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Abstract
Political misinformation, astroturfing and organised trolling are online malicious behaviours with significant real-world 
effects that rely on making the voices of the few sounds like the roar of the many. These are especially dangerous when they 
influence democratic systems and government policy. Many previous approaches examining these phenomena have focused 
on identifying campaigns rather than the small groups responsible for instigating or sustaining them. To reveal latent (i.e. hid-
den) networks of cooperating accounts, we propose a novel temporal window approach that can rely on account interactions 
and metadata alone. It detects groups of accounts engaging in various behaviours that, in concert, come to execute different 
goal-based amplification strategies, a number of which we describe, alongside other inauthentic strategies from the literature. 
The approach relies upon a pipeline that extracts relevant elements from social media posts common to the major platforms, 
infers connections between accounts based on criteria matching the coordination strategies to build an undirected weighted 
network of accounts, which is then mined for communities exhibiting high levels of evidence of coordination using a novel 
community extraction method. We address the temporal aspect of the data by using a windowing mechanism, which may 
be suitable for near real-time application. We further highlight consistent coordination with a sliding frame across multiple 
windows and application of a decay factor. Our approach is compared with other recent similar processing approaches and 
community detection methods and is validated against two politically relevant Twitter datasets with ground truth data, using 
content, temporal, and network analyses, as well as with the design, training and application of three one-class classifiers 
built using the ground truth; its utility is furthermore demonstrated in two case studies of contentious online discussions.
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1 Introduction

Online social networks (OSNs) have established themselves 
as flexible and accessible systems for activity coordination 
and information dissemination. This benefit was illustrated 
during the Arab Spring (Carvin 2012) but inherent dangers 
are increasingly apparent in ongoing political interference 
and disinformation (Howard and Kollanyi 2016; Ferrara 

2017; Keller et al. 2017; Neudert 2018; Singer and Brook-
ing 2019; Nimmo et al. 2020). Modern Strategic Information 
Operations (SIOs) are participatory activities, which aim to 
use their audiences to amplify their desired narratives, not 
just receive it (Starbird et al. 2019). The widespread use of 
social media for political communication and its identity-
obscuring nature have made it a prime target for politically-
driven influence, both legitimate and illegitimate. Through 
cyclical reporting (i.e. social media feeding stories and nar-
ratives to traditional news media, which then sparks more 
social media activity), social media users can unknowingly 
become “unwitting agents” as “sincere activists” of con-
certed operations (Benkler et al. 2018; Starbird and Wilson 
2020). The use of political bots and trolls to influence the 
framing and discussion of issues in the mainstream media 
(MSM) remains prevalent (Bessi and Ferrara 2016; Wool-
ley 2016; Woolley and Guilbeault 2018; Rizoiu et al. 2018; 
Cresci 2020). The use of bots and sockpuppet accounts 
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to amplify individual voices above the crowd, sometimes 
referred to as the megaphone effect, requires coordinated 
action and a degree of regularity that may leave traces in 
the digital record.

Relevant research has focused on high-level analyses 
of campaign detection and classification (Lee et al. 2013; 
Varol et al. 2017; Alizadeh et al. 2020), the identification 
of botnets and other dissemination groups (Vo et al. 2017; 
Woolley and Guilbeault 2018), and coordination at the com-
munity level (Kumar et al. 2018; Hine et al. 2017; Cresci 
2020). Some have considered generalised approaches to 
social media analytics (e.g. Weber 2019; Graham et al. 2020; 
Nizzoli et al. 2021; Pacheco et al. 2021), but unanswered 
questions regarding the clarification of coordination strate-
gies and their detection remain. Forensic studies of SIOs 
and other influence campaigns using these strategies (e.g. 
Benkler et al. 2018; Jamieson 2020; Nimmo et al. 2020) 
currently require significant human input to reveal the cov-
ert ties underpinning them, and could benefit greatly from 
enhanced automation.

In this work, we expand upon the novel approach to 
detect groups engaging in potentially coordinated amplifica-
tion activities, revealed through anomalously high levels of 
coincidental behaviour, which we presented at ASONAM’20 
(Weber and Neumann 2020). Links between the group mem-
bers are inferred from behaviours that, when used intention-
ally, are used to execute a number of identifiable coordina-
tion strategies. We use a range of techniques to validate our 
new approach on two relevant datasets, as well as compari-
son with ground truth and a synthesised dataset, and show it 
successfully identifies coordinating communities.

Our approach infers ties between accounts to construct 
latent coordination networks (LCNs) of accounts, using cri-
teria specific to different coordination strategies, which are 
based on features common to major OSNs. The accounts 
may not be directly connected, thus we use the term ‘latent’ 
to mean ‘hidden’ when describing these connections. 
The inference of connections is performed solely on the 
accounts’ interactions, i.e. not their content or friending/
following behaviour, only metadata and temporal informa-
tion, though it could incorporate them.

Highly coordinating communities (HCCs) are then 
detected and extracted from the LCN. We propose a vari-
ant of focal structures analysis (FSA, Şen et al. 2016) to do 
this, in order to take advantage of FSA’s focus on finding 
influential sets of nodes in a network while also reducing 
the computational complexity of the algorithm. A window-
based approach is used to enforce temporal constraints.

The following research questions guided our evaluation: 

• RQ1: How can HCCs be found in an LCN?
• RQ2:How do the discovered communities differ?
• RQ3: Are the HCCs internally or externally focused?

• RQ4: How consistent is the HCC messaging?
• RQ5: What evidence is there of consistent coordination?
• RQ6: How well can HCCs in one dataset inform the dis-

covery of HCCs in another?

 This paper expands upon Weber and Neumann (2020) 
by providing further methodological detail and experimen-
tal validation, and case studies in which the technique is 
applied to new real-world Twitter datasets relating to conten-
tious political issues, as well as consideration of algorithmic 
complexity and comparison with several similar techniques. 
Prominent among the extra validation provided is the use 
of machine learning classifiers to show that our datasets 
contain similar coordination to our ground truth, and the 
application of a sliding frame across the time windows as a 
way to search for consistent coordination.

This paper provides an overview of relevant literature, 
followed by a discussion of online coordination strategies 
and their execution. Our approach is then explained, and 
its experimental validation is presented. Following the vali-
dation, the algorithmic complexity and performance of the 
technique are presented, and two case studies are explored, 
demonstrating the utility of the approach with real-world 
politically relevant datasets, and we compare our technique 
to those of Pacheco et al. (2021), Graham et al. (2020), Niz-
zoli et al. (2021) and Giglietto et al. (2020b).

1.1  A motivating example

In the aftermath of the 2020 US Presidential election, a 
data scientist noticed a pattern emerging on Twitter.1 Fig-
ure 1a shows a tweet by someone who was so upset with 
their partner voting for Joe Biden in the election that they 
decided to divorce them immediately and move to Pakistan 
(in the midst of the COVID-19 pandemic). This might seem 
an extreme reaction, but the interesting thing was that the 
person was not alone. The researcher had identified dozens 
of similar, but not always identical, tweets by people leaving 
for other cities but for the same reason (Fig. 1b). Analysis 
of these accounts also revealed they were not automated 
accounts. This kind of pattern of tweeting identical text is 
sometimes referred to as “copypasta” and can be used to 
give the appearance of a genuine grassroots movement on 
a particular issue. It had been previously used by ISIS ter-
rorists as they approached the city of Mosul, Iraq, in 2014, 
which they occupied for several years after the local forces 
believed a giant army was invading based on the level of 
relevant online activity (Brooking and Singer 2016).

1 Tweeted 2020-11-17: https:// twitt er. com/ consp irato r0/ status/ 13284 
79128 90813 2358.

https://twitter.com/conspirator0/status/1328479128908132358
https://twitter.com/conspirator0/status/1328479128908132358
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It is unclear whether this “copypasta” campaign is part 
of a deliberate SIO, designed to damage trust in the elec-
toral system and ability of Americans to accept the loss of 
a preferred political party in elections, or simply a group of 
like-minded jokers starting a viral gag or engaging in a kind 
of flashmob. At the very least, it is important to be able to 
identify which accounts are participating in the event, and 
how they are coordinating their actions.

1.2  Online information campaigns and related work

Social media has been increasingly used for communication 
in recent years (particularly political communication), and 
so the market has followed, with media organisations using it 
for cheap, wide dissemination of their products and consum-
ers increasingly looking to it for news (Shearer and Grieco 
2019). Over that same time period, people have begun to 
explore how to exploit the features of the internet and social 
media that bring us benefits: the ability to target marketing 
to specific audiences that connects businesses with the most 
receptive customers (e.g. Kosinski et al. 2013) also enables 
highly targeted non-transparent political advertising (Wool-
ley and Guilbeault 2018; Singer and Brooking 2019) and the 
ability to expose people to propaganda and recruit them to 
extremist organisations (Badawy and Ferrara 2018; Benkler 
et al. 2018; The Soufan Center 2021); the anonymity that 
supports the voiceless in society to express themselves also 
enables trolls to attack others without repercussions (Hine 
et al. 2017; Burgess and Matamoros-Fernández 2016); and 
the automation that enables news aggregators also facilitates 
social and political bots (Ferrara et al. 2016; Woolley 2016; 
Cresci 2020). In summary, targeted marketing and automa-
tion coupled with anonymity provide the tools required for 
potentially significant influence in the online sphere, per-
haps enough to swing an election, but certainly enough to 

be associated with real-world violence (The Soufan Center 
2021; Karell et al. 2021).

Effective influence campaigns relying on these capa-
bilities will somehow coordinate the actions of their par-
ticipants. Early work on the concept of coordination by 
Malone and Crowston (1994) described it as the dependen-
cies between the tasks and resources required to achieve a 
goal. One task may require the output of another task to 
complete. Two tasks may share, and require exclusive access 
to, a resource or they may both need to use the resource 
simultaneously.

At the other end of the spectrum, sociological studies of 
influence campaigns can reveal their intent and how they are 
conducted, but they consider coordination at a much higher 
level. Starbird et al. (2019) highlight three kinds of cam-
paigns: orchestrated, centrally controlled campaigns that are 
run from the top down (e.g. paid teams, Chen 2015; King 
et al. 2017); cultivated campaigns that infiltrate existing 
issue-based movements to drive them to particular extreme 
positions (e.g. encouraging political violence during elec-
tions, Nimmo et al. 2020; Jamieson 2020; The Soufan Center 
2021); and emergent campaigns arising from enthusiastic 
communities centred around a shared ideology (e.g. con-
spiracy groups and other fringe movements). Though their 
strategies differ, they use the same online interactions as 
normal users (e.g. posts, shares, mentions, hashtags, URLs), 
but their patterns differ. Fundamentally, however, they rely 
on influencing others by spreading an agenda-driven mes-
sage or narrative.

At the scale of nation states, multiple disinformation cam-
paigns may be run as part of an operation, each with differ-
ent targets and different intended outcomes. The 2016 US 
Presidential election has received significant academic (as 
well as political and diplomatic) attention, and deep analy-
sis of the interference by Russia has revealed a variety of 

Fig. 1  Copypasta tweets noticed in the aftermath of the 2020 US Presidential election, which may be a coordinated campaign to undermine con-
fidence in American society’s ability to accept electoral outcomes, or may just be a prank similar to a flashmob



 Social Network Analysis and Mining (2021) 11:111

1 3

111 Page 4 of 42

such campaigns were employed to promote Donald Trump, 
detract from Hilary Clinton, sow doubt in the country’s 
democratic system and generally exacerbate divisions in 
society (Benkler et al. 2018; Mueller 2018; Jamieson 2020). 
Furthermore, much of the social media activity in particu-
lar was conducted by accounts made to look like average 
Americans, including “personable swing-voters” (p. 134, 
Jamieson 2020) and comparatively simple analyses of indi-
vidual accounts over long periods has revealed how they 
were used to build audiences susceptible to their narratives 
(Dawson and Innes 2019). America is clearly not the only 
target—campaigns have been directed across any national 
border as well as within (Woolley and Howard 2018; Singer 
and Brooking 2019; Nimmo et al. 2020). Many of the anal-
yses mentioned in these works rely on direct connections 
between entities (e.g. Benkler et al.’s mentions of articles 
and YouTube videos and Nimmo et al’s follower networks, 
and studies of retweet and mention networks in chapters of 
Woolley and Howard’s book), but Jamieson makes it clear 
that covert or at least indirect behaviour-related connections 
were a key part of the Russian operation during the 2016 US 
presidential election.

Disinformation campaigns effectively trigger human 
cognitive heuristics, such as individual and social biases to 
believe what we hear first (anchoring) and what we hear 
frequently and can remember easily (availability cascades) 
(Tversky and Kahneman 1973; Kuran and Sunstein 1999); 
thus the damage is already done by the time lies are exposed. 
This is especially true if they are promoted under the guise 
of authority, such as from accounts purporting to be media 
outlets, like @TodayPittsburgh or @KansasDai-
lyNews (p. 188, Miller 2018). Persuasive messaging also 
relies on emotion, especially fear, and appeals to religion 
(Jamieson 2020), and have been effective even when such 
claims border on the ridiculous and conspiratorial (The Sou-
fan Center 2021). Recent experiences of false information 
moving beyond social media during Australia’s 2019–2020 
bushfires highlight that identifying these campaigns as they 
occur can aid OSN monitors and the media to better inform 
the public (Graham and Keller 2020; Weber et al. 2020).

