Howard and Ruder 2018; Bashar et al. 2020).

Thirdly, it requires a rigorous investigation as to what 
extent domain adaptation through a language model can 
learn domain invariant and disentangled features so that the 
classification model trained in the source domain works in 
the target domain.

Lastly, it is useful to have a statistical understanding of 
domain adaptation using language model modelled by a 
deep neural network (DNN) as NN is considered a black-box 
approach. A statistical understanding will help to compre-
hend why domain adaptation by language model in DNN is 
working, identify the potential application areas and inves-
tigate for future improvements. There are some studies on 
statistical understanding on NNs (Li and Gal 2017; Blundell 
et al. 2015; Gal 2016; MacKay 1992); however, there exists 
no study on domain adaptation by the language model.

2 � Related works: hate speech detection

The spread of hate speech is proliferating in online social 
media contents. Different machine learning methods use dif-
ferent terms to express hate based on a specific case study 
and/or the use of baseline datasets. For example, authors in 
Davidson et al. (2017); Malmasi and Zampieri (2017) named 
their problem as hate speech detection considering the exist-
ence of offensive language since they use dataset HatebaseT-
witter (Davidson et al. 2017) which includes three annotated 
classes: hate, offensive (but not hate) and neither; authors in 
Badjatiya et al. (2017) used VaseemA (Waseem and Hovy 
2016) and VaseemB (Waseem 2016) which include racism, 
sexism and therefore referred their problem as racism detec-
tion; authors in Mozafari et al. (2020) use VaseemA and 
HatebaseTwitter datasets and call the problem as hate speech 
detection; authors in Bashar et al. (2020) use misogynistic 
data and named their problem as misogynistic detection; and 
authors in Founta et al. (2019) use a wide range of datasets 
including Cyberbullying, offensive, hate and Sarcasm data-
sets and named their problem as abuse detection.

Though the definitions and the use of these terms vary 
in the literature, most agree that all these problems include 
a process to detect tweets that use abusive or offensive lan-
guage to target a person or a group (MacAvaney et al. 2019). 
These problems pose several common challenges such as 
subtleties in language, differing definitions of hate/abusive 
speech and limited labelled data for training and testing hate 
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speech detection models (MacAvaney et al. 2019). In this 
paper, we use this definition in the context of hate speech 
detection to COVID-19-related data which is unlabelled.

In general, these problems are dealt with machine learn-
ing-based text classification methods ranging from super-
vised to transfer learning, from traditional shallow machine 
learning to deep learning. Simple methods identify an 
instance as hate speech if it contains a potentially hateful 
keyword. However, these methods fail to detect hateful con-
tents that are implicitly hateful and do not use certain key-
words (Bashar et al. 2020, 2018). Moreover, some of these 
keywords may appear sarcastically and are not always hate-
ful (e.g. swine, trash, etc.). These methods result in detecting 
many false positives (MacAvaney et al. 2019).

2.1 � Traditional machine learning algorithms

The first and long-known family uses traditional supervised 
algorithms including Support Vector Machine (SVM), 
Logistic Regression, Random Forest, or ensemble frame-
work. These methods manually engineer the features, i.e. 
using terms or phrases (n-grams) to build the classifier based 
on labelled data (MacAvaney et al. 2019). SVM is used to 
train and decide a hateful tweet with the presence of pro-
fane but not hateful content (Malmasi and Zampieri 2017). 
Logistic regression was selected as the final modal to iden-
tify tweets as hateful, offensive or neither after comparing 
with algorithms such as Naïve Bayes, Decision trees, Ran-
dom Forest and SVMs (Davidson et al. 2017). Authors in 
Rajalakshmi and Reddy (2019) designed two models using 
logistic regression and Random Forest by making use of dif-
ferent weighting methods including TF-IDF, Mutual Infor-
mation and Chi-square to detect hate and offensive German 
and Hindi tweets.

2.2 � Deep learning algorithms

Another family of methods based on deep learning archi-
tectures have shown promising results in the presence of 
large labelled data since they can learn hidden nonlinear 
patterns embedded in tweets. They use a complex multiple 
layers model and integrate complex linguistic contexts using 
word embeddings (e.g. Word2Vec Mikolov et al. 2013 or the 
whole sequence of words Kuncoro et al. 2018) to capture 
semantics (Devlin et al. 2018; Yang et al. 2018). These meth-
ods vary by using different architectures or making use of 
different input text/meta data (Founta et al. 2019). Different 
architectures such as CNN, LSTM (Long Short-Term Mem-
ory, a special case of Recurrent Neural Networks (RNNs)) 
and fastText3 were used with different types of features to 

detect hateful tweets based on labelled racism and sexism 
tweets (Badjatiya et al. 2017). Solving the same problem, a 
CNN model was built with features embeddings such as one-
hot encoded n-gram vectors and word embeddings (Gam-
bäck and Sikdar 2017), or with characters and word level 
inputs (Park and Fung 2017).

However, these techniques are only effective when the 
model is trained and tested in the same domain. Their per-
formance significantly drops when trained in one domain 
and tested in another domain with varying data distribu-
tion. In this paper, we propose a novel domain adaptation 
method for the deep learning-based classifier to address this 
situation when there is no labelled target data available for 
building a hate speech detection classifier.

2.3 � Transfer learning algorithms

The most relevant to the proposed method is the emerg-
ing family of methods based on transfer learning. Becom-
ing common in computer vision, it is a learning technique 
that utilises knowledge that has been learned before in other 
tasks or domains. Generally, these methods follow a two-
step process: the first step is to pretrain the model using an 
available dataset and available language model architecture, 
and the second step is to fine-tune the model to the target 
domain or task.

Depending on the availability of labelled data in both 
source and target domains, these methods can be divided 
into different groups such as self-taught learning, multi-
task learning, domain adaptation or unsupervised transfer 
learning. The problem considered in this paper falls into the 
domain adaption problem where we have limited labelled 
data available in source domain and only unlabelled data 
is available in target domain.

In computer vision, models learn domain-invariant 
knowledge from data that can bridge the source and tar-
get domains in an isomorphic latent feature space (Chen 
et al. 2019; Tzeng et al. 2017; Long et al. 2015; Yosin-
ski et al. 2014; Wang and Schneider 2014; Ghifary et al. 
2014; Long et al. 2013; Baktashmotlagh et al. 2013; Gong 
et al. 2013; Pan et al. 2010). For example, Adversarial 
Discriminative Domain Adaptation (ADDA) Tzeng et al. 
(2017) has an embedding part and a classification part. 
The embedding part first learns a discriminative repre-
sentation using the labels in the source domain. The target 
data is then used to fine-tune the embedding part through 
a domain-adversarial loss. This process of ADDA is fur-
ther improved in Progressive Feature Alignment Network 
(PFAN) (Chen et al. 2019) that combines three losses, 
namely Adaptive Prototype Alignment loss, Class Dis-
crimination loss and Domain Discrimination loss to fine-
tune the embedding network to the target data. However, 
these models require a large amount of labelled data in the 3  https://​fastt​ext.​cc.

https://fasttext.cc
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source domain. On the other hand, the proposed method 
does not need labelled data in its embedding part as it uses 
a language model for learning the word embedding from 
the source domain and fine-tuning the embedding to the 
target domain. Our experimental results in this research 
confirm that if the source domain does not have a large 
amount of labelled data, these models such as ADDA and 
PFAN cannot perform well.