In between task level coordination and entire SIOs, at the 
level of social media interactions, as demonstrated by Gra-
ham and Keller (2020), we can directly observe the online 
actions and effects of such activities, and infer links between 
accounts based on pre-determined criteria. Relevant efforts 
in computer science have focused on a variety of methods 
and domains (see Table 1). These efforts have uncovered 
a new field of research: the computer science study of the 
“orchestrated activities” of accounts in general, as Grimme 
et al. (2018) put it, regardless of their degree of automation 
(Cresci et al. 2017; Alizadeh et al. 2020; Nizzoli et al. 2021; 
Vargas et al. 2020). It must be noted that bot activity, even 
coordinated activity, may be entirely benign and even use-
ful (Ferrara et al. 2016; Graham and Ackland 2017).

Though some studies have observed the existence of stra-
tegic behaviour in and between online groups (e.g. Keller 
et al. 2017; Kumar et al. 2018; Hine et al. 2017; Keller et al. 
2019; Giglietto et al. 2020b; Broniatowski 2021), the chal-
lenge of identifying a broad range of their interaction strate-
gies and their underpinning execution methods remains to 
be fully explored, especially as new strategies are constantly 
be devised (Nimmo et al. 2020).

Inferring social networks from OSN data requires attend-
ance to the temporal aspect to understand information (and 
influence) flow and degrees of activity (Holme and Saramäki 
2012). Real-time processing of OSN posts can enable track-
ing narratives via text clusters (Assenmacher et al. 2020), 
but to process networks requires graph streams (McGregor 
2014) or window-based pipelines (e.g. Weber 2019), other-
wise processing is limited to post-collection activities (Gra-
ham et al. 2020; Alizadeh et al. 2020; Vargas et al. 2020; 
Pacheco et al. 2021).

This work contributes to the identification of interaction-
based strategic coordination behaviours observable over 
relatively short time frames, along with a general technique 
to enable detection of groups using them. As such, this 
enhances the toolbox of techniques available to higher level 
explorations of information campaigns and operations (e.g. 
Benkler et al. 2018; Jamieson 2020; Nimmo et al. 2020; The 
Soufan Center 2021).

Table 1  Detecting inauthentic behaviour in the computer science literature

Automation Ferrara et al. (2016), Davis et al. (2016), Grimme et al. (2017), Cresci (2020)
Campaigns
—By content Lee et al. (2013), Assenmacher et al. (2020), Alizadeh et al. (2020), Graham et al. (2020)
—By URL Ratkiewicz et al. (2011), Cao et al. (2015), Giglietto et al. (2020b), Broniatowski (2021), Yu (2021)
—By hashtag Ratkiewicz et al. (2011), Burgess and Matamoros-Fernández (2016), Varol et al. (2017), Weber et al. (2020)
Synchronicity Chavoshi et al. (2017), Hine et al. (2017), Nasim et al. (2018), Mazza et al. (2019), Pacheco et al. (2020), 

Magelinski et al. (2021)
Communities Vo et al. (2017), Morstatter et al. (2018), Gupta et al. (2019)
Political bots Bessi and Ferrara (2016), Woolley (2016), Rizoiu et al. (2018), Woolley and Guilbeault (2018) (particularly 

embeddedness and organisation)
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2  Coordinated amplification strategies

Influencing others online, especially on political and social 
issues, relies on two primary mechanisms to maximise the 
reach of a given narrative thus amplifying its effect: mass 
dissemination and engagement. For example, an investiga-
tion of social media activity following UK terrorist attacks in 
20172 identified accounts promulgating contradictory narra-
tives, inflaming racial tensions and simultaneously promot-
ing tolerance to sow division. By engaging aggressively, the 
accounts drew in participants who then spread the message.

Mass dissemination aims to maximise audience, to con-
vince through repeated exposure and, in the case of mali-
cious use, to cause outrage, polarisation and confusion, or at 
least attract attention to distract from other content.

Engagement is a form of dissemination that solicits a 
response. It relies on targeting individuals or communities 
through mentions, replies and the use of hashtags as well as 
rhetorical approaches that invite responses (e.g. inflamma-
tory comments or, as present in the UK terrorist example 
above and observed by Nimmo et al. (2020), pleas to highly 
popular accounts).

A number of online coordination strategies have been 
observed in the literature making use of both dissemination 
and engagement to amplify their effect, including specifi-
cally those identified in Table 2. These in particular are all 
potentially observable in short periods of online activity, 
e.g. a political debate (Rizoiu et al. 2018). Other coordinated 
behaviour observed in the literature require some ability to 
identify accounts of interest and track them over extended 
periods of time. Metadata shuffling involves groups of 
accounts hiding through changing and even swapping their 
names and other metadata (Mariconti et al. 2017; Ferrara 
2017). Related to this is narrative switching, in which an 
account suddenly deletes all their posts and then, potentially 
after a significant period of time, starts posting about differ-
ent themes and issues (perhaps also having changed their 

account’s appearance) (Dawson and Innes 2019). Dawson 
and Innes (2019) also observed changes in accounts’ fol-
lower counts to identify the purchase of fake followers and 
follower fishing (used to boost reputation metrics), both 
of which require records of potentially lengthy periods of 
activity. Dawson and Innes (2019) also use synchronicity to 
identify groups temporally correlated through activity, but 
neglect to describe their specific method.

Different behaviour primitives, such as those in Table 3, 
can be used to execute the amplification strategies men-
tioned. Many of these behaviour primitives have analogies 
on multiple OSNs, so techniques devised to detect them on 
one could be employed effectively on others. Dissemination 
can be carried out by reposting, using hashtags, or mention-
ing highly connected individuals in the hope they spread 
a message further. Accounts doing this covertly will avoid 
direct connections, and thus inference is required for iden-
tification. Giglietto et al. (2020b) propose detecting anoma-
lous levels of coincidental URL use as a way to do this; we 
expand this approach to other interactions.

Some strategies require more sophisticated detection: 
detecting bullying through dogpiling (e.g. as happened dur-
ing the #GamerGate incident, studied by Burgess and 
Matamoros-Fernández (2016), or to those posing questions 
to public figures at political campaign rallies3) requires col-
lection of (mostly) entire conversation trees, which, while 
trivial to obtain on forum-based sites (e.g. Facebook and 
Reddit), are difficult on stream-of-post sites (e.g. Twitter,4 
Parler and Gab). As mentioned, detecting metadata shuffling 
requires long term collection on broad issues to detect the 
same accounts being active in different contexts, and other 
follower and narrative analyses can also require extended 
collection periods.

Figure 2 shows representations of the strategies high-
lighted above, offering clues about how they might be 

Table 2  Coordinated amplification strategies

Pollution Flooding a community with repeated or objectionable content, causing the OSN to shut it down
Observed by (Ratkiewicz et al. 2011; Woolley 2016; Hegelich and Janetzko 2016; Hine et al. 2017; Nasim et al. 2018; Fisher 2018; Mariconti 

et al. 2019)
Boost Heavily reposting or duplicating content to make it appear popular
Observed by (Ratkiewicz et al. 2011; Cao et al. 2015; Varol et al. 2017; Vo et al. 2017; Gupta et al. 2019; Keller et al. 2019; Graham et al. 

2020; Assenmacher et al. 2020)
Bully Groups engaging in organised harassment of an individual or community.
Observed by (Ratkiewicz et al. 2011; Burgess and Matamoros-Fernández 2016; Hine et al. 2017; Kumar et al. 2018; Datta and Adar 2019; 

Mariconti et al. 2019)

2 https:// crest resea rch. ac. uk/ resou rces/ russi an- influ ence- uk- terro rist- 
attac ks/.

4 Changes introduced with Twitter’s Application Programming Inter-
face (API) version 2.0 aim to make this easier: https:// devel oper. twitt 
er. com/ en/ docs/ twitt er- api/ conve rsati on- id.

3 https:// www. bbc. co. uk/ bbcth ree/ artic le/ 72686 b6d- abd2- 471b- ae1d- 
84265 22b1a 97.

https://crestresearch.ac.uk/resources/russian-influence-uk-terrorist-attacks/
https://crestresearch.ac.uk/resources/russian-influence-uk-terrorist-attacks/
https://developer.twitter.com/en/docs/twitter-api/conversation-id
https://developer.twitter.com/en/docs/twitter-api/conversation-id
https://www.bbc.co.uk/bbcthree/article/72686b6d-abd2-471b-ae1d-8426522b1a97
https://www.bbc.co.uk/bbcthree/article/72686b6d-abd2-471b-ae1d-8426522b1a97
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identified. To detect Pollution, we match the authors of posts 
mentioning the same (hash)tag. This way we can reveal not 
just those who are using the same hashtags with significantly 
greater frequency than the average but also those who use 
more hashtags than is typical. To detect a variant of Boost, 
we match authors reposting the same original post, and can 
explore which sets of users not only repost more often than 
the average, but those who repost content from a relatively 
small pool of accounts. Alternatively, we can match authors 
who post identical, or near-identical text, as seen in our 
motivating example (Sect. 1.1); Graham et al. (2020) have 
recently developed open-sourced methods for this kind of 
matching, which have previously been used for campaign 
analysis (Lee et al. 2013). Considering reposts like retweets, 
however, it is unclear whether platforms deprioritise them 
when responding to stream filtering and search requests, so 
special consideration may be required when designing data 
collection plans. Finally, to detect Bully, we match authors 
whose replies are transitively rooted in the same original 
post, thus they are in the same conversation. This requires 
collection strategies that result in complete conversation 
trees, and also stipulates a somewhat strict definition of 
‘conversation’. On forum-based OSNs, the edges of a ‘con-
versation’ may be relatively clear: by commenting on a post, 
one is ‘joining’ the ‘conversation’. Delineating smaller sets 
of interactions within all the comments on a post to find 
smaller conversations may be achieved by regarding each 
top-level comment and its replies as a conversation, but this 
may not be sufficient. Similarly, on stream-based OSNs, a 
conversation may be engaged in by a set of users if they all 
mention each other in their posts, as it is not possible to reply 
to more than one post at a time.

2.1  Problem statement

A clarification of our challenge at this point is:

To identify groups of accounts whose behaviour, 
though typical in nature, is anomalous in degree.

There are two elements to this. The first is discovery. How 
can we identify not just behaviour that appears more than 
coincidental, but also the accounts responsible for it? That is 
the topic of the next section. The second element is valida-
tion. Once we identify a group of accounts via our method, 
what guarantee do we have that the group is a real, coordi-
nating set of users? This is especially difficult given inau-
thentic behaviour is hard for humans to judge by eye (Cresci 
et al. 2017; Benkler et al. 2018; Jamieson 2020).

3  Methodology

The major OSNs share a number of features, primarily in 
how they permit users to interact with each other, digital 
media and the platforms (e.g. Table 3); hashtags, URLs, 
and mentions work much the same way across many OSNs. 
By focusing on these commonalities, we can develop 
approaches that generalise across OSNs.

Traditional social network analysis relies on long-stand-
ing relationships between actors (Wasserman and Faust 
1994; Borgatti et al. 2009). On OSNs this requirement is 
typically fulfilled by friend/follower relations. These are 
expensive to collect and quickly degrade in meaning if 
not followed with frequent activity. By focusing on active 
interactions, however, it is possible to understand not just 

Fig. 2  Patterns matching the mentioned coordinated amplification strategies. Green posts and avatars are benign, whereas red or maroon ones 
are malign

Table 3  Social media 
interaction equivalents

OSN POST REPOST REPLY MENTION TAG LIKE

Twitter Tweet Retweet Reply tweet @Mention #Hashtags Favourite
Facebook Post Share Comment Mention #Hashtag Reactions
Tumblr Post Repost Comment @Mention #Tag Heart
Reddit Post Crosspost Comment /u/Mention Subreddit Up/down vote
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who is interacting with whom, but to what degree. This pro-
vides a basis for constructing (or inferring) social networks, 
acknowledging they may be transitory.

LCNs are built from inferred links between accounts. 
Supporting criteria relying on interactions alone, as observed 
in the literature (Ratkiewicz et al. 2011; Keller et al. 2019), 
include retweeting the same tweet (co-retweet), using the 
same hashtags (co-hashtag) or URLs (co-URL), or mention-
ing the same accounts (co-mention). To these we add join-
ing the same ‘conversation’ (a tree of reply chains with a 
common root tweet) (co-conv). As mentioned earlier, other 
ways to link accounts rely on similar or identical content, 
metadata and temporal patterns (see Sect. 2). The criteria 
underpinning LCN links may be a combination of these and 
other interaction types.

3.1  The LCN/HCC pipeline

The key steps to extract HCCs from raw social media data 
are shown in Fig. 3 and documented in Algorithm 1. The 
example in Fig. 3 is explained after the algorithm has been 
explained, in Sect. 3.1.2.

Fig. 3  Conceptual LCN construction and HCC discovery process

Step 4. Construct an LCN, L, from the pairings in M. This 
network L = (V ,E) is a set of vertices V representing 
accounts connected by undirected weighted edges E of 
inferred links. These edges represent evidence of different 
criteria linking the adjacent vertices. The weight of each 
edge e ∈ E between vertices representing accounts u and v 
for each criterion c is wc(e) , and is equal to �c

{u,v}
.

Most community detection algorithms will require the 
multi-edges be collapsed to single edges. The edge weights 
are incomparable (e.g. retweeting the same tweet is not 
equivalent to using the same hashtag), however, for practical 
purposes, the inferred links can be collapsed and the weights 
combined for cluster detection using a simple summation, 
e.g. Eq. (1), or a more complex process like varied criteria 
weighting.

Some criteria may result in highly connected LCNs, even 
if its members never interact directly. Not all types of coor-
dination will be meaningful—people will co-use the same 
hashtag repeatedly if that hashtag defines the topic of the 
discussion (e.g. #auspol for Australian politics), in which 
case it is those accounts who co-use it significantly more 
often than others which are of interest. If required, the final 
step filters out these coincidental connections.

Step 5. Identify the highest coordinating communities H 
in L (Fig. 3e) using a suitable community detection algo-
rithm, such as Blondel et al. (2008)’s Louvain algorithm 
(used by Morstatter et al. 2018; Nasim et al. 2018; Vosoughi 

(1)w(e) =

q∑

c=1

wc(e)

Step 1. Convert social media posts P to common 
interaction primitives, Iall . This step removes extrane-
ous data and provides an opportunity for the fusion of 
sources by standardising all interactions (thus including 
only the elements required for the coordination being 
sought).

Step 2. From Iall , filter the interactions, IC , relevant to 
the set C = {c1, c2,… , cq} of criteria (e.g. co-mentions and 
co-hashtags).

Step 3. Infer links between accounts given C, ensuring 
links are typed by criterion. The result, M, is a collection of 
inferred pairings. The count of inferred links between 
accounts u and v due to criterion c ∈ C is �c

{u,v}
.

et al. 2018; Nizzoli et al. 2021), k nearest neighbour (kNN) 
(used by Cao et al. 2015), edge weight thresholding (used 
by Lee et al. 2013; Pacheco et al. 2021), or FSA (Şen et al. 
2016), an algorithm from the Social Network Analysis 
community that focuses on extracting sets of highly influ-
ential nodes from a network. Depending on the size of the 
dataset under consideration, algorithms suitable for very 
large networks may need to be considered (Fang et  al. 
2019). Some algorithms may not require the LCN’s multi-
edges to be merged (e.g. Bacco et al. 2017). We present 
a variant of FSA (Şen et al. 2016), FSA_V (Algorithm 2), 
designed to take advantage of FSA’s benefits while address-
ing some of its costs. FSA does not just divide a network 
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into communities (so that every node belongs to a commu-
nity), but extracts only subsets of adjacent nodes that form 
influential communities within the overall network. FSA_V 
reduces the computational complexity introduced by FSA, 
which recursively applies Louvain to divide the network into 
smaller components and then, under certain circumstances, 
stitches them back together. The reason for this is to make 
FSA_V more suitable for application to a streaming sce-
nario, in which execution speed is a priority.

Similar to FSA, FSA_V initially divides L into com-
munities using the Louvain algorithm but then builds can-
didate HCCs within each, starting with the ‘heaviest’ (i.e. 
highest weight) edge (representing the most evidence of 
coordination). It then attaches the next heaviest edge until 
the candidate’s mean edge weight (MEW) is no less than � 
( 0 < 𝜃 ≤ 1 ) of the previous candidate’s MEW, or is less than 
L’s overall MEW. In testing, edge weights appeared to fol-
low a power law, so � was introduced to identify the point at 
which the edge weight drops significantly; � requires tuning. 
A final filter ensures no HCC with a MEW less than L’s is 
returned. Unlike in FSA, recursion is not used, nor stitching 
of candidates, resulting in a simpler algorithm.

domain inasmuch as it either requires a tighter temporal con-
straint (i.e. a smaller time window) or tighter stream filter crite-
ria, causing a reduction in the number of accounts, potentially 
along with a reduction in posts. Algorithmic complexity is 
discussed in Sect. 3.3.

3.1.1  Addressing the temporal aspect

Temporal information is a key element of coordination, and 
thus is critical for effective coordination detection. Frequent 
posts within a short period may represent genuine discussion 
or deliberate attempts to game trend algorithms (Grimme et al. 
2018; Varol et al. 2017; Assenmacher et al. 2020). We treat 
the post stream as a series of discrete windows to constrain 
detection periods. An LCN is constructed from each win-
dow (Step 4), and these are aggregated and mined for HCCs 
(Step 5). We assume posts arrive in order, and assign them to 
windows by timestamp.

3.1.2  A brief example

Figure 3 gives an example of searching for co-hashtag and 
co-mention coordination across Facebook, Twitter, and 

5 Linking identities across social media platforms is beyond the 
scope of this work, but the interested reader is referred to Adjali et al. 
(2020) for a recent contribution to the subject.

This algorithm prioritises edge weights while maintaining 
an awareness of the network topology by examining adjacent 
edges, something ignored by simple edge weight filtering. 
Our goal is to find sets of strongly coordinating users, so we 
prioritise strongly tied communities while still acknowledg-
ing coordination can also be achieved with weak ties (e.g. 
100 accounts paid to retweet one tweet).

The complexity of the entire pipeline is low order polyno-
mial due primarily to the pairwise comparison of accounts to 
infer links in Step 3, which can be constrained by window size 
when addressing the temporal aspect. For large networks (i.e. 
networks with many accounts), that may be too costly to be 
of practical use; the solution for this relies on the application 

Tumblr posts. The posts are converted to their interaction 
primitives in Step 1, shown in Fig. 3a. The information 
required from each post is the identity of the post’s author,5 
the timestamp of the post for addressing the temporal aspect, 
and the hashtag or account mentioned (there may be many, 
resulting in separate records for each). This is done in 
Fig. 3b, which shows the filtered mentions (in orange) and 
hashtag uses (in purple), ordered according to timestamp.
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Step 3 in Fig. 3c involves searching for evidence of coor-
dination through searching for our target coordination strat-
egies through pairwise examination of accounts and their 
interactions. Here, three accounts co-use a hashtag while 
only two of them co-mention another account.

By Step 4 in Fig.  3d, the entire LCN has been con-
structed, and then Fig. 3e shows its most highly coordinat-
ing communities.

As mentioned above, to account for the temporal aspect, 
the LCNs produced for each time window in Fig. 3d can be 
aggregated and then mined for HCCs, or HCCs could be 
extracted from each window’s LCN and then they can be 
aggregated, or analysed in near real-time, as dictated by the 
application domain.

3.1.3  Opportunities for fusion

As mentioned above, many of the interaction we consider 
have analogies on multiple OSNs, so a technique applied 
to Twitter, for example, may also be effective on Reddit 
or Tumblr. Misinformation was widely disseminated over 
Facebook, Tiktok, Twitter, and WhatsApp during the 2021 
Israeli/Palestinian conflict as links to misattributed videos, 
images of blocks of text, and audio files.6 Our technique 
could be used to study coordinated link (i.e. URL) sharing 
across these platforms in an appropriate time period, similar 
to the work of Giglietto et al. (2020b) and Broniatowski 
(2021)—all that is required from each platform’s posts are 
the identity of the posting account, the link posted7 and 
the post’s timestamp. The identities of accounts posting 
the URLs will differ between platforms, of course, but this 
technique may also provide a mechanism for cross-platform 
identity matching, associating accounts that frequently post 
the same or similar content. Nimmo et al. (2020) essentially 
performed this task manually by searching for the same arti-
cle content across different platforms, and then confirming 
similarity between the account names found. Our technique 
could be incorporated into the researcher’s workflow to 
make this task easier by searching for duplication of text, 
and automatically linking instances where it is found, and 
then highlighting those connections.

3.2  Validation methods

As mentioned in Sect. 2.1, the second element of addressing 
our research challenge is that of validation. Once HCCs have 

been discovered, it is necessary to confirm that what has 
been found are examples of genuine coordinating groups. 
This step is required before addressing the further question 
of whether the coordination is authentic (e.g. grassroots 
activism) or inauthentic (e.g. astroturfing).

3.2.1  Datasets

In addition to relevant datasets, we make use of a ground 
truth (GT), in which we expect to find coordination (cf., 
Keller et al. 2017; Vargas et al. 2020). By comparing the 
evidence of coordination (i.e. HCCs) we find within the 
ground truth with the coordination we find in the other 
datasets, we can develop confidence that: (a) our method 
finds coordination where we expect to find it (in the ground 
truth); and (b) our method also finds coordination of a simi-
lar type where it was not certain to exist. Furthermore, to 
represent the broader population (which is not expected to 
exhibit coordination), similar to Cao et al. (2015), we create 
a randomised HCC network from the non-HCC accounts in 
a given dataset, and then compare its HCCs with the HCCs 
that had been discovered by our method.

3.2.2  Membership comparison

While our primary factors include the HCC extraction 
method (using FSA_V, kNN, or thresholds), the temporal 
window size, � , and the strategy being targeted (Boost, 
Pollution or Bully), our interest prioritises the grouping 
of accounts over how they are individually connected, and 
so for each pair of results we compare the number, edge 
count and membership of the HCCs discovered. These fig-
ures provide context for the degree of overlap between the 
HCC members identified under different conditions (i.e. 
factor values). We use Jaccard and overlap similarity meas-
ures (Verma and Aggarwal 2020) to compare the accounts 
appearing in each (ignoring their groupings) and render 
them as heatmaps. The Jaccard similarity coefficient of two 
sets of items, X and Y, is:

If there is significant imbalance in the sizes of X and Y, 
then their similarity may be low, even if one is a subset of 
the other. An alternative measure, the Overlap coefficient 
(Verma and Aggarwal 2020), takes this imbalance into 
account by using the size of the smaller of the two sets as 
the denominator:

(2)J(X, Y) =
|X ∩ Y|
|X ∪ Y|

=
|X ∩ Y|

|X| + |Y| − |X ∩ Y|
.

(3)overlap(X, Y) =
|X ∩ Y|

min(|X|, |Y|)
.

6 https:// www. nytim es. com/ 2021/ 05/ 14/ techn ology/ israel- pales tine- 
misin forma tion- lies- social- media. html.
7 More sophisticated content matching can also be used in Step  3, 
comparing what media the links refer to, rather than just the link 
itself (cf. Yu 2021).

https://www.nytimes.com/2021/05/14/technology/israel-palestine-misinformation-lies-social-media.html
https://www.nytimes.com/2021/05/14/technology/israel-palestine-misinformation-lies-social-media.html
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In a circumstance such as ours, it is unclear whether a longer 
time window will garner more results after HCC extraction 
is applied. The Jaccard and overlap coefficients can be used 
to quickly understand two facts about the sets of accounts 
identified as HCC members with different values of �:

• Is one set a subset of the other? If so, the overlap coeffi-
cient will reach 1.0, while the Jaccard coefficient will not 
if the two sets differ in size. If they are disjoint, the overlap 
coefficient will be 0.0 along with the Jaccard coefficient.

• Do the sets differ in size? If the sets are different sizes, 
but one is a subset of the other, the overlap coefficient will 
hide this fact, while the Jaccard coefficient will expose it. 
If both coefficients have values close to 0.0, then the sets 
are clearly different in membership and potentially also in 
size. If the coefficient values are very close, then the sets 
are close in size, because the denominators are similar in 
size, meaning |X ∪ Y| ≈ min(|X|, |Y|) , but this will only 
occur if they share many members (i.e. |X ∩ Y| is high).

Alongside the heatmaps, we provide exact numbers of the 
accounts which are common to the discovered HCCs, to bet-
ter inform the reader of the overall influence of the particular 
factor(s) being varied. For example, by being able to com-
pare the results for each value for � in one visualisation, it is 
possible to see the progression of the coefficient values as 
the window size increases (in both the provided raw numbers 
and by the colour scale in the heatmaps).

3.2.3  Network visualisation

A second subjective method of analysis for networks is to vis-
ualise them. We use two visualisation tools, visone (https:// 
visone. info) and Gephi (https:// gephi. org), both of which 
make use of force directed layouts, which help to clarify clus-
ters in the network structure. Node colour is used to represent 
cluster membership detected with the Louvain method (Blon-
del et al. 2008). Each connected component is an HCC, and 
node colour can be used to represent the number of posts, and 
edge weight can be represented by thickness and, depend-
ing on the density of the network, darkness of colour. For 
analyses that involve multiple criteria (e.g. co-conv and co-
mention), we use node shape to represent which combina-
tion of criteria an HCC is bound by (e.g. just co-mention or 
a combination of co-mention and co-conv or just co-conv).

By extending the HCC account networks with nodes to 
represent the ‘reasons’ or instances of evidence that link 
each pair of nodes, e.g. the tweets they retweet in common, 
or accounts they both mention or reply to, thereby creat-
ing a two-level account-reason network, we can investigate 
how HCCs relate to one another. In this case, the account-
reason network has two types of nodes and two types of 
edges (‘coordinates with’ links between accounts and 

‘caused by’ or ‘associated because’ links between ‘reasons’ 
and accounts). Visualising the two-level network by colour-
ing nodes by their HCC and using a force-directed layout 
highlights how closely HCCs associate with each other, not 
only revealing what reasons draw HCCs together (i.e. HCCs 
may be bound by a single reason, or an HCC may be entirely 
isolated from others in the broader community), but also 
how many reasons bind them (i.e. many reasons may bind an 
HCC together or just one). Deeper insights can be revealed 
from this point using multi-layer network analyses.