Recently pretrained language models have shown to be 
an effective transfer learning for many downstream text 
processing tasks (Bashar et al. 2020; Howard and Ruder 
2018; Devlin et al. 2018). In particular, a language model-
based transfer learning was used for detecting misogynistic 
tweets when there is a small set of labelled data available 
for training the classifier (Bashar et al. 2020). A handful 
of methods exist that transfer knowledge from a different 
source task. For example, the Multi-Granularity Alignment 
Networks (MGAN) (Li et al. 2019) model is proposed to 
transfer knowledge from an aspect-category classification 
task. Knowledge is transferred from a document-level senti-
ment classification task by reusing the weights of an LSTM 
network (He et al. 2018). More commonly, the BERT lan-
guage model is fine-tuned to transfer knowledge across dif-
ferent domains (Xu et al. 2019; Han and Eisenstein 2019; 
Rietzler et al. 2019).

BERT is a huge language model with 110 million param-
eters (Devlin et al. 2018) that predicts masked words instead 
of a next word in a given sequence. Pretraining, fine-tuning 
and making inference are computationally very expensive 
for such a huge model and impractical to deploy in a stand-
ard hardware environment owned by most organisations 
except the technology Giants like Google, Facebook, Ama-
zon or OpenAI. BERT is pretrained using a huge dataset. 
In contrast, we propose a much smaller language model 
based on LSTM with 24 million parameters. Such a smaller 
model allows us to pretrain it with a smaller dataset. How-
ever, a small dataset cannot cover the multitude of domains 
often required by domain adaptation. Therefore, we propose 
a novel technique of progressive domain adaptation with 
multiple datasets that cover multiple domains for effective 
domain adaptation.

To the best of our knowledge, ours is the first work pro-
posing the progressive domain adaptation through a lan-
guage model and validating the model in the task of hate 
speech detection effectively.

3 � Proposed method

In this section, we present the proposed methodology for 
unsupervised domain adaptation by progressive transfer 
learning of language model. We consider unsupervised 
domain adaptation with a limited labelled source data for 
building a text classifier for unlabelled target data. Figure 3 
shows the overview of the proposed method. We use pro-
gressive transfer learning of language model for linking con-
text (e.g. how language is used) and features (e.g. words) by 
capturing necessary domain invariance and disentanglement 
by bridging among general, source and target domains.

Suppose there exist a limited labelled source dataset 
Ds = {Xs

i
, Ys

i
} , a target unlabelled dataset Dt = {Xt

i
} and a 

total of Nr unlabelled datasets {Dr
k
}
Nr

k=1
= {Xrk

i
}
Nr

k=1
 related 

to Ds or Dt . Assume that the data distribution of source and 
target domain is different, i.e. Ps(X

s
i
, Ys

i
) ≠ Pt(X

t
i
, Yt

i
) where 

Yt
i
 are predicted labels of target samples. It can be said that 

Pt is changed from Ps by some domain shift. The objec-
tive of unsupervised domain adaptation is to obtain a model 
F ∶ X → Y  that can predict corresponding labels {Yt

i
} for 

{Xt
i
} given {Xs

i
, Ys

i
} , {Xt

i
} and {Xrk

i
}
Nr

k=1
 during the training 

as inputs.
We decompose the mapping F ∶ X → Y  into two parts. 

First, the input Xs
i
 is mapped to a �-dimensional latent 

deep feature vector �i ∈ ℝ
� by a language model L , i.e. 

�i = L(Xi;�) where � is the parameter set in the language 
model. Then, the feature vector �i is mapped to label Yi by a 
classification model C , i.e. Yi = C(�i;�) where � is the param-
eter set in the classification model.

Our goal is to make the features �i domain-invari-
ant between source Ds and target Dt . That is, we want to 
make the distribution Ps(�i) = {L(Xi;�s)|Xi ∼ Ps(Xi)} and 
Pt(�i) = {L(Xi;�t)|Xi ∼ Pt(Xi)} is similar, where �s is the 
set of parameters learned in the source domain and �t is the 

Fig. 3   Progressive transfer 
learning for domain adaptation
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set of parameters learned in the target domain. According 
to the covariate shift assumption, this would make the label 
prediction accuracy on the target domain to be the same as 
on the source domain (Shimodaira 2000).

The dissimilarity calculation between distributions Ps(�i) 
and Pt(�i) is non-trivial as � is high-dimensional and distri-
butions are constantly changing as the learning progresses 
(Ganin and Lempitsky 2015). One way to estimate the dis-
similarity is to look at the loss of the Language Model L 
in cross-domain, i.e. trained in source domain and evalu-
ated in target domain or vice versa. This can be true if the 
parameters � of the Language model have been optimally 
trained to generate texts, i.e. predicting (n + 1)th word given 
previous n words.

To achieve the domain invariant objective, we propose 
progressively transfer learning through {Dr

k
}
Nr

k=1
 datasets 

that progressively relate to the target domain from a source 
domain. The goal is to achieve a smooth probability distri-
bution of features from the source to target domains. The 
progressive transfer learning is described in detail in the 
following subsection. We then fine-tune the language model 
L in the source domain Ds to use the latent deep features for 
training a classifier C with the Ds dataset. After training, the 
classifier is applied to target domain Dt.

In summary, we want the parameters of both the language 
model and the classifier to be optimised to minimise the 
empirical loss for target domain samples. This requires the 
discriminativeness of features in C to classify the instances 
and generalisation in L so that the learned features can be 
effective in the target domain for the classification task. 
In other words, we want to implicitly reduce the loss 
L(F) = L(L) + L(C).

3.1 � Language model

Let X = (x1,… xn) be a feature vector representing an 
instance or sample. A language model L = p(xj|x1 … xj−1) 
seeks to predict the probability of observing the jth fea-
ture xj , given the previous (j − 1) features (x1 … xj−1) . ∏n

j=1
p(xj�x1 … xj−1) = p(x1,… , xn) = p(X) can be interpreted 

as the probability of observing an instance (e.g. a sequence 
or a sentence) in a dataset. However, it is computationally 
difficult to estimate 

∏n

j=1
p(xj�x1 … xj−1) (Bashar et al. 2020). 

A simple estimation for this can be:

Nonetheless, observing enough data (in order to obtain 
realistic counts for any sequence of j features for any non-
trivial value of j) from a dataset is unrealistic (Bashar et al. 
2020). Therefore, the Markov assumption can be used to 
address this problem (Hausman and Woodward 1999). It 

p(xj|x1,… , xj−1) =
count(x1,… , xj−1, xj)

count(x1,… , xj−1)

assumes that the probability of observing a feature xj at a 
given position j of the sequence is only dependent on the 
features observed in the previous (j − 1,… , j − c) positions, 
and independent of the features observed in all of the posi-
tions before j − c.