3.2.4  Consistency of content

To help answer RQ2, it is helpful to look beyond network 
structures and consider how consistent the content produced 
by an HCC is relative to other HCCs and the population in 
general. This will be most applicable when the type of strat-
egy the HCC is suspected to have engaged in relies on rep-
etition, e.g. co-retweeting or copypasta. If an HCC is boost-
ing a message, it is reasonable to assume the content posted 
by the members of the HCC will be more similar internally 
than when compared externally (i.e. to the content of non-
members). To analyse this internal consistency of content, 
we treat each HCC member’s tweets as a single document 
and create a doc-term matrix using 5 character n-grams for 
terms to maintain phrase ordering (which is lost with bag-
of-word approaches). Comparing the members’ document 
vectors using cosine similarity in a pairwise fashion creates 
a n ⋅ n matrix where n is the number of accounts in the HCC 
network. This approach was chosen for its performance with 
non-English corpora (Damashek 1995), and because using 
individual tweets as documents produced too sparse a matrix 
in a number of tests we conducted. The pairwise account simi-
larity matrix can be visualised, using a spectrum of colours 
to represent similarity. By ordering the accounts on both the 
x and y axes to ensure they are grouped within their HCCs, if 
our hypothesis is correct that similarity within HCCs is higher 
than outside, then we should observe clear bright squares rep-
resenting entire HCCs along the diagonal of the resulting sim-
ilarity matrix. The diagonal itself will be the brightest because 
it represents each account’s similarity with itself.

If HCCs contribute few posts, which are similar or identi-
cal to other HCCs, then bright squares may appear off the 
diagonal, and this would be evidence similar to clusters of 
account nodes around a small number of reason nodes in the 
two-level account-reason networks mentioned above.

This method offers no indication of how active each HCC 
or HCC member is, so displays of high similarity may imply 
low levels of coincidental activity as well as high content 
similarity, just because of the lower likelihood that highly 
active accounts are highly similar in content (by contrib-
uting more posts, there are simply more opportunities for 
accounts’ content to diverge). The use of the 5-character 

https://visone.info
https://visone.info
https://gephi.org
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n-gram approach is designed to offset this because each tweet 
in common between two accounts will yield a large number 
of points of similarity, as will the case when the same two 
tweets are posted in the same order (i.e. two accounts both 
post tweet t1 and then t2 ), because the overlap between the 
tweets will yield at least four points of similarity.

3.2.5  Variation of content

Converse to the consistency of content within HCC is the 
question of content variation, and how does the variation 
observed in detected HCCs differ from that of RANDOM 
groupings. Highly coordinated behaviour such as co-retweet-
ing involves reusing the same content frequently, resulting 
in low feature variation (e.g. hashtags, URLs, mentioned 
accounts), which can be measured as entropy (Cao et al. 
2015). A frequency distribution of each HCC’s use of each 
feature type is used to calculate each entropy score. Low 
feature variation corresponds to low entropy values. As 
per Cao et al. (2015), we compare the entropy of features 
used by detected HCCs to RANDOM ones and visualise 
their cumulative frequency. Entries for HCCs which did not 
use a particular feature are omitted, as their scores would 
inflate the number of groups with 0 entropy.

3.2.6  Hashtag analysis

Hashtags can be used to define discussion groups or chat 
channels (Woolley 2016), so hashtag analysis can be used 
to study those communities. It is another aspect to content 
analysis that relies upon social media users declaring the 
topic of their post through the hashtags they include. At the 
minimum, we can plot the frequency of the most frequently 
used hashtags as used by the most active HCCs. In doing so, 
we can quickly see which hashtags different HCCs make use 
of, and how they relate by how they overlap. Some hashtags 
will be unique to HCCs, while others will be used by many. 
This exposes the nature of HCC behaviour: they may focus 
their effort on a single hashtag, perhaps to get it trending, 
or they may use many hashtags together, perhaps to spread 
their message to different communities.

To further explore how hashtags are used together, we per-
form hashtag co-occurrence analysis, creating networks of 
hashtags linked when they are mentioned in the same tweet 
(as distinct from the co-hashtag linking introduced above). 
These hashtag co-occurrence networks are sometimes referred 
to as semantic networks (Radicioni et al. 2020). When visual-
ised with force-directed layouts it is possible to see themes in 
the groupings of hashtags, and to gain insights from how the 
theme clusters are connected (including when they are iso-
lated from one another). Colouring hashtags by their clusters 
detected using the Louvain method (Blondel et al. 2008) can 
provide a statistical measure of hashtag relations.

3.2.7  Temporal patterns

Campaign types can exhibit different temporal patterns (Lee 
et al. 2013), so we use the same temporal averaging tech-
nique as Lee et al. (2013) (dynamic time warping barycenter 
averaging) to compare the daily activities of the HCCs in the 
GT and RANDOM datasets with those in the test datasets. 
The temporal averaging technique produces a single time 
series made by averaging together each account’s activity 
time series. Using this technique avoids averaging out of 
time series that are off-phase from one another by aligning 
them before averaging them.

Another aspect of temporal analysis is the comparison 
of HCCs detected in different time windows, including spe-
cifically observing whether such HCCs share members and 
what the implications are for the behaviour of those mem-
bers. This is non-trivial for any moderately large dataset, but 
examination of the ground truth can provide insight into the 
behaviours exhibited by known collaborators.

3.2.8  Focus of connectivity

Groups that retweet or mention themselves create direct con-
nections between their members, meaning if one is discov-
ered, it may be trivial to find its collaborators. To be covert, 
therefore, it would be sensible to have a low internal retweet 
and mention ratios (IRR and IMR, respectively). Formally, 
if RTint and Mint are the the sets of retweets and mentions of 
accounts within an HCC, respectively, and RText and Mext are 
the corresponding sets of retweets and mentions of accounts 
outside the HCC, then, for a single HCC

3.2.9  Consistency of coordination

The method presented Sect. 3.1 highlights HCCs that coor-
dinate their activity at a high level over an entire collection 
period. Further steps can be taken to determine which HCCs 
are coordinating their behaviour repeatedly and consistently 
across adjacent time windows. In this case, for each time 
window, we consider not just the nodes and edges from 
the current LCN, but additionally from previous windows, 
applying a degradation factor the contribution of their edge 
weights. To build an LCN from a sliding frame of T time 
windows, the new LCN includes the union of the nodes and 
edges of the individual LCNs from the current and previous 
windows, but to calculate the edge weights, we apply a decay 

(4)IRR =
|RTint|

|RTint| + |RText|

(5)IMR =
|Mint|

|Mint| + |Mext|
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factor, � , to the weights of edges appearing in windows 
before the current one. In this way, we apply a multiplier of 
�x to the edge weights, where x is the number of windows 
into the past: the current window is 0 windows into the past, 
so its edges are multiplied by �0 = 1 ; the immediate previous 
window is 1 window back, so its edge multiplier is �1 ; the 
one before that uses �2 , and so on until the farthest window 
back uses �T−1 . Generalising from Step 4, the weight wc,t(e) 
for an edge e ∈ E between accounts u and v for criterion c at 
window t and a sliding window T windows wide is given by

In this way, to create a baseline in which the sliding frame 
is only one window wide, one only need choose T = 1 , 
regardless of the value of � . As � → 1 , the contributions of 
previous windows are given more consideration.

3.2.10  Supervised machine learning with one‑class 
classifiers

An approach that aids in the management of data with many 
features is classification through machine learning. This is an 
approach that has been used extensively in campaign detec-
tion, in which tweets are classified, rather than accounts (e.g. 
Lee et al. 2013; Chu et al. 2012; Wu et al. 2018). Because 
of its ‘black box’ nature, its application should be consid-
ered carefully, however. Our intent is to use classification 
to validate that entire HCCs (not just individual tweets or 
accounts) detected in datasets are similar to those found in 
ground truth. Such classifiers will not be generally appli-
cable, as they rely on ground truth (which is historical by 
nature) for training data. Tactics and strategies used in infor-
mation operations will change over time, as shown by Aliza-
deh et al. (2020); this is not just to avoid detection but also 
because OSN features change over time. As our focus is only 
on a positive answer to whether one HCC is similar to oth-
ers, it is acceptable to rely on one-class classification (i.e. an 
HCC detected in a dataset is recognised as COORDINAT-
ING/positive or is regarded as NON-COORDINATING/
unknown). The more common binary classification approach 
was used by Vargas et al. (2020), however our approach has 
two distinguishing features: 

1. We rely on one-class classification because we have pos-
itive examples of what we regard as COORDINATING 
from the ground truth, and everything else is regarded 
as unknown, rather than definitely ‘not coordinating’. 
These are sometimes referred to as positive and unla-
beled, or PU, classifiers. A one-class classifier can, for 
example, suggest a new book from a wide range (such as 
a library) based on a person’s reading history. In such a 

(6)wc,t(e) =

T−1∑

x=0

wc,(t−x)(e) ⋅ �x.

circumstance, the classifier designer has access to posi-
tive examples (books the reader likes or has previously 
borrowed) but all other instances (books, in this case) 
are either positive or negative. When our one-class clas-
sifier recognises HCC accounts as positive instances, it 
provides confidence that the HCC members are coor-
dinating their behaviour in the same manner as the 
accounts in the ground truth. We can therefore prioritise 
Precision over Recall (discussed below).

2. We rely on features from both the HCCs and the HCC 
members and use the HCC members as the instances for 
classification, given it is unclear how many members an 
HCC may have, and accounts that are members of HCCs 
may have traits in common that are distinct from ‘nor-
mal’ accounts. In contrast, Vargas et al. (2020) relied on 
features of “coordination networks” (i.e. HCCs) alone, 
as they were their classification instances. For this rea-
son the feature vectors that our classifier is trained and 
tested on will comprise features drawn from the individ-
ual accounts and their behaviour as well as the behaviour 
of the HCC of which they are a member. Feature vectors 
for members of the same HCC will naturally share the 
feature values drawn from their grouping.

Regarding the construction of the feature vector, at a 
group level, we consider not just features from the HCC 
itself, which is a weighted undirected network of accounts, 
but of the activity network built from the interactions of the 
HCC members within the corpus. The activity network is a 
multi-network (i.e. supports multiple edges between nodes) 
with nodes and edges of different types. The three node 
types are accounts, URLs, and hashtags. Edges represent 
interactions and the following types are modelled: hashtag 
uses, URL uses, mentions, repost/retweets, quotes (cf. com-
ments on a Facebook share or Tumblr repost), reply, and ‘in 
conversation’ (meaning that one account replied to a post 
that was transitively connected via replies to an original post 
by an account in the corpus). This activity network therefore 
represents not just the members of the HCC but also their 
degree of activity in context.

3.2.10.1 Classifier algorithms We use the GT to train three 
classifiers. A bagging PU classifier (BPU, Mordelet and Vert 
2014) was used, the implementation8 for which was based 
on a Random Forest (RF) classifier configured with 1000 
trees (estimators). We also used a standard 1000 tree RF, as 
used by Vargas et al. (2020), to compare directly with BPU. 
A Support Vector Machine (SVM) classifier was also used, 
given the technique’s known high performance with non-
linear recognition problems even with small feature sets due 

8 Thanks to Roy Wright for his implementation: https:// github. com/ 
roywr ight/ pu_ learn ing/ blob/ master/ baggi ngPU. py.

https://github.com/roywright/pu_learning/blob/master/baggingPU.py
https://github.com/roywright/pu_learning/blob/master/baggingPU.py
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its use of the kernel trick. Furthermore, Mordelet and Vert 
(2014) employed a variety of SVMs as part of their experi-
mentation, though our choice of implementation differed. 
Both SVM and RF implementations were drawn from the 
scikit-learn Python library (Pedregosa et  al. 2011). 
Contrasting “unlabeled” training instances were created 
from the RANDOM dataset. Feature vector values were 
standardised prior to classification and upsampling was 
applied to create balanced training sets of approximately 
400 positive and random elements each. 10-fold cross vali-
dation was used.

The classifiers predict whether instances provided to 
them are in the positive or unlabeled classes, which, to aid 
readability, we refer to as ‘COORDINATING’ and ‘NON-
COORDINATING’, respectively.

3.2.10.2 Performance metrics The performance metrics 
used include the classifier’s accuracy, F1 scores for each 
class, and the Precision and Recall measures that the F1 
scores are based upon. High precision implies the classifier 
is good at recognising samples correctly, and high Recall 
implies that a classifier does not miss instances of the class 
they are trained on in any testing data. For example, a good 
apple classifier will successfully recognise an apple when 
it is presented with one, and when presented with a bowl 
of fruit, it will successfully find all the apples in it. The F1 
score combines these two measures:

and provides insight into to the balance between the classi-
fier’s Precision and Recall. The accuracy of a classifier is the 
proportion of instances in a test data set that the classifier 
labeled correctly. In this way, the accuracy is the most coarse 
of these measures, because it offers little understanding of 
whether the classifier is missing instances it should find 
(false negatives) or labeling non-matching instances incor-
rectly (false positives). The F1 score begins to address this 
failing, but direct examination of the Precision and Recall 
provides the most insight into each classifier’s performance.