Adhering to this, a Word2Vec model uses a sliding window 
S of size c over the corpus {Xi} to learn word embeddings 
(Mikolov et al. 2013). Within the window S, the Continuous 
Bag-of-Words (CBOW) model of Word2Vec uses context 
(surrounding words) to predict a target word, and the skip-
gram model of Word2Vec uses a target word to predict a 
context. For the CBOW model, Eq. 1 can be written as,

where Sj represents the starting position of sliding window 
S at jth word (or feature). The objective of Word2Vec is to 
learn model parameters � (a.k.a. word embeddings or word 
vectors of N words) from a large unlabelled dataset to max-
imise p(xN ,… , x1) over the dataset. That is,

The learned N word vectors ( � ) can be viewed as the approx-
imate distributed representation of p(xN ,… , x1) over the 
dataset.

Even though word embeddings have been used in a myr-
iad of applications (Mikolov et al. 2013; Wang et al. 2019), 
it ignores two important characteristics of a given sequence: 
(i) the order of features in the sliding window S; and (ii) non-
linear and hierarchical interactions between features. Since 
Word2Vec uses a single hidden layer, it can capture only the 
linear interaction between features. However, features of a 
sequence (e.g. a sentence in a natural language) can have 
many levels of nonlinear hierarchical interactions (Mnih 
et al. 2009). An effective language model L should capture 
the order of features and their nonlinear interactions. This 
capacity allows a language model to encode the complexity 
of a language such as grammatical structure as well as to 
distil a fair amount of knowledge from the corpus (Jozefo-
wicz et al. 2016).

To capture the order of features and their nonlinear and 
hierarchical interactions, an RNN or its variants such as 

(1)

p(xj|x1,… , xj−1) ≡p(xj|xj−c,… , xj−1)

p(xn,… , x1) ≡

n∏

j=1

p(xj|xj−c,… , xj−1)

(2)

ln p(xn,… , x1) ≡

n∑

j=1

ln p(xj|xj−c,… , xj−1)

≡

n−c+1∑

j=1

∑

xk∈Sj

ln p(xk|Sj − {xk})

argmax
�

N−c+1∑

i=1

∑

xj∈Si

ln p(xj|Si − {xj},�)
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LSTM can be used (Mikolov et al. 2010; Jozefowicz et al. 
2016). Given a sequence of features, an RNN recurrently 
processes each feature and uses multiple hidden layers to 
capture the order of features and their nonlinear and hier-
archical interactions. A simple RNN, as shown in Fig. 4, is 
constructed by repeatedly applying a function fh that gen-
erates a hidden state �j for jth feature xj represented with 
vector �j , i.e.

where � is the parameter (weight) matrix for input to hidden 
layer for jth feature, � is the parameter matrix for hidden 
layer of (j − 1) th feature to hidden layer of jth feature, � is 
bias vector, and � is a (nonlinear) activation function such 
as tanh or Rectified Linear Unit (ReLU).

The hidden state is used to derive a vector of probabilities 
representing the network’s prediction of the subsequent fea-
ture in the sequence. The network aims to minimise the loss 
calculated based on the vector of probabilities and the actual 
next feature. In simple words, the context of all previous 
features in the sequence is encoded within the parameters � 
of the network and the probability of getting the next word 
is distributed over the vocabulary using a Softmax function 
(Jozefowicz et al. 2016). The model output � can be defined 
as follows.

where � is the parameter matrix for a hidden layer to output 
for jth feature, � is the bias vector, and � is a softmax func-
tion used to convert the result into a probability distribution 
over vocabulary. LSTM (Hochreiter and Schmidhuber 1997) 
uses a gating mechanism to ensure proper propagation of 
information through many steps of a sequence to retain long-
term dependencies.

It can be noted that a RNN/LSTM can approximate the 
Language model L by approximating joint probabilities over 
the feature sequences:

�j = fh(�j, �j−1) = �(�j� + �j−1� + �)

�j = fo(�j) = �(�j�) + �

In this research, we use the hidden state to obtain the �
-dimensional latent deep feature vector �i ∈ ℝ

� for the 
sequence X.

3.2 � Progressive transfer learning for domain 
adaptation

When a model learns p(X) from a dataset D, the learned 
probability distribution depends on the corpus D. In 
other words, p(X) is conditioned on the corpus D, i.e. 
p(X,D) = p(X|D)p(D) . As p(�) = {p(L(X;�))|X ∼ p(X)} , 
distribution p(�) depends on the corpus D.

The objective is make the latent features � = L(X) to be 
invariant for source Ds and target Dt domains. The problem 
of making � domain invariant through transfer learning for 
a small source dataset is not well studied. When the source 
domain dataset Ds is small, using existing techniques as in 
computer vision such as Ganin and Lempitsky (2015), Long 
et al. (2015), Hoffman et al. (2018), and Xu et al. (2019) is 
not feasible. A larger dataset can more closely approximate 
the population (Banko and Brill 2001). However, if the data-
set is small, we run the risk of learning properties that are 
unusual just by chance. The smaller the dataset, the higher 
the risk.

The traditional transfer learning approach in text process-
ing that learns p(X) from a single dataset (Jozefowicz et al. 
2016; Merity et al. 2017; Melis er al. 2017) can be benefited 
using a large dataset that covers multiple related domains 
for achieving domain invariance. However, estimating p(X) 
using an RNN/LSTM model on a huge dataset that covers 
the multitude of domains can be very expensive in terms of 
required computation and memory (Bradbury et al. 2016). 
Besides, it can learn irrelevant and misleading relationships 

(3)
n∏

j=1

p(xj|x1 … xj−1,�) ≈ p(x1,… , xn) = p(X)

Fig. 4   A single-layered RNN 
model
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in data due to interactions between different domains in a 
single corpus (Bashar et al. 2020).

To address these issues, we propose a progressive domain 
adaptation method based on transfer learning of language 
model L as shown in Fig. 5. This can incorporate knowl-
edge from multiple datasets to make � domain invariant for 
source domain Ds and target domain Dt while discriminative 
for the task-specific classification in C.

Let there be m number of datasets or corpora 
{Ds,Dt, {Dr

k
}
Nr

k=1
} from which the multi-domain knowledge 

can be gained.

If we assume the datasets are independent of each other, 
applying the Naive Bayes assumption, we can write

A RNN/LSTM model built on corpus Dk to learn 
p(�|Dk)p(Dk) will have its parameters �k . It can be 
expressed as follows.

If the same language model L is sequentially built from the 
given m datasets, parameters �i learned on ith dataset will 
only depend on the parameters �i−1 learned on the (i − 1)th 

p(�,D1,… ,Dm)

= p(�|D1,… ,Dm)p(D1,… ,Dm)

= p(�|D1,… ,Dm)p(D1|D2,… ,Dm)

… p(Dm−1|Dm)p(Dm)

p(�|D1,… ,Dm)p(D1|D2,… ,Dm)… p(Dm−1|Dm)p(Dm)

∝ p(�|D1,… ,Dm)p(D1)p(D2)… p(Dm)

∝ p(�|D1)p(�|D2)… p(�|Dm)p(D1)p(D2)… p(Dm)

= p(�|D1)p(D1)p(�|D2)p(D2)… p(�|Dm)p(Dm)

=

m∏

k=1

p(�|Dk)p(Dk)

m∏

k=1

p(�|Dk)p(Dk) ≈

m∏

k=1

p(�|Dk,�k)p(Dk,�k)

=

m∏

k=1

p(�|Dk,�k)p(�k|Dk)p(Dk)

dataset, applying the Markov assumption (Hausman and 
Woodward 1999).

Here �0 is the initial weight that may be assigned randomly. 
Assuming the same probability (or uncertainty) for each 
dataset, domain adaptation can be expressed as follows.

The following observations can be made based on Eq. 4. 
(1) Each dataset Dk relevant to the source or target domain 
can reduce uncertainty. This reinforces the previous findings 
based on word embedding that if word vectors of Word-
2Vec are pretrained using a corpus relevant to the target 
task domain, performance of the target task is significantly 
improved (Bashar et al. 2018). (2) Pre-training of RNN/
LSTM for L should be done by the order of the dataset of a 
general population distribution to the dataset of specific pop-
ulation distribution because the parameter vector �k depends 
on �k−1 . For example, we can approximate the population 
distribution of Queensland (i.e. specific) from that of Aus-
tralia (i.e. general) but the opposite is not true. (3) It may be 
difficult to decide which one of the source and target datasets 
is more general. We want to train our classifier using source 
labelled dataset Ds and want to apply it to the target domain 
Dt . This means parameters �t of L(�|�� ,�

�
) will depend on 

parameters �s of L(�|��,�
�
) . Therefore, L will need to be 

trained from source domain-specific datasets to the target 
domain-specific dataset.

3.3 � Classifier domain adaptation

Disentanglement of variational factors mainly happens in 
the classifier training. The goal of classifier domain adapta-
tion is to transform deep features in a fashion that changes 
only necessary properties of the underlying deep state while 
leaving all other properties invariant. This is supposed to 
give exploitable structure to any kind of data (Higgins et al. 
2018).

Let Ds be a small dataset that contains Nf  features and 
Nc classes. X = (x1,… xn) is a feature vector representing 

m∏

k=1

p(�|Dk,�k)p(�k|Dk)p(Dk)

≈

m∏

k=1

p(�|Dk,�k)p(�k|Dk,�k−1)p(Dk)

(4)

p(�,D1,… ,Dn) ≈

m∏

k=1

p(�|Dk,�k)p(�k|Dk,�k−1)p(Dk)

=

m∏

k=1

p(�|Dk,�k)p(�k|Dk,�k−1)

∝

m∑

k=1

ln
(
p(�|Dk,�k)p(�k|Dk,�k−1)

)

Fig. 5   Progressive domain adaptation of language model L
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an instance in Ds . Let C be a set of Nc classes. The clas-
sification task is to assign an instance to a class Cl based 
on the feature vector X.

In this research, we use LSTM for both language model 
L and classifier C . Figure 6 shows the proposed architec-
ture. When a LSTM model is trained to assign X to Cl , 
first it learns the latent feature vector � for X. This type of 
classification models learns a joint probability distribution 
p(Cl,�, �) that can be written as,

where � is the set of model parameters, P(Cl|�, �) is the 
discriminative probability leaned by the model and p(�) is 
the prior probability.

In the Classification Model of Fig. 6, earlier layers 
preceding the Linear Layer learn p(�) that summarises 
X prior to learning discriminative probability. The Linear 
Layer and the Class Softmax layer together learn the dis-
criminative probability P(Cl|�, �) . Note that p(�) in Eq. 5 
can regularise p(Cl|�, �) as pointed out in our prior work 
(Bashar et al. 2020).

In transfer learning, as p(�) does not depend on class 
label Cl , p(�) is learned from some external unlabelled 
datasets and fine-tuned during classification (Bashar et al. 
2020). We argue that if p(�) can be learned domain invari-
ant for source domain Ds and target domain Dt , then p(�) 
can adapt P(Cl|�, �) for target domain Dt when trained in 
source domain Ds.

(5)p(Cl,�, �) = P(Cl|�, �)p(�)

In Sect. 3.2, we described how to learn � as domain invari-
ant to represent X using progressive transfer learning of L in 
m number of unlabelled datasets. We use the Language Model 
architecture in Fig. 6 for progressive transfer learning of our 
language model for learning p(�) as domain invariant.

In both language and classification models, each layer pre-
ceding Softmax and Liner Layer learns hierarchically general 
to specific latent feature vectors ⟨�1,… ,�n⟩ for feature vec-
tor X.

As we discussed in Sect. 3.2, we use progressive domain 
adaptation for learning � in a domain invariant way. Fine-
tuning during classifier training can abruptly change � . There-
fore, to keep � domain invariant in the classification model, 
we keep earlier layers frozen throughout the training, i.e. 
⟨�1,… ,�n−2⟩ > are not updated during the classifier train-
ing. After classifier C has been trained and validated on source 
dataset Ds , we apply C on target dataset Dt . In dataset Dt no 
parameter C is updated, i.e. no learning is done in Dt.

Next we empirically analyse how much p(Cl|�, �) can be 
adapted to target domain using p(�) leaned by progressive 
transfer learning of L when a small number of data is available 
in source domain Ds = {Xs

i
, Ys

i
}.

Fig. 6   Model architecture of L 
and C for progressive domain 
adaptation



	 Social Network Analysis and Mining (2021) 11:69

1 3

69  Page 10 of 18

4 � Empirical evaluation

We name the proposed LSTM-based progressive domain 
adapted classification model as LSTM-DA. The primary 
objectives of LSTM-DA evaluation are to show the effec-
tiveness of progressive domain adaptation when the target 
domain has no labelled data and the source domain has a 
small set of labelled data. We investigate the followings: (a) 
sensitivity of domain adaptation to the domain knowledge 
of pretraining datasets; (b) sensitivity of progressive domain 
adaptation to the order of pretraining datasets (or domains); 
(c) effectiveness of different models in domain adaptation 
(trained in the source domain and applied in target domain); 
(d) comparison of the progressively domain adapted model 
with other state-of-the-art models when trained and applied 
in the same domain (i.e. in-domain performance). All exper-
iments were conducted to achieve the best accuracy perfor-
mance in detecting hate speech in tweets.

4.1 � Data collection

We use several datasets for tuning a language model, build-
ing a classifier and evaluating the performance of the clas-
sifier for hate detection.