3.2.11  Bot analysis

Although coordinated behaviour in online campaigns is 
often conducted without automation (Starbird et al. 2019), 
automation is still commonly present in campaigns, espe-
cially in the form of social bots, which aim to present them-
selves as typical human users (Ferrara et al. 2016; Wool-
ley and Guilbeault 2018; Cresci 2020). For this reason, the 
technique presented here is a valid tool for exposing teams of 

(7)F1 = 2 ⋅
Precision ⋅ Recall

Precision + Recall

cooperating bot and social bot accounts. We use the Botom-
eter (Davis et al. 2016) service to evaluate selected accounts 
for bot-like behaviour. The primary summary measure for 
bot classification is the Complete Automation Probability 
(CAP),9 provided as a value in [0, 1] in two variants: one for 
predominantly English-speaking accounts and one language-
agnostic. Other studies have relied on a CAP of 0.5 as a 
threshold for labelling an account as a bot, but there is a 
significant overlap between humans that act in a very bot-
like manner and bots that are quite human-like, so we adopt 
the practice of Rizoiu et al. (2018) and regard scores below 
0.2 to be human and above 0.6 to be bots.

3.3  Complexity analysis

The steps in processing timeline presented in Sect. 3.1 are 
reliant on two primary factors: the size of the corpus of 
posts, P, being processed, and the size of the set of accounts, 
A, that posted them. Therefore |A| ≤ |P| and the complexity 
of Step 1 is linear, O(|P|), because it requires processing each 
post, one-by-one. The set of interactions, Iall , it produces 
may be larger than |P|, because a post may include many 
hashtags, mentions, or URLs, but given posts are not infi-
nitely long (even long Facebook and Tumblr posts can only 
include several thousand words), the number of interactions 
will also be linear, i.e. |I| = k|P| , for some constant k. Step 
2 filters these interactions down to only those of interest, 
IC , based on the type of coordinated activity sought, C, so 
|Iall| ≥ |IC| , and again the complexity of this step is also lin-
ear, O(|Iall|) , as it requires each interaction to be considered. 
Step 3 seeks to find evidence of coordination between the 
accounts in the dataset, and so requires examining each fil-
tered interaction and building up data structures to associate 
each account with their interactions ( O(|Iall|) ), then emitting 
pairs of accounts matching the coordination criteria, produc-
ing the set M, which requires the pairwise processing of all 
accounts, and so is |A|2 steps with a subsequent complex-
ity of O(|A|2) . This, however, also depends on the pairwise 
comparison of each account’s interactions, which is likely 
to be small, practically, but theoretically could be as large 
as |IC| if one user is responsible for every single interaction 
in the corpus (but then |A| would be 1). On balance, as a 
result, we will regard the processing of each pair of users’ 
interactions as linear with a constant factor k (i.e. O(k|A|2) 
= O(|A|2) ). In Step 4, producing the LCN, L, from the cri-
teria is a matter of considering each match one-by-one, so 
is again linear (though potentially large, depending on |M|). 
The final step (5) is to extract the HCCs from the LCN, and 
its performance and complexity very much depend upon 
the algorithm employed, but significant research has been 
applied in this field (Bedru et al. 2020, as considered in, e.g.]
[). For FSA_V, which relies on the Louvain algorithm with 
complexity O(|A| log 2|A|) (Blondel et al. 2008), it considers 9 https:// botom eter. osome. iu. edu/ faq# which- score.

https://botometer.osome.iu.edu/faq#which-score
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edges within each community to build its HCC candidates, 
so has a complexity of less than O(|E|), where |E| is the num-
ber of edges in the LCN, meaning its complexity is linear. 
FSA_V’s complexity is therefore O(|A| log 2|A| + |E|).

We regard the computation complexity of the entire pipe-
line as the highest complexity of its steps, which are: 

1. Extract interactions from posts: O(|P|)
2. Filter interactions: O(|Iall|)
3. Find evidence of coordination: O(|A|2)
4. Build LCN from the evidence: O(|M|)
5. Extract HCCs from LCN using, e.g. FSA_V: 

O(|A| log 2|A| + |E|)

The maximum of these is Step 3, the search for evidence 
of coordination, O(|A|2) . Though in theoretical terms the 
method is potentially very costly, in practical terms we are 
bound by the number of accounts in the collection (which is 
determined by the manner in which the data was collected 
and the nature of the online discussion to which it pertains) 
and may be managed by constraining the time window, fur-
ther reducing the number of posts (and therefore accounts) 
considered, as long as that suits the type of coordination 
being sought.

4  Evaluation

Our approach was evaluated in two phases:

• The first was conducted as an experiment using the vali-
dation methods mentioned above and two datasets known 
to include coordinated behaviour, as well as a ground 
truth dataset.

• The second phase involved two case studies in which we 
apply our approach against datasets relating to politically 
contentious topics expected to include polarised groups.

The first stage of the evaluation involved searching for 
Boost by co-retweet and other strategies while varying 
window sizes ( � ). FSA_V was compared against two other 
community detection algorithms, when applied to the LCNs 
built in Step 4 (aggregated). We then validated the resulting 
HCCs through a variety of network, content, and temporal 
analyses and machine learning classification, guided by the 

research questions posed in Sect. 1. Discussion of further 
applications and performance metrics is also presented.

4.1  The experiment datasets

The two real-world datasets selected (shown in Table 4) 
represent two collection techniques: filtering a live stream 
of posts using keywords direct from the OSN (DS1) and 
collecting the posts of specific accounts (DS2): 

• DS1: Tweets relating to a regional Australian election in 
March 2018, including a ground truth subset (GT); and

• DS2: A large subset of the Internet Research Agency 
(IRA, Chen 2015; Mueller 2018) dataset published by 
Twitter in October 2018.10

DS1 was collected using RAPID (Lim et al. 2019) over 
an 18 day period (the election was on day 15) in March 
2018. The filter terms included nine hashtags and 134 politi-
cal handles (candidate and party accounts). The dataset was 
expanded by retrieving all replied to, quoted and political 
account tweets posted during the collection period. The 
political account tweets formed our ground truth. It was our 
expectation that some of the coordinated political influence 
techniques observed on the international stage may have 
been adopted by political parties and issue-motivated groups 
at the regional level by 2018 (especially given the use of 
political bots had been reported in the Australian setting five 
years prior, as reported in Woolley 2016), and hence would 
be present in this dataset.

The IRA dataset released by Twitter covers 2009 to 2018, 
but DS2 is the subset of tweets posted in 2016, the year of 
the US Presidential election. Because DS2 consists entirely 
of IRA accounts which Twitter believed to be connected 
with an SIO, it was expected to include evidence of coordi-
nated amplification. It was also much larger than DS1, and 
our intent was that our findings would complement forensic 
studies of the activity (e.g. Benkler et al. 2018; Jamieson 
2020) and also contrast with techniques from more focused 
studies (e.g. Dawson and Innes 2019).

Table 4  Experiment dataset 
statistics

Rates are per account per day

Tweets Retweets (%) Accounts Tweet rate Retweet rate

DS1 115,913 63,164 (54.5%) 20,563 0.31 0.17
(GT) 4193 2505 (59.7%) 134 1.74 1.04
DS2 1,571,245 729,937 (56.5%) 1381 3.12 1.45

10 https:// about. twitt er. com/ en_ us/ values/ elect ions- integ rity. html.

https://about.twitter.com/en_us/values/elections-integrity.html
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4.2  Experimental set up

The size of the window � was set at {15, 60, 360, 1440} (in 
minutes) and the three community detection methods used 
on the aggregated LCNs were:

• FSA_V ( � = 0.3);
• kNN with k = ln(|V|) (cf., Cao et al. 2015); and
• a simple threshold retaining the edges with a normalised 

value above 0.1.

4.2.1  Parameter selection

Other than a value of k = ln(|V|) for kNN (taken from Cao 
et al. 2015), the choice of values for parameters � , � and 
the threshold were determined as follows. Our intent was to 
search for human-driven coordination, i.e. teams of humans 
manipulating potentially several accounts each, meaning that 
the timeframes under examination would need to allow for 
the time required to switch between accounts. As discussed 
by Dawson and Innes (2019), the motivation for even paid 
coordinated behaviour may be based on numbers of posts 
made, rather than how tightly coordinated they are, so by 
examining a relatively wide ‘short’ window of 15 minutes 
allows for such people to react to each others’ posts as they 
see them (rather than the sub-minute coordination sought 
by others, e.g. Giglietto et al. 2020a; Pacheco et al. 2021; 
Dawson and Innes 2019). The 60 minute window allows 
for people motivated by personal interest as well as paid 
trolls, who check their social media frequently throughout 
the day while attending to other duties (e.g. preparing new 
content, Nimmo et al. 2020). The six hour time frame is of 

medium length and allows for users who check social media 
over breakfast, at lunch, and then at dinner who also may 
be more motivated by personal reasons to coordinate their 
behaviour. Finally, the long term time frame of a whole day 
allows for accounts that only check social media in concen-
trated sessions once a day, but who coordinate their actions 
with others each day outside of the six hour window. Fur-
thermore, automated coordinated accounts (i.e. bots) can 
react to posts very quickly (i.e. within seconds), and simple 
implementations can be revealed by their consistent short 
response times rather than relying on the more sophisti-
cated co-activity methods presented here. More complex 
bot implementations vary their response times to avoid 
this (Cresci et al. 2017; Cresci 2020), however if they wish 
to game OSN trending algorithms to improve their reach, 
their posts must occur near to each other in time. Values 
for � were also informed by the observation of Zhao et al. 
(2015) that 75% of retweets occur within six hours of post-
ing. This implies that if attempts were made to boost a tweet, 
retweeting it in much shorter times would be required for it 
to stand out from typical traffic. Varol et al. (2017) checked 
Twitter’s trending hashtags every 10 minutes, which is an 
indication of how quickly a concerted Boosting effort may 
have an effect. Values chosen for � therefore ranged from 
15 minutes to a day, growing by a factor of approximately 
four at each increment. Deliberate coordinated retweeting 
(i.e. covert Boosting masquerading as grassroots activity) 
was expected to occur in the smaller windows, but then be 
replaced by coincidental co-retweeting as the window size 
increases.

Values for � and the threshold were based on experiment-
ing with values in [0.1, 0.9], maximising the MEW to HCC 

Table 5  HCCs by coordination 
strategy

Strategy � GT DS1 DS2

Nodes Edges Comp. Nodes Edges Comp. Nodes Edges Comp.

LCN
 Boost 15 44 112 5 8855 80,702 419 855 23,022 14
 Pollute 15 51 154 2 13,831 1,281,134 73 1203 65,949 5
 Bully 60 70 482 1 16,519 1,925,487 222 1103 37,368 5

FSA_V
 Boost 15 9 6 3 633 753 167 113 758 19
 Pollute 15 9 5 4 135 93 50 24 15 9
 Bully 60 11 7 4 338 280 119 109 1123 16

kNN
 Boost 15 9 21 1 1041 33,621 1 675 22,494 1
 Pollute 15 11 37 1 724 153,424 1 1040 65,280 1
 Bully 60 18 135 1 1713 663,413 1 692 35,136 1

Threshold
 Boost 15 11 16 3 85 68 31 8 10 2
 Pollute 15 24 26 3 44 37 10 6 13 1
 Bully 60 15 19 3 25 23 8 10 10 3
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size ratio, using the DS1 and DS2 aggregated LCNs when 
� = {15, 1440}.

4.3  Experimental results

The research questions introduced in Sect. 1 guide our dis-
cussion, but we also present follow-up analyses.

4.3.1  HCC detection (RQ1)

4.3.1.1 Detecting different strategies The three detection 
methods all found HCCs when searching for Boost (via 
co-retweets), Pollute (via co-hashtags), and Bully (via co-
mentions), details of which are shown in Table 5. Notably, 

kNN consistently builds a single large HCC, highlighting the 
need to filter the network prior to applying it (cf., Cao et al. 
2015). The kNN HCC is also consistently nearly as large as 
the original LCN for DS2, perhaps due to the low number of 
accounts and the fact that kNN retains every edge adjacent 
to the retained vertices, regardless of weight. It is not clear, 
then, that kNN is producing meaningful results used in this 
way, even if it can extract a community.

4.3.1.2 Varying window size  Different strategies may be 
executed over different time periods, based on their aims. 
Boosting a message to game trending algorithms requires 
the messages to appear close in time, whereas some forms 
of Bullying exhibit only consistency and low variation (men-

Table 6  HCCs by window size � (Boost, FSA_V)

� Network attributes HCC sizes Nodes in common

Nodes Edges HCCs Min. Max. Mean SD � = 15 � = 60 � = 360 � = 1440

GT
 15 9 6 3 3 3 3.00 0.00 9 9 8 8
 60 14 9 5 2 3 2.80 0.40 – 14 10 12
 360 13 9 5 2 3 2.60 0.49 – – 13 12
 1440 17 12 6 2 3 2.80 0.37 – – – 17

DS1
 15 633 753 167 2 18 3.79 2.21 633 218 93 100
 60 619 1293 151 2 13 4.10 2.30 – 619 208 193
 360 503 1119 127 2 19 3.96 2.58 – – 503 350
 1440 815 2019 141 2 110 5.78 12.60 – – – 815

DS2
 15 113 758 19 2 65 5.95 13.94 113 34 29 25
 60 77 394 18 2 27 4.28 5.64 – 77 62 54
 360 98 775 15 2 32 6.53 9.13 – – 98 56
 1440 69 380 15 2 27 4.60 6.15 – – – 69

Fig. 4  Similarity matrices 
of HCC account sets found 
using different window sizes 
(FSA_V). The similarity meas-
ured here relates to the accounts 
found not to the similarity in 
groupings of accounts into 
HCCs. Yellow implies a high 
similarity (Jaccard: account sets 
are identical, Overlap: one set 
is a subset), while blue implies 
low similarity (i.e. account sets 
are disjoint)

(a) GT Jaccard similarity. (b) GT overlap similarity.