4.1.1 � Target dataset: east Asia hate dataset (EAHD)

The dataset EAHD (Vidgen et al. 2020) is used as the target 
dataset Dt . It represents the domain of COVID-19 East Asia 
hate, collected between 1st January and 17th March 2020. 
EAHD includes a total number of 20,000 tweets labelled as 
to whether a tweet is East Asian relevant and, if so, what is 
the stance (Very Negative, Negative, Neutral, Positive and 
Very Positive). A total of 3898 instances are labelled posi-
tive (i.e. very negative or negative stance towards East Asian 
people). To remove the skewness in the data class, we ran-
domly selected a total of 3898 instances labelled as Neutral, 
Positive and Very Positive. In our experiments, we use this 
subset of data containing a total of 7,796 instances. Labels 
are only used for evaluation.

4.1.2 � Source labelled dataset: general hate dataset (GHD)

The dataset GHD, collected from Kaggle4, is used as the 
source dataset Ds . GHD includes the tweets for the year 
2018 before the COVID-19 pandemic broke. GHD is in the 
domain of general hate before COVID-19, e.g. hate against 
Muslims, black people, white people, women, etc. This data-
set has a total of 31,962 tweets out of which 2,242 instances 
are positive (i.e. hate). After stratification, a total number of 

4,484 instances remained in the subset of data for experi-
mental evaluation.

4.1.3 � Pretraining datasets for domain adaptation

1.	 Dataset D1 : Wiki103 This is our general domain data-
set. The goal of using this corpus is to capture the gen-
eral properties of the English language. We pretrain the 
Language model on Wikitext-103 that contains 28,595 
verified good quality and featured Wikipedia articles and 
103 million words (Merity et al. 2016). After pretraining 
the language model on D1 , we approximate the prob-
ability distribution p(�|D1,�1).

2.	 Dataset D2 : Random Global Tweets (RGT) The goal 
of using this corpus is to bridge the data distribution 
between the general domain dataset D1 and the source 
domain Ds (i.e. general hate dataset GHD). D2 is needed 
because the source domain dataset Ds is small and likely 
has a different distribution than the general corpus D1 . 
Dataset D2 should be chosen such that it is relevant to 
Ds . D2 contains 16.28 million random tweets collected 
in 2018 before the COVID-19 pandemic started. The 
Twitter Stream Application Programming Interface 
(API) was used in collecting this dataset.

	   As p(�|D2,�2)p(�2|D2,�1) is approximated on D2 , 
the parameter set �2 can be considered tuned with D2 
and �1 . D2 may not be the complete subset of D1 , i.e. 
D2 may contain some exclusive information other than 
D1 . This means p(�|D2,�2)p(�2|D2,�1) is more spe-
cific and less uncertain than p(�|D1,�1) in relation to 
source domain Ds . We propose using discriminative fine-
tuning (tune each layer of LSTM with different learning 
rates) and slanted triangular learning rates (first rapidly 
increases the learning rate and then slowly decays) How-
ard and Ruder (2018) for fine-tuning the L with D2.

3.	 Dataset D3 : COVID-19 Australian Sphere Tweets 
(CAST) The goal of this corpus is to capture the target 
domain Dt relevant specific factors. D3 is needed because 
the target domain dataset Dt likely has a different dis-
tribution than the source domain-relevant dataset D2 . 
D3 should be chosen such that it is relevant to Dt . D3 
contains twitter conversation in the Australian Sphere 
on COVID-19 from 27th November 2019 when the first 
break out occurred in China to 7th September 2020. The 
data collection is done via the QUT facility of Digital 
Observatory5 using the Twitter Stream API. The data-
set consists of 6.8 million tweets. Every tweet in the 
dataset contains or uses as a hashtag at least one of the 
following keywords: coronavirus, covid19, covid-19, 

4  https://​www.​kaggle.​com/​vkrah​ul/​twitt​er-​hate-​speech.
5  https://https://www.qut.edu.au/institute-for-future-environments/
facilities/digital-observatory.

https://www.kaggle.com/vkrahul/twitter-hate-speech
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covid_19, coronovirusoutbreak, covid2019, covid, and 
coronaoutbreak.

	   Once fine-tuning of L is done on D3 , we get an 
approximation for p(�,D1,D2,D3) ≈ p(�,�) which is 
an approximation for p(�) . Similar to D2 , we use dis-
criminative fine-tuning and slanted triangular learning 
rates for fine-tuning the L with D3.

4.2 � Evaluation measures ad experimental setting

We used six standard classification evaluation measures 
(Bashar et al. 2020): Accuracy (Ac), Precision (Pr), Recall 
(Re), F 1 Score (F1 ), Cohen Kappa (CK) and Area Under 
Curve (AUC). We also report True Positive (TP), True 
Negative (TN), False Positive (FP) and False Negative (FN) 
values.

For training LSTM-DA, we use concat pooling and grad-
ual unfreezing techniques as in Howard and Ruder (2018), 
Bashar et al. (2020). For building the language model L , we 
use the state-of-the-art AWD-LSTM Merity et al. (2017) 
which is a standard LSTM with various tuned dropout hyper 
parameters. The architecture and hyper parameters of L are 
the same as that used in (Howard and Ruder 2018; Bashar 
et al. 2020). We use ReLU activations for the intermediate 
layers and the softmax activation at the last layer that outputs 
probability distributions over the target vocabulary (for L ) or 
classes (for classifier C ). Hyperparameters are tuned using 
cross-validation. We used Python Machine Learning Library 
PyTorch6 to implement this model. Coding was done using 
Jupyter Notebook7 and executed on a Linux machine8.

4.3 � Benchmarking models

We implemented 16 baseline models to compare the per-
formance of the proposed progressive domain adaptation 
based on the LSTM language model (named as LSTM-DA 
in experiments).

•	 Deep neural network models adapted to target domain 
by Word2Vec include (1) LSTM adapted by Word2Vec 
(LSTM-W) Hochreiter and Schmidhuber (1997) and (2) 
CNN adapted by Word2Vec (CNN-W) (Bashar et al. 
2018). LSTM-W has 100 units, 50% dropout, binary 
cross-entropy loss function, Adam optimiser and sig-
moid activation. The hyperparameters of CNN-W are 
set as in Bashar et al. (2018). The word vectors have 200 

dimensions and are pretrained on dataset D3 : COVID-19 
Australian Sphere Tweets (CAST). A Continuous Bag-
of-Words Word2vec (Mikolov et al. 2013) model is used 
in pretraining while the minimum count for word is set 
to 100.