(c) DS1 Jaccard similarity. (d) DS1 overlap similarity.

(e) DS2 Jaccard similarity. (f) DS2 overlap similarity.
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tioning the same account repeatedly). Polluting a user’s 
timeline on Twitter can also be achieved by frequently join-
ing their conversations over a sustained period.

Varying �  searching for Boost, we found differ-
ent accounts were prominent over different time frames 
(Table 6); the overlap in the accounts detected in each time 
frame differed considerably even though the number of 
HCCs stayed relatively similar. Figure 4 shows the Jaccard 
and overlap similarity between the sets of accounts appear-
ing in each window size (agnostic of HCC membership). 
The overlap results for kNN shows very high levels of simi-
larity, but lower levels of Jaccard similarity. For all data-
sets, as � grows kNN finds more and more HCC members, 
including all the ones it found with smaller window sizes 
(overlap similarity values appear close to 1.0, shown as yel-
low). The highest Jaccard similarities for kNN seem to group 
the shorter periods ( � = {15, 60} ) and the medium and long 
periods ( � = {360, 1440} ). FSA_V finds different sets of 
members in each time window without significant overlap, 
though for DS2 it appears that the windows longer than 15 
minutes have many members in common, but have very few 
in common with the � = 15 HCCs. As might be expected, 
thresholding by LCN edge weight results in the identifica-
tion of additional accounts as � increases, and the Jaccard 
similarity of GT and DS1 (Fig. 4c) reveals that accounts 
identified in the shorter time windows ( � = {15, 60} ) are 
very different to those from the longer time windows, but 
they still overlap somewhat (Fig. 4d). This suggests that 
although there are some accounts that coordinate in short 
periods, other accounts coordinate more over the medium 
and long time periods. These include media accounts that 
are consistently highly active over longer periods and differ 
from the active discussion participants who might log on to 
Twitter in the evening for a few hours whose behaviour is 
more bursty in nature.

Other than in GT, which revealed very few HCCs, the 
sizes of the HCCs found seemed to follow a rough power 
law; most were very small but one or a few were very large 
(see the HCC Sizes section in Table 6). The number of HCCs 
did not vary significantly nor consistently as � increased. 

The number of edges retrieved tells us in DS1, as the win-
dow increased, more edges had weights high enough to be 
retained, whereas DS2 edge counts diminished, implying 
that the LCNs were progressively dominated by a smaller 
number of very heavy edges, while other remained relatively 
light.

4.3.1.3 HCC detection methods Similarly, HCCs discov-
ered by the three community extraction methods (Table 7) 
exhibit large discrepancies, suggesting that whichever 
method is used, tuning is required to produce interpretable 
results. This is evident in the literature: Cao et al. conducted 
significant pre-processing when identifying URL sharing 
campaigns across two years of Twitter activity (Cao et al. 
2015), and Pacheco et  al. showed how specific strategies 
could identify groups in the online narrative surrounding 
the Syrian White Helmet organisation (Pacheco et al. 2020). 
Here we present the variation in results while controlling 
methods and other variables and keeping the coordination 
strategy constant, as our interest here is to validate the effec-
tiveness of the method.

The networks were visualised using the FR layout in 
Fig. 5, revealing further structure within the kNN networks, 
each of which consisted of a single connected component. 
To examine the structure of the single kNN component more 
closely, we applied Louvain analysis (Blondel et al. 2008) 
and coloured the largest detected clusters. The clustering 
reveals distinct communities within both the lone kNN HCC 
found in each of the datasets. It is possible the DS2 ones 
are more easily discernible either due to the smaller num-
ber of accounts (675 compared with 1041) or because the 
accounts were, in fact, organised teams of malicious actors 
acting over a longer time frame. In either case, it makes 
clear that kNN, configured as it was, failed to distinguish 
communities clearly extractable via other means. This is less 
an indictment on kNN and more an indication that commu-
nity extraction is likely to be a multi-step process embed-
ded in particular domains and datasets, and in the particular 
types of networks to which they are applied. The networks 
in Fig. 5b, e bear a passing resemblance to many in, e.g. the 

Table 7  HCCs by detection 
method (Boost, � = 15)

Network attributes HCC sizes Nodes in common

Nodes Edges HCCs Min. Max. FSA_V kNN Threshold

DS1
 FSA_V 633 753 167 2 18 633 56 36
 kNN 1041 33,621 1 1041 1041 – 1041 44
 Threshold 85 68 31 2 14 – – 85

DS2
 FSA_V 113 758 19 2 65 113 88 4
 kNN 675 22,494 1 675 675 – 675 8
 Threshold 8 10 2 2 6 – – 8
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Fig. 5  HCCs discovered using 
different methods in DS1 and 
DS2 (Boost, � = 15 ). Each 
kNN network consists of a 
single connected component, 
but detected clusters have been 
coloured to highlight internal 
structures

Fig. 6  Similarity matrices 
of content posted by HCC 
accounts (FSA_V, � = 15 ). 
Each axis has an entry for each 
account, grouped by HCC. Each 
cell represents the similarity 
between the two corresponding 
accounts’ content, calculated 
using cosine similarity (yel-
low = high similarity). Each 
account’s content is modeled as 
a vector of 5 character n-grams 
of their combined tweets

(a) GT. (b) DS1.

(c) DS2. (d) RANDOM.
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deep analysis of the media landscape during the 2016 US 
election by Benkler et al. (2018) (which relied on simpler 
methods to build their networks), however these examples 
are networks of accounts rather than media organisations or 
sites, and, importantly, are not necessarily directly linked, 
offering the possibility of uncovering otherwise hidden con-
nections between actors. This could be especially valuable 
when searching multiple OSNs.

4.3.2  HCC differentiation (RQ2)

How similar are the discovered HCCs to each other and to 
the rest of the corpus? The HCC detection methods used 
relied on network information; in contrast we examine 
content, metadata and temporal information to validate the 
results. We contrast DS1 and DS2 results with GT and a 
RANDOM dataset, constructed to match the HCC distribu-
tions in DS1 (FSA_V, � = 15 ). As DS2 consisted entirely of 
bad actors, and GT consisted entirely of political accounts, 
it was felt non-HCC accounts from DS1 would offer more 
‘normal’ non-coordinating accounts.

4.3.2.1 Internal consistency  Visualising the similarities 
between accounts using the method in Sect. 3.2.4 (Fig. 6), 
the HCCs are discernible as being internally similar. The 
RANDOM groupings demonstrated little to no similarity, 
internal or external, as expected, while the DS2 HCCs dem-
onstrated high internal similarity, as expected of organised 
accounts over an extended period. The internal consistency 
of the DS1 HCCs is not as clear as for DS2, possibly due 
to the greater number of HCCs. Where HCCs are highly 
similar to others (indicated by yellow cells off the diago-
nal), it is highly likely these are due to small HCCs (e.g. 
with two or three members) retweeting the same small set of 
tweets (fewer than ten). The use of filtering in conjunction 
with FSA_V may help remove potentially spurious HCCs, 
as could a final merge phase, joining HCC candidates whose 
evidence for coordination matches closely (e.g. two small 
HCCs retweeting 90% of the same tweets, kept separate by 
FSA_V but clearly similar).

4.3.2.2 Temporal patterns  We applied the temporal aver-
aging technique described in Sect.  3.2.7 to compare the 
daily activities of the HCCs found in GT, DS1 and RAN-
DOM (all of which occur over the same time period) in 
Fig.  7a and weekly activities in DS2 in Fig.  7b. The GT 
accounts were clearly most active at two points prior to the 
election (around day 15), during the last leaders’ debate 
and just prior to the mandatory electoral advertising black-
out. DS1 and RANDOM HCCs were only consistently 
active at different times: around the day 3 leaders’ debate 
and on election day, respectively. Inter-HCC variation may 
have dragged the mean activity value down, as many small 
HCCs were inactive each day. Reintroducing FSA’s stitch-
ing element to FSA_V may avoid this. In DS2, HCC activity 
increased in the second half of 2016, culminating in a peak 
around the election, inflated by two very active HCCs, both 
of which had used many predominantly benign hashtags 
over the year.

4.3.2.3 Hashtag use  The most frequent hashtags in the 
most active HCCs revealed the most in GT (Fig. 8a). It is 
possible to assign some HCCs to political parties via the 
examination of partisan hashtags (e.g. #voteliberals 
and #orangelibs), although the hashtags of contem-
poraneous cultural events are also prominent; for example, 
#silentinvasion, #detours and #adlww all relate 
to a contemporaneous international writers’ festival. DS1 
hashtags are all politically relevant, but are dominated by 
a single small HCC (rendered in pale green) which used 
many hashtags very often (Fig. 8b). These accounts clearly 
attempted to widely disseminate their tweets by using 1621 
hashtags in 354 tweets. Furthermore, the hashtags they use 
relate to political discussions in many regions around the 
country (all listed hashtags that end in pol relate to the 
political discussion communities for each Australian state 
or the national community). Their prominence in hashtag 
use effectively hampers our ability to analyse the hashtag 
use of other HCCs, however, but seeing the results in con-
text is important, as it helps to confirm that the pale green 
HCC is probably engaging in inauthentic behaviour. We can 

Fig. 7  Averaged temporal 
graphs of HCC activities 
(FSA_V, � = 15)

(a) GT, DS1 and RANDOM. (b) DS2.
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still see that a large portion of hashtag use amongst the other 
listed HCCs relates to #savotes, #savotes2018, and 
#saparli, focussing on the South Australian election. If 
the hashtags had been irrelevant to the election, that could 

have provided evidence of accounts attempting to divert the 
discussion to other topics (because those tweets would still 
have needed to include the collection filter terms—i.e. ones 
relating to the election—to have been captured in the first 

Fig. 8  Most used hashtags (per 
account) of the most active 
HCCs ( � = 15 , FSA_V). The 
labels indicate HCC identifiers 
and post counts. Many HCCs 
are too inactive to be visible

(a) GT. (b) DS1.

(c) DS2.

Fig. 9  Clusters of hashtags relating to non-election events, includ-
ing a writers festival, International Women’s Day, and a multicultural 
festival, connected only when they appeared in the same tweet (GT). 

Wider edges represent a higher tweet count. Node colour implies the 
frequency of hashtag occurrences (darker means more)
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place). Similarly, DS2 hashtags were dominated by a single 
HCC (using 41,317 relatively general hashtags in 40,992 
tweets) and one issue-motivated HCC (Fig. 8c). Given DS2 
covers an entire year, it is unsurprising the largest HCCs use 
such a variety of hashtags that their hashtags do not appear 
on the chart (little evidence of most of the HCCs listed in 
the legend appear visible in the barchart, despite the use of a 
log scale on the x axis), but it is revealing that at least a few 
of HCCs devoted much of their content to using hashtags, 
while the other most active HCCs did not, indicating that 
different HCCs detected by searching for one coordina-
tion strategy (co-retweet) are engaging (perhaps even more 
strongly) in other strategies. Perhaps these hashtag dissemi-
nator HCCs acted as distractors, supporters or even pollut-
ers, contributing messages sporadically but not consistently.

Analysing hashtag co-occurrences can help further 
explore the HCC discussions to determine if HCCs are truly 
single groups or merged ones. Applied to GT HCC activities 
(Fig. 8a), it was possible to delineate subsets of hashtags in 
use: e.g. one HCC promoted a political narrative in some 
tweets with #orangelibs (a partisan hashtag) and dis-
cussed cultural events such as the writers’ festival in others 
with #adlww (Fig. 9), but was definitely one group.

Given the great number of hashtags used in even moder-
ate sized datasets such as DS1, using hashtag co-occurrence 

analysis to examine the broader election discussion in DS1 
requires filtering to reveal the core structure underlying 
the semantic network. We limited the minimum frequency 
of co-occurrences to 100 and also removed the most fre-
quently occurring hashtags (#savotes, #savotes2018, 
#saparli and #auspol) to produce Fig. 10. Application 
of Louvain cluster detection (Blondel et al. 2008) exposes 
five clear clusters, though domain knowledge tells us that 
there is interesting conflation of topics within some of 
the clusters. The green cluster contains subclusters relat-
ing to current affairs television programmes (#pmlive, 
#abc730 , #insiders , #outsiders , #qanda 
and #thedrum), political parties and advocacy groups 
(#onenation, #labor, #greens, and #getup) and 
relevant issues (#climatechange, #climatecrisis, 
and #stopadani). It also includes political hashtags (e.g. 
hashtags ending with pol and votes) that might fit better 
in the yellow cluster, which is dominated by them and forms 
the core of the semantic network by including the heavi-
est edges. The purple cluster consists primarily of location 
names, apart from #renewableenergy which hangs off 
#southaustralia (the focus of the election collection).