•	 Deep neural network models adapted to target domain by 
adapting the embedding network include (1) adversarial 
discriminative domain adaptation (ADDA) (Tzeng et al. 
2017) and (2) progressive feature alignment network 
(PFAN) (Chen et al. 2019). ADDA has an embedding 
part and a classification part. The embedding part first 
learns a discriminative representation using the labels in 
the source domain. The target data is then used to fine-
tune the embedding part through a domain-adversarial 
loss. Originally, ADDA was proposed for domain adap-
tion in computer vision, where they used ResNet-50 as 
the base model due to its suitability in computer vision. 
However, ResNet-50 is not suitable for text data. There-
fore, we have replaced ResNet-50 with two separate 
networks (1) an LSTM that we call ADDA-LSTM and 
(2) a CNN that we call ADDA-CNN, because experi-
ments show that LSTM and CNN are suitable for text 
data (Bashar et al. 2018, 2020; Bashar and Nayak 2019, 
2021). PFAN can be considered as a more sophisticated 
version of ADDA. PFAN combines three losses, namely 
adaptive prototype alignment loss, class discrimination 
loss and domain discriminative loss to fine-tune the 
embedding network to the target data. Similar to ADDA, 
we implement two models for PFAN (1) PFAN-LSTM 
and (2) PFAN-CNN.

•	 Deep neural network models without domain adapta-
tion include (a) Plain LSTM (LSTM) (Hochreiter and 
Schmidhuber 1997), which is a traditional LSTM model 
that has not been pretrained by any data for domain adap-
tation. Similar to LSTM-W, LSTM has 100 units, 50% 
dropout, binary cross-entropy loss function, Adam opti-
miser and sigmoid activation. (b) Plain CNN (CNN) is 
similar to CNN-W, but it has not been pretrained by any 
data for domain adaptation. (c) Feedforward deep neural 
network (DNN) (Glorot and Bengio 2010). It has five 
hidden layers, each layer containing eighty units, 50% 
dropout applied to the input layer and the first two hid-
den layers, softmax activation and 0.04 learning rate. For 
all neural network-based models, hyperparameters are 
manually tuned based on cross-validation.

•	 Seven non-NN models including Support Vector 
Machines (SVM) (Hearst et  al. 1998) (linear SVM 
(SVM-L) and nonlinear SVM (SVM-N)), Random Forest 
(RF) (Liaw and Wiener 2002), XGBoost (XGB) (Chen 
and Guestrin 2016), Multinomial Naive Bayes (MNB) 
(Lewis 1998), k-Nearest Neighbours (kNN) (Weinberger 
and Saul 2009) and Ridge Classifier (RC) (Hoerl and 
Kennard 1970). Hyperparameters of all these models are 

6  https://​pytor​ch.​org/.
7  https://​jupyt​er.​org/.
8  High-performance computing facilities used in this research were 
provided by eResearch Office, Queensland University of Technology, 
Brisbane, Australia

https://pytorch.org/
https://jupyter.org/
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automatically tuned using tenfold cross-validation and 
GridSearch using scikit-learn library.

None of the models, except LSTM-DA, ADDA, PFAN, 
LSTM-W and CNN-W, are pretrained or utilised any of the 
unlabelled datasets.

4.4 � Effectiveness of domain adaptation

Table  1 compares 16 models with the proposed model 
LSTM-DA for domain adaptation. Best performing results 
are shown as bold in the table. LSTM-DA provides sig-
nificantly better performance than all other models with 
improvements in AUC performance in the range of 14% to 
27%. The second best results are obtained using MNB and 
CNN-W, and the next best results are obtained from LSTM-
W. It is interesting to note that MNB performs equally well 
as simple domain adapted models, in comparison with the 
rest of the methods that had no domain adaptation. MNB is a 
generative model that learns underlying data distribution for 
making the prediction. Due to the capability to learn under-
lying data distributions, MNB shows a better generalisation 
for the unknown domain.

Both CNN-W and LSTM-W use pretrained word vec-
tors (Word2Vec) for domain adaptation. As discussed in 
Sect. 3.1, Word2Vec is a simpler version of language model. 
Using pretrained word vectors was a popular transfer learn-
ing method (Bashar et al. 2018) before breakthrough for 
transfer learning occurred through the language model 
(Howard and Ruder 2018; Devlin et al. 2018). Therefore, it 
is not surprising that CNN-W and LSTM-W give reasonably 
good results. CNN is well known for learning varying length 

patterns similar to nGrams. On the other hand, LSTM is 
well known for learning long sequences. Because of varying 
length patterns, CNN generalise better than LSTM when the 
labelled training set is small (Bashar et al. 2018). Therefore, 
CNN-W performs better than LSTM-W and CNN perform 
better than LSTM.

Ensemble decision tree models such as RF and XGB are 
well known for their performance in classification tasks. 
However, experimental results in Table 1 show that they 
fail to generalise when the distribution of the target domain 
shifts from the source domain.

Experimental results in Chen et al. (2019), Tzeng et al. 
(2017) show that PFAN and ADDA work well in computer 
vision when there are enough labelled data in the source 
domain. However, results in Table  1 show that ADDA 
(ADDA-LSTM and ADDA-CNN) and PFAN (PFAN-LSTM 
and PFAN-CNN) do not work well when the source domain 
has limited information of labelled data. Results show that 
ADDA-CNN predicts most of the tweets as Positive that 
caused it adversely to account for the highest number of 
FP. Even though ADDA-CNN achieved the highest number 
of TP and Recall by predicting most tweets as positive, its 
Accuracy, Precision, Cappa Kohen and AUC are poor and 
F1 score is average, in comparison with LSTM-DA. On the 
other hand, PFAN-CNN predicts most of the tweets as nega-
tive that caused it adversely to account for the second high-
est number of FN. Even though PFAN-CNN achieved the 
highest number of TN by predicting most tweet as Negative, 
its Accuracy, Precision, Recall, F1, Cappa Kohen and AUC 
are poor in comparison with LSTM-DA. In summary, these 
methods produced highly skewed outcomes.

Table 1   Comparing models for 
domain adaptation

TP TN FP FN Ac Pr Re F1 CK AUC​

LSTM-DA 3215 2152 1746 683 0.688 0.648 0.825 0.726 0.377 0.688
LSTM-W 2671 1968 1930 1227 0.595 0.581 0.685 0.629 0.190 0.595
LSTM 1793 2520 1378 2105 0.553 0.565 0.460 0.507 0.106 0.553
ADDA-LSTM 1021 2879 1019 2877 0.500 0.500 0.262 0.344 0.001 0.500
ADDA-CNN 3809 229 3669 89 0.518 0.509 0.977 0.670 0.036 0.518
PFAN-LSTM 3438 790 3108 460 0.542 0.525 0.882 0.658 0.085 0.542
PFAN-CNN 1143 2916 982 2755 0.521 0.538 0.293 0.380 0.041 0.521
CNN 2612 1994 1904 1286 0.591 0.578 0.670 0.621 0.182 0.591
CNN-W 2783 1890 2008 1115 0.599 0.581 0.714 0.641 0.199 0.599
DNN 2667 1771 2127 1231 0.569 0.556 0.684 0.614 0.139 0.569
XGB 2366 1873 2025 1532 0.544 0.539 0.607 0.571 0.087 0.544
RF 2329 2123 1775 1569 0.571 0.567 0.597 0.582 0.142 0.571
SVM-L 2291 2064 1834 1607 0.559 0.555 0.588 0.571 0.117 0.559
SVM-N 2539 1964 1934 1359 0.578 0.568 0.651 0.607 0.155 0.578
kNN 1596 2525 1373 2302 0.529 0.538 0.409 0.465 0.057 0.529
MNB 2851 1820 2078 1047 0.599 0.578 0.731 0.646 0.198 0.599
RC 1725 2432 1466 2173 0.533 0.541 0.443 0.487 0.066 0.533



Social Network Analysis and Mining (2021) 11:69	

1 3

Page 13 of 18  69

Reasonable good results of MNB, CNN-W and LSTM-W 
implies that generative modes have a better potential for gen-
eralisation to different domains. The proposed LSTM-DA 
model uses a sophisticated language model L that was pro-
gressively pretrained to learn domain invariant latent deep 
features. Therefore, when the class discriminative features 
are aligned with domain invariant features during the clas-
sification training, its performance in learning the decision 
boundary by maximising the likelihood is significantly better 
than any other models.