The other two clusters make apparent the fact that Twitter 
is an international network and hashtag clashes can draw in 
content irrelevant to local issues. The hashtag #liberals 

Fig. 10  Semantic network of hashtags used in DS1, connected only 
when they appeared in the same tweet. The minimum edge weight 
is 100 and the most highly co-occurring hashtags (#savotes, 
#savotes2018, #saparli and #auspol) have been excluded. 

Nodes are coloured according to Louvain clustering (Blondel et  al. 
2008), and some hashtags have been anonymised. Wider and darker 
edges represent a higher tweet count, and a darker background has 
been provided to improve contrast
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in the blue cluster can refer either to the Liberal party in South 
Australia (the major party that ultimately won the election) but 
is also used as a focus in American politics, especially right-
wing politics, as reflected by the links to #maga, #guncon-
trol and #2a (i.e. the 2nd Amendment of the United States’ 
Constitution, which refers to the right to bare arms), as well 
as #nationalwalkoutday. During the collection period, 
high school students in the United States staged a national day 
of protest against gun violence following a mass school shoot-
ing.11 The red cluster also highlights content from outside the 
area of interest, with many terms relating to locations in other 
countries, possibly bound by sports, given the presence of 
#fulltime, #nrlstormtigers, #aflwdogsdees, and 
#sydvbri, the last three of which refer to Australian sporting 
matches between specific teams.

DS2 covers a longer period and seemed to consist of dif-
ferent teams of accounts driving different topics. As a con-
sequence, its semantic network reveals clearly delineated 
(but often connected) discussion topics, as shown in Fig. 11. 
It is immediately notable that although the accounts in the 
dataset were flagged as trolls implicated in attempting to 
influence the US election, a lot of content is not in English 
and, in fact, appears to target other countries. This would 
be consistent with at least one other Russian campaign that 
targeted many Western audiences as well as Russians (“Sec-
ondary Infektion”, Nimmo et al. 2020). Three non-English 
examples are apparent:

• The green cluster in the centre consists primarily of Rus-
sian news-related hashtags, perhaps aimed at a Russian 
audience to direct their attention to US election-related 
content.

• The pale blue central cluster has many hashtags related 
to the Middle East, including the ISIS terrorist group, but 
also German politicians and German names for nearby 
countries, such as Turkey. Germany’s response to refu-
gees from Syria escaping ISIS was politically contentious 
and may have been seen as an opportunity to foster divi-
sions in the European Union and within Germany.

• The green cluster on the lower left is aimed at discussions 
of the United Kingdom’s (UK) exit from the European 
Union (EU), otherwise referred to as Brexit. The UK held 
a referendum in 2016 on whether it should leave the EU 
and the campaigning caused significant division within 
the UK and Europe.

Other significant communities in the semantic network 
are the pink Tea Party/Conservatives Online (#tcot and 
#ccot) cluster, tightly connected to the emerging #MAGA  
cluster supporting Donald Trump, the red cluster focused 
on American patriotism and the highly active brown cluster 
including the terms #news, #local, #business and 
#world. The activity of HCCs shown previously in Fig. 8c 
presents a different and complementary view into hashtag 
use in the dataset, as very little of it apparent in the semantic 
network—it is the combination of not only which hashtags 
are associated together, but also which groups of accounts 
are using them that provides deeper insights. By finding 
groups that are using otherwise entirely disjoint sets of 
hashtags it may be possible to identify changes in narrative, 

Fig. 11  Clusters of hashtags 
used in DS2, connected only 
when they appeared in the 
same tweet. The minimum 
edge weight is 100. Nodes are 
coloured according to Louvain 
clustering (Blondel et al. 2008), 
the most prominent of which 
have been annotated with their 
topic of discussion. Wider and 
darker edges represent a higher 
tweet count

11 https:// www. nytim es. com/ 2018/ 03/ 14/ us/ school- walko ut. html.

https://www.nytimes.com/2018/03/14/us/school-walkout.html
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especially if HCCs can be tracked over time to see when they 
use which sets of hashtags.

4.3.2.4 Examining the  ground truth The importance of 
having ground truth in context is demonstrated by Keller 
et al. (2017, 2019). By analysing the actions of known bad 
actors in a broad dataset, they could identify not just differ-
ent subteams within the actors and their strategies, but their 
effect on the broader discussion. Many datasets comprising 
only bad actors (e.g. DS2) miss this context.

Considering GT alone, the HCCs identified consist only 
of members within the same political party, across all values 
of � . Some accounts appeared in each window size. HCCs 
of six major parties were identified. Figure 12 shows the 
HCCs for each � value. Some accounts and parties appeared 
at each window size, (e.g. parties L, A, G, and nodes L2, 
A1, G2), while some only appear in a few (e.g. parties C 

and S). This shows that different parties exhibited differ-
ent approaches to retweeting and different members were 
involved over different time frames. Although party S mem-
bers co-retweeted enough to appear in two time windows, 
they were not consistently active enough to re-appear in the 
largest time window, where their activity was overtaken 
by other accounts. It is particularly noticeable that the L 
party had two core cooperating accounts, L2 and L4, who 
were active enough to appear in each time window, and 
then a large team active in the hour-long window, imply-
ing that a deliberate strategy of team-based co-retweeting 
was employed (rather than a coincidental one). Rather than 
the posting times being highly coordinated (so that retweets 
could appear nearly simultaneously), it appears as if the L 
accounts were simply more attentive to their colleagues’ 
tweets and retweets and retweeted them when they saw them 

Fig. 12  Ground truth HCCs 
identified with FSA_V. Vertex 
shape = ideology (centre, 
left, right), colour = activity 
(brighter = higher), label and 
border colour = political party 
(L = red, A = blue, G = green, 
C = black), label = party and 
account identifier (e.g. ‘G1’ 
is Party G’s account #1), link 
width = co-retweet count (some 
omitted for clarity)

(a) γ= 15. (b) γ= 60. (c) γ= 360. (d) γ= 1440.

Table 8  The most retweeted tweet in each GT HCC (FSA_V � = 15)

* N.B. URLs starting with ‘https://t. co/’ refer back to the original retweeted tweet’s URL, and are obscured here for readability and anonymity

RT @alpsa: A message from former @AustralianLabor Prime Minister, ⟨REDACTED⟩ . https://t. co/⟨URL⟩*

RT @ ⟨��������⟩ : Liberals promise $40m to tackle elective surgery waiting times in South Australian hospitals. #SAVotes2018... https://t. 
co/⟨URL⟩

RT @SALibMedia: Under Labor there aren’t enough job opportunities for young South Australians. Here’s what they are saying about 
@ ⟨���������������⟩ and @alpsa #saparli https://t. co/⟨URL⟩

RT @ ⟨����������������⟩ : The results of this state election are clear—celebrity candidates and pop up parties come and go, but the 
Greens...https://t. co/⟨URL⟩

Fig. 13  The proportions of each 
HCCs retweets and mentions 
referring to accounts within the 
HCC ( � = 15 , FSA_V)

https://t.co/
https://t.co/
https://t.co/
https://t.co/
https://t.co/
https://t.co/
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(which often occurred within an hour), as could be expected 
of any social media-savvy group.

Examining the content of these HCCs confirmed that 
they were genuine communities engaging in co-retweeting 
(though not necessarily deliberately). The top retweeted 
tweets of each HCC (FSA_V, � = 15 ) are shown in Table 8. 
Using the tweets each HCC posted, it is possible to attribute 
each to a political affiliation, if not a party, without resorting 
to inspecting each member’s identity.

4.3.3  Focus of connectivity (RQ3)

The IRRs and IMRs for the HCCs in the DS1, DS2, GT and 
RANDOM datasets are shown in Fig. 13. The larger the 
HCC size, the greater the likelihood of retweeting or men-
tioning internally, so it is notable that DS2’s largest HCC has 
IRR and IMR’s of around 0, though even the smaller HCCs 
have low ratios. Ratios for the smallest HCCs seem largest, 
possibly due to low numbers of posts, many of which may 
be retweets or include a mention, inflating the ratios. The 
hypothesis that political accounts would retweet and men-
tion themselves frequently is not confirmed by these results, 

possibly because they are retweeting and mentioning official 
or party accounts outside the HCCs.

4.3.4  Content variation (RQ4)

We compared the entropy of features used by DS1 and DS2 
HCCs to RANDOM ones (Fig. 14). Many of DS1’s small 
HCCs used only one of a particular feature, resulting in an 
entropy score of 0 (Fig. 14a). In contrast, DS2’s fewer HCCs 
have higher entropy values (Fig. 14b), likely because more 
of their activity was collected (365, not 18, days’ worth) 
and they therefore had more opportunity to use more feature 
values. The majority of HCCs used few hashtags and URL 
domains, which is to be expected as the dominating domain 
is twitter.com; this domain is embedded in all retweets 
as part of the link back to the original (retweeted) tweet. 
Compared to the RANDOM HCCs (Fig. 14c), DS1 HCCs 
had lower variation in all features, while the longer activity 
period of DS2 resulted in distinctly different entropy distri-
butions. Because DS1 HCC activity appears to have been 
more deliberate, and perhaps coordinated, it may be that 
the HCCs were more focused on their topic of conversa-
tion (especially when contrasted with RANDOM HCCs). 

(a) DS1. (b) DS2. (c) RANDOM.

Fig. 14  Cumulative frequency of HCCs’ entropy scores for five tweet features, comparing DS1 and DS2 with RANDOM (FSA_V, � = 15 ). Fea-
ture variation increases along the x axis
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Fig. 15  Histograms of the daily posting rates of accounts in the GT, 
DS1, DS2, and RANDOM HCCs (FSA_V, � = 15 ). Because the data-
sets cover different periods of time, the posting rate enables a fairer 

comparison. The distributions of DS1 and RANDOM posting rates 
are similar and notably different to those of DS2, while GT includes a 
higher proportion of more active accounts than the other datasets
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Compared with RANDOM HCCs, DS1 HCCs retweeted 
fewer accounts, used fewer URLs (though they were from 
a similar distribution of domains), and many fewer men-
tions and hashtags. Many non-HCC accounts posted only 
a single retweet as their contribution to the discussion, and 
so it may be that a relatively high proportion the RANDOM 
HCC members only posted a single tweet, causing the dis-
tributions observed. The RANDOM HCC members posted 
3147 tweets compared with DS1 HCCs’ 8527 tweets, despite 
having the same number of members, so DS1 HCC mem-
bers posted more than 2.7 times as often. Although DS1 
accounts posted more tweets per individual than the RAN-
DOM accounts, their distribution appears similar, and nota-
bly different to those of both DS2 and GT (Fig. 15).

4.3.5  Consistent coordination (RQ5)

The sliding frame technique from Sect. 3.2.9 was applied to 
DS1 and DS2 to reveal HCCs engaging in coordination con-
sistently in adjacent time windows. The baseline used T = 1 
(i.e. a sliding frame a single time window wide) and � = 0.0 . 
For the three other conditions, T was set to 5 (as � increases 
approximately five times each time) and � = {0.5, 0.7, 0.9} . 
In this way, the choice of � = 0.9 would most strongly con-
sider the contribution of LCNs from preceding time win-
dows. Once applied for each time window, the aggregated 
LCNs were mined for HCCs and then the membership of 
these were compared in the same manner as in Sect. 4.3.1 
using Jaccard similarity (Eq. 2). As noted earlier, Jaccard 

Fig. 16  Jaccard similarity of HCC membership when varying � (0.0 is the Baseline)

Table 9  Statistics of discovered 
HCCs while varying � (FSA_V, 
Boost)

T = 5 except in the Baseline condition. N = node count, E = edge count, C = HCC count

� = 15 � = 60 � = 360 � = 1440

N E C N E C N E C N E C

DS1 Baseline 633 753 167 619 1293 151 503 1119 127 815 2019 141
� = 0.5 604 711 168 1178 2121 149 519 1183 129 800 2037 137
� = 0.7 578 697 160 847 1569 149 518 1155 130 792 1997 136
� = 0.9 596 706 165 585 1223 145 530 1188 134 796 1995 141

DS2 Baseline 113 758 19 77 394 18 98 775 15 69 380 15
� = 0.5 116 760 20 79 396 18 100 776 16 69 380 15
� = 0.7 110 756 18 79 395 18 102 777 17 69 381 15
� = 0.9 113 758 19 79 396 18 100 776 16 69 381 15
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similarity is stricter about set matching than the Overlap 
method (Eq. 3). Even so, as can be seen in Fig. 16, changes 
introduced by using the decaying sliding frame with differ-
ent � values were insignificant in all cases, except for DS1 
and � = 60 . The implication, which is borne out when the 
exact network sizes (in nodes) are compared in Table 9, is 
that the previous windows did not add significant numbers 
of nodes, but instead increased the weight of existing edges, 
so the HCCs that were detected consisted of the same mem-
bers working together over time, rather than splitting into 
subsets. To hide a team’s coordination, one might expect 
that its members would associate separately in different time 
windows, but that does not appear to have happened signifi-
cantly in these datasets, except in the shorter time windows 
in DS1, the majority of which may very well be coincidental.