4.5 � Ablation study of progressive domain 
adaptation

We conducted a set of experiments to validate the effect 
of different combinations of datasets used to pretrain the 
language model L . The experimental results presented in 
Table 2 show that domain adaptation results are best for 
LSTM-DA when L is progressively pretrained with W →
R→ C (i.e. general → source domain-relevant specific → tar-
get domain-relevant specific). This combination produces 
improved performance in comparison with the combinations 
of W →C→ R, W → C, W → R and W. A better performance 
with W →R→ C than W confirms our conjecture that mul-
tiple relevant datasets can yield improved performance for 
domain adaptation than using a huge dataset only. The next 
best performance is obtained with W → C, which is better 

than W → R. It indicates that knowledge captured by L from 
general to target domain-relevant specific datasets is more 
useful for domain adaptation than the knowledge captured 
from general to source domain-relevant specific datasets. 
The poorest performance obtained with W →C→ R indicates 
going from target-relevant specific to source domain-rele-
vant specific datasets harms the performance. Best perform-
ing results are shown as bold in the table.

4.6 � In‑domain performance of models

For in-domain performance analysis, a pretrained model is 
fine-tuned, trained and tested (applied) with datasets that 
come from the same domain, i.e. these datasets have the 
same underlying data distribution. This analysis investigates 
how progressively domain adapted model compares with 
other models when trained and applied in the same domain. 
Experimental analysis in Sect. 4.4 shows that LSTM-DA, the 
proposed progressive domain adaptation model, performed 
significantly better than all other models. Well-known clas-
sification models such as XGBoost, RF, LSTM and CNN 
performed very poorly when the domain is changed. We 
want to test whether the poor performance of these well-
known models resulted only because of domain shift or there 
are any other issues. In-domain performance analysis will 
highlight other hidden issues.

Table 2   Effect of Dataset 
Order in Progressive Domain 
Adaptation (W: Wiki103, R: 
RGT, C: CAST; W →R→ C 
means L is first pre-trained with 
W, then R, then C)

TP TN FP FN Ac Pr Re F1 CK AUC​

W 3172 1911 1987 726 0.652 0.615 0.814 0.700 0.304 0.652
W→R 3409 1714 2184 489 0.657 0.610 0.875 0.718 0.314 0.657
W→R→C 3215 2152 1746 683 0.688 0.648 0.825 0.726 0.377 0.688
W→C 3339 1867 2031 559 0.668 0.622 0.857 0.721 0.336 0.668
W→C→R 3055 1967 1931 843 0.644 0.613 0.784 0.688 0.288 0.644

Table 3   Comparing models for 
in-domain performance

TP TN FP FN Ac Pr Re F1 CK AUC​

LSTM-DA 351 318 60 51 0.858 0.854 0.873 0.863 0.715 0.857
LSTM-W 346 297 103 34 0.824 0.771 0.911 0.835 0.650 0.827
LSTM 309 302 98 71 0.783 0.759 0.813 0.785 0.567 0.784
CNN-W 356 274 126 24 0.808 0.739 0.937 0.826 0.618 0.811
CNN 338 277 123 42 0.788 0.733 0.889 0.804 0.579 0.791
DNN 316 298 102 64 0.787 0.756 0.832 0.792 0.575 0.788
XGB 310 310 90 70 0.795 0.775 0.816 0.795 0.590 0.795
RF 309 316 84 71 0.801 0.786 0.813 0.799 0.603 0.802
SVM-L 281 307 93 99 0.754 0.751 0.739 0.745 0.507 0.753
SVM-N 298 324 76 82 0.797 0.797 0.784 0.790 0.594 0.797
kNN 204 321 79 176 0.673 0.721 0.537 0.615 0.342 0.670
MNB 324 271 129 56 0.763 0.715 0.853 0.778 0.528 0.765
RC 273 322 78 107 0.763 0.778 0.718 0.747 0.524 0.762
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For in-domain performance comparison, we use the tar-
get dataset Dt , EAHD. We use the same stratified dataset, 
split into 80/10/10 for training/validation/testing, created by 
data creators (Vidgen et al. 2020). Their empirical analysis 
revealed the best performance (F1 of 0.83) with RoBERTa 
(BERT like transfer learning model) and the F1 score of 0.76 
with the baseline LSTM (Vidgen et al. 2020).

The results of our experiments are shown in Table 3. 
Best performing results are shown as bold in the table. The 
proposed LSTM-DA model obtains F1 of 0.863 and outper-
forms the rest of the models used in this paper as well as 
models used in the research where this dataset was created 
(Vidgen et al. 2020). CNN-W, LSTM-W and CNN yield 
higher Recall value than our model LSTM-DA; however, 
LSTM-DA has higher values for Ac, Pr, F 1 , CK and AUC. 
In other words, CNN-W, LSTM-W and CNN yield a lot of 
false positives which implies these models are biased to the 
positive class.

The higher recall of CNN might be caused by the abil-
ity of CNN to learn varying patterns that can generalise 
well. The higher recall of CNN-W and LSTM-W might 
be caused by the generalisation capacity of linear model 
Word2Vec. It will be interesting to see the performance 
when a CNN model is trained with progressively domain 
adapted L and combine some features from Word2Vec (e.g. 
creating an extra channel in the CNN model that can take 
Word2Vec word embedding). We will investigate this in our 
future work. In-domain performance analysis shows that 
well-known models perform reasonably well. This implies 
that the poor performance of these models as discussed in 
Sect. 4.4 comes from domain shift that they are unable to 
learn, whereas the proposed model LSTM-DA can capture 
necessary domain invariance and disentanglement for target 
domain by the proposed transfer learning with data reflecting 
general domain, source domain and target domain.

5 � Case study: fear and hate spread 
during COVID‑19

We conducted a case study by using the proposed LSTM-
DA model to know how fear and hate spread during the 
COVID-19 pandemic in the Australian Twitter sphere. Is 
there a common pattern between fear and hate (i.e. East 
Asian hate)? We kept the same language model L tuned with 
datasets related to general, source and target domains and 
only changed Ds and Dt.

Fear Tweet Data We filter the 6.8 million tweets in the 
CAST dataset using 17 fear-related keywords, found effec-
tive in prior research (Lambert et al. 2014), as shown in 
Table 5. After filtering the CAST dataset with fear keywords, 
we are left with 147K (147,240) tweets. This data is the 
target dataset Dt in this case study.

Fear prediction with LSTM-DA model We used the 
domain adapted classification model C (using L ) to predict 
which of these CAST tweets are actual fear. We collected 
the labelled fear dataset from Mohammad and Kiritchenko 
(2018) as the source dataset Ds . The training set has 2252 
(762 positive and 1490 negative) labelled tweets, and the 
validation set has 389 (138 positive and 251 negative) 
labelled tweets. The test set in the dataset is not labelled. 

Table 4   Fear prediction results TP TN FP FN Ac Pr Re F1 CK AUC​

67 227 24 71 0.756 0.736 0.486 0.585 0.422 0.695

Table 5   Filtering keywords

List of fear-related keywords (Lambert et al. 2014)
 afraid, fear, feared, fearful, fearing, fears, frantic, fright, horr, panic, scare, scaring, scary, terrified, terrifies, terrify, terror

List of East Asia-related keywords (Vidgen et al. (2020)
 chinavirus, wuhan, wuhanvirus, chinavirusoutbreak, wuhancoronavirus, wuhaninfluenza, wuhansars, chinacoronavirus, wuhan2020, chinaflu, 

wuhanquarantine, chinesepneumonia, coronachina, wohan

Fig. 7   Word cloud obtained from fear tweets in CAST Dataset
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Therefore, we trained and validate C using the training set 
and test the model using the validation set. The experimental 
result on the validation set is provided in Table 4. We then 
applied this fear classifier to predict fear in Dt with 147K 
fear-related tweets.

The model predicted 53K (53156) tweets out of these 
147K tweets as fear-relevant. Note, we have no labelled 
CAST data to validate the accuracy by standard measures. 
A word cloud generated from the fear tweets in CAST 
dataset is shown in Fig. 7. The distribution of these fear 
tweets over the period (i.e. 27th November 2019 to 7th Sep-
tember 2020) is shown in Fig. 9.

East Asia Hate Tweets Data We filter the 6.8 million 
tweets in the CAST dataset using 14 East Asia hate-related 
keywords, found effective in prior research (Vidgen et al. 
2020), as shown in Table  5. Some of these keywords 
express anti-East Asian sentiments (e.g. chinaflu), and 
others (e.g. wohan) are neutral. After filtering the CAST 
dataset with East Asian hate keywords, we are left with 
78K (78,508) tweets. This data is the target dataset Dt in 
this problem.

Hate prediction with LSTM-DA model We used the 
domain adapted classification model C (using L ) to predict 
which of these CAST tweets are actual East Asia hate. We 
used EAHD dataset (Vidgen et al. 2020) as the source data-
set Ds.

The model predicted 13K (13920) tweets out of these 
78K tweets as East Asia hate relevant. Note, we have no 
labelled CAST data to validate the accuracy by standard 
measures. Figure 8 shows a word cloud generated from the 
tweets predicted as East Asian hate by our model from the 
13K tweets. Figure 9 shows how tweets predicted as East 
Asian hate are distributed over time. The distribution of 
these hate tweets over the period (i.e. 27th November 2019 
to 7th September 2020) is shown in Fig. 9. In general, a fear 
peak is followed by an East Asian hate peak. For a closer 
observation, we have transformed this figure into log scale 
in Fig. 10.

Fear and Hate analysis Figures 9 and 10 show that 
counts of both fear and hate tweets fluctuate throughout 
the time, but both curves hit their peaks at the most active 
COVID-19 period in Australia (from February 2020 to May 
2020) except the first peak of hate. The first peak of hate 
happened in January, fear was present during this time but 
not at its peak. This might be because at that time COVID-
19 happened in China only and fear may have not emerged 
strongly in Australia.

We can observe from Figs. 9 and 10 that peak times of 
fear and hate during COVID-19 are generally similar. This 
can be explained as when people feel more fearful, they 
react in a negative way which may lead to hate or even 
anger. However, it can be seen that fear tweet count domi-
nates hate tweet count over the COVID-19 period. This is 
strong evidence that fear is a primal human emotion when 
people face an uncertain situation that may put their lives 
under threat. These fears may relate to various things, job 

Fig. 8   Word cloud obtained from East Asian Hate Tweets in CAST

Fig. 9   Fear and hate distribution over the time

Fig. 10   Fear and hate distribution over the time in log scale
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loss, economic stagnation, isolation, along fears regarding 
their health and lives. More importantly, people may not 
always hate what they fear and that hate is just a manifes-
tation of fear.

Based on this analysis, it is unclear whether fear of 
COVID-19 has led people to hate East Asian people. How-
ever, it is safe to conclude that these two emotions are 
strongly related during the COVID-19 pandemic based on 
the CAST data.

6 � Conclusion

We propose a novel concept of unsupervised progressive 
domain adaptation of a language model through multi-
ple text datasets when the target domain does not have 
labelled data. Such a language model learns a deep feature 
representation that can capture necessary domain invari-
ance and disentanglement for target domain adaptation 
by bridging between general domain, source domain and 
target domain. The deep features learned by the domain 
adapted language model are then used to train a classi-
fier using a small labelled dataset from a related source 
domain dataset. Finally, we apply the trained classifier to 
a target domain dataset where labelled data is unavailable. 
We showcase the proposed method by applying for hate 
speech and fear detection during the COVID-19 pandemic 
on a large Twitter dataset where the labelled information 
is unavailable. Though the proposed model is evaluated on 
the problem of hate and fear tweet detection, the method 
is applicable to any other situation where it is difficult to 
get a labelled dataset.

A series of experiments were conducted to investigate 
its effectiveness. When the classifier is trained on the 
domain adapted language model, the classifier performs 
significantly better than other state-of-the-art models. 
Theoretical analysis and experimental results show that 
the domain adaptation of the language model to learn 
necessary domain invariance and disentanglement for the 
target domain can significantly impact the accuracy of the 
classifier. Specifically, the domain adapted model LSTM-
DA improved classification accuracy significantly when 
compared with the Word2Vec-based domain adaptation 
that captures features from the target domain.

By providing a Bayesian probability analysis of the pro-
posed progressive domain adaptation, this paper implies 
the potential of domain adaptation through other models 
(e.g. CNN, Attention Models, etc.). Also, this implies the 
use of domain adaptation for selecting relevant features 
from the unlabelled datasets that can improve the seman-
tics of available and missing features in a small labelled 
dataset. Bayesian probability analysis of the model can 
also be useful to identify and estimate uncertainties in the 

domain adaptation to choose the right datasets and models 
for pretraining, fine-tuning and training. This will be our 
future direction of research.
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