The greatest variation in node and edge count occurs 
in the shorter windows in DS1 ( � = {15, 60} ), probably 
because of the greater number of accounts active in DS1 
(compared to DS2): accounts have more alters to form HCCs 
with in DS1, which has 20.5k accounts, whereas choice 
in DS2 is limited to 1.3k accounts. The near doubling of 
accounts in DS1’s HCCs when � = 60 implies accounts co-
retweeted often just within a single hour, and then not again 
(at least not for T = 5 h). This effect is swamped by the much 
more active consistent co-retweeting of a smaller set of users 
when � is increased to 0.7 and above. Given the member-
ship varies so little in the other conditions, an analysis of 
how these HCCs form and change over time is required. It 
is clear, however, that this approach would be best suited to 
filter-based collections, as they are likely to capture more 
accounts.

4.3.6  Validation via HCC classification (RQ6)

Our final validation method relies on the HCCs in GT as 
positive examples of coordinating sets of accounts, given 
it is reasonable to assume that they ought to be coordinat-
ing their activities during an election campaign (an intuition 
shared by Vargas et al. 2020). The purpose of this particular 
activity is not to build a classifier for coordinated behaviour 

in general, or coordinated amplification specifically, but to 
provide a degree of confidence that the HCCs detected in 
DS1 and DS2 are exhibiting similar behaviour to those in 
the GT.

4.3.6.1 Feature selection As mentioned in Sect.  3.2.10, 
features are drawn from individual accounts and their 
groupings, specifically based on their individual and col-
lective behaviour and homophily. For this reason, we select 
account-level features as well as group-level features to 
make up each account’s feature vector, meaning that some 
of the values for HCC co-members will be identical. The 
account-level features are all drawn from their activity 
within the dataset, while the group-level features are drawn 
from the HCC’s activity network (see Sect. 3.2.10) and are 
included in the feature vector of each member of the HCC. 
The account- and group-level features used are shown in 
Table 10.

4.3.6.2 Classification results  After being trained on the 
GT HCCs, the classifiers were then applied to the HCCs 
in DS1 and DS2. We use COORDINATING and NON-
COORDINATING to represent the positive and unlabeled 
classes, respectively. A second disjoint subset of RANDOM 
HCCs were created for this testing by sampling accounts 
outside the ground truth and training sets. Upsampling was 
also used to ensure the classes were balanced with at least 
400 instances each.

The accuracy of the best classifier for each dataset and 
time window ranged from 0.69 to 0.91 (shown in Table 11), 
with performance varying between classifiers and window 
sizes, but mostly recognising HCC members in DS1 slightly 
better than DS2. This difference may be because the training 
data was sourced from the same online discussion (though 
using the behaviour of completely different accounts). F1 
scores (outside � = 360 ) for the COORDINATING ( F1P ) 
and NON-COORDINATING ( F1U ) instances ranged from 
0.80 to 0.91 and 0.67 to 0.91, respectively. Each classifier 
performed best for DS1 in different time windows, except 
for � = 360 , but all classifiers performed well, with the worst 

Table 10  Features selected from both account activity and collective HCC activity based on their activity network (described in Sect. 3.2.10)

IRR and IMR are defined in Sect. 4.3.3

Account-level Group-level

Instances (Uses) Posts, reposts, replies, mentions, 
hashtags, URLs

Posts, interactions, user nodes, hashtags, URLs, reposts, quotes, mentions, replies, 
in-conversations (see Sect. 3)

Unique Mentions, hashtags, URLs HCC members, Nodes in the network (including URLs and hashtags), hashtags, URLs
Rates Posts/minute Reposts of HCC members/all reposts (cf. IRR), mentions of HCC members/all men-

tions (cf. IMR), replies to HCC members/all replies
Profile Default image (boolean) –

Characters in description
Characters in URL
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accuracy at 0.69. All classifiers also performed the least well 
in the six hour time window for DS1, possibly because the 
GT HCCs’ activity coordination was most prominent over 
the short time frames of an hour or less, and otherwise at 
the day level. Even so, F1U scores consistently hover around 
0.7 when � = 360 , which is significantly better than ran-
dom, though the F1P scores around 0.40 for SVM and RF 
indicate difficulty identifying all COORDINATING HCC 
members, a detail which is discussed in more detail below. 
The accuracy and F1 results show that the the classifiers 
could all be successfully trained to recognise GT HCCs in 
most time windows and that the GT HCCs represented most 
of the HCCs in DS1 and DS2, despite the different levels of 
activity (DS2 HCC members interacted more than DS1 or 
GT HCC members in their corpus, primarily because the 
collection period was longer).

Table 12 shows Precision and Recall across all classi-
fiers and datasets for the COORDINATING class. (Given 
our emphasis on recognising COORDINATING instances, 
we do not present the corresponding results for the NON-
COORDINATING class here.) For all time windows, Pre-
cision is high for the classifiers against DS1 (ranging from 
0.62 to 1.00) and moderate against DS2 (ranging from 0.67 
to 0.82), meaning that the HCCs are clearly discernible from 
the NON-COORDINATING instances (i.e. if an instance 
was classified as COORDINATING, then it was almost cer-
tainly a member of an HCC). Recall varies significantly for 
DS1 (between 0.28 and 0.99), but is perfect (i.e. 1.00) for 
DS2, meaning that some DS1 HCCs were rejected incor-
rectly, while all DS2 HCC members were identified. The 
Recall scores for � = 360 explain why the F1P scores were 
so low in Table 11, because the corresponding Precision 
scores are still relatively high. As mentioned above, there is 
something particular about the 6 h time window ( � = 360 ), 

as the GT HCC members (via their account features and 
group behavioural features) were less easily distinguishable 
from the randomised NON-COORDINATING accounts, 
resulting in poorer classifier performance. The reason for 
this is possibly the choice of window boundaries. The time 
window boundaries rested at 0000, 0600, 1200, and 1800 h, 
while boundaries defined more by work activity (e.g. 0200, 
0800, 1400, 2000 h) may better match human activity pat-
terns. For other, less geographically bound datasets (i.e. ones 
where the activity comes from around the world, rather than 
from a single or small group of adjacent timezones), other 
ground truth may be required.

SVM was the best performing classifier for COORDI-
NATING accounts in DS1 in the shorter time windows 
( � = {15, 60} ) and had close to equal top performance in 
� = 1440 , but BPU clearly performed best in the challenging 
six hour window, including with moderately better Precision 
and markedly better Recall than SVM and RF. For DS2, 
all classifiers performed well, with RF most often perform-
ing best, but only marginally. SVM struggled to compete in 
the day long period, though still achieved moderate scores 
for Precision and Accuracy. For that reason, we can argue 
that RF performed best overall, but the margin was mini-
mal. Importantly, classifiers found all DS2 HCC members, 
though they incorrectly included some false positives.

Consequently, by accepting the assumption that the 
ground truth HCCs exhibited at least one type of coordi-
nation, these classifiers provide confidence that the other 
HCCs appear similar to the GT ones and thus may have 
behaved in similar ways. The question of intent remains, 
however. Examining the content subjected to coordination 
will likely provide clues, but deeper examination of behav-
iour to identify, e.g. Principal-Actor patterns (Giglietto et al. 
2020b), may also be enlightening. More examples of similar 

Fig. 17  While searching for Bullying behaviour in DS1, these are 
HCCs of accounts found engaging in co-mentions (circles) and co-
mentions plus co-convs, i.e. engaged in both (square vertices in bot-

tom right) ( � = 360 , FSA_V, � = 0.01 ). Edge thickness and dark-
ness = inferred connections (darker = more). Vertex colour = tweets 
posted by that account (darker = more)
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coordination activities as well as other coordination types 
would bolster the positive training and testing sets, as well as 
expand knowledge regarding coordination strategies in use 
online. Furthermore, Vargas et al. (2020) make the point in 
their work on detecting SIOs that “SIO coordination should 
be seen as a spectrum and not a binary state...[which could 
lead to] ...an overestimation of accounts that are part of dis-
information campaigns” (p. 142, Vargas et al. 2020) poten-
tially silencing those who need their voice to heard the most. 

For this reason, the application of binary classifiers for SIO 
detection ought to be part of a larger overall process with 
strong oversight.

4.3.7  Multiple criteria: Bullying

Some strategies can involve a combination of actions. 
Behaviours that contribute to Bullying by dogpiling, for 
example, include joining conversations started by the target’s 
posts and mentioning the target repeatedly, within a con-
fined time frame. As DS1 included all replied to tweets, we 
investigated it inferring links via co-mentions and co-convs 
(FSA_V, � = 0.001 , � = 10 min), having maximised the ratio 
of MEW to HCC size. Of 142 HCCs discovered, the larg-
est had five accounts and most only had two. Only 32 had 
more than ten inferred connections, but five had more than 
1000. These heavily connected accounts, after deep analysis, 
were simply very active Twitter users who engaged others 
in conversation via mentions, which outweighed the more 
strict co-conv criterion of participants replying into the same 
conversation reply tree.

A larger window size was considered ( � = 360 ) in case 
co-conv interactions were more prevalent. FSA_V ( � = 0.01 ) 
exposed little further evidence of co-conv (Fig. 17), finding 
98 small HCCs again dominated by co-mentions, not many 
of which had more than one inferred connection, implying 
most links were incidental; FSA_V did not filter these out.

This provides an argument for a more sophisticated 
approach to combining LCN edge weights for analysis than 

Fig. 18  A network of DS1 
HCC accounts (circle vertices) 
connected to the accounts they 
mention or conversations they 
join (diamonds). Accounts in 
the same HCC share a colour. 
Clear communities surround-
ing HCCs indicate who they 
converse with, and which 
conversants are co-mentioned 
by multiple HCC accounts. 
The width and darkness of the 
edges between HCC accounts 
indicates the weight of evidence 
linking them (darker implies 
more)

Fig. 19  Hashtag uses of the most active HCCs boosting accounts 
(FSA_V, � = 15 ). The labels indicate HCC member and tweet counts. 
Many HCCs are too inactive to be visible
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Eq. (1), and that FSA_V could be modified to better bal-
ance HCC size and edge weight. Furthermore, it is likely 
that bullying accounts will not just co-mention accounts 
frequently, but have low diversity in the accounts they co-
mention, i.e. they will repeatedly co-mention a small set 
of accounts, and spend a disproportional number of their 
tweets doing so. A further consideration is that participants 
in long discussions (reply trees) often include the author of 
the original tweet that sparked the discussion, and it would 
be misleading to include their account in results, implying 
that they bullied themselves. Finally, patterns of behaviour 
that would clearly qualify as conversations were observed 
in the datasets that did not fit the strict ‘conversation tree’ 
model: accounts would mention several collocutors at the 
start of every tweet, but only reply to a tweet of one of them 
while continuing the conversation. Importantly, sometimes 
the mentioned accounts included in tweets were prominent 
individuals whose names were included not because they 
were active participants in the conversation, but because the 
tweeter wanted to draw their attention to the conversation 
(regardless of the likelihood that the attempt would succeed; 
e.g. some tweets included references to prominent and busy 
politicians who would be unlikely to wade into arbitrary 
online discussions).

4.3.8  HCC inter‑relationships

To study the relationships between HCCs, we create two-
level networks starting with the HCC network and then 
adding nodes representing the elements of evidence link-
ing them, known as reason nodes (e.g. the tweets they co-
retweet or the hashtags they use in common). Figure 18 

shows the largest component after such expansion was con-
ducted on the HCCs in Fig. 17. HCC accounts (circles) share 
colours and the distribution of the reasons for their connec-
tion (diamonds) show which other accounts are uniquely 
mentioned by an HCC and which are mentioned by more 
than one HCC. Heavy links between HCC accounts with few 
adjacent reason vertices imply these accounts are mention-
ing a small set of other accounts on many occasions.

4.3.9  Boosting accounts, not just posts

It is possible to Boost an account rather than just a post. 
Returning to DS2, we sought HCCs from accounts retweet-
ing the same account (FSA_V, � = 15 ), and found that the 
hashtag use revealed further insights (Fig. 19). No longer 
does one HCC dominate the hashtags. Instead clear themes 
are exhibited by different HCCs, but again, they are not the 
largest HCCs. The red HCC uses #blacklivesmat-
ter and other Black rights-related hashtags (including 
#blm, #blacktolive, #blackskinisnotacrime, 
#policebrutality and #btp12), while the purple 
HCC uses pro-Republican ones (#maga and #tcot), and 
the green HCC is more general. Given the number of tweets 
these HCCs posted over 2016 (at least 16, 849), it is clear 

Fig. 20  The most active DS1 co-retweet HCC ( � = 10 s). Node label = post count, node colour = Botometer scores (higher = darker), link thick-
ness and label = co-retweet occurrences

Table 13  Execution times (in 
seconds)

DS1 DS2

Tweets 115,913 1,571,245
Parse raw (Step 1) 19.0 (from JSON) 74.0 (from CSV)
Window size � (min) 15 60 360 1440 15 60 360 1440
Find evidence and build LCNs 15.0 28.0 123.0 427.0 121.0 106.0 246.0 567.0
Aggregate LCNs 27.0 65.6 168.5 170.7 70.4 55.2 35.6 22.7
HCCs: FSA_V 28.3 58.2 126.1 209.3 6.3 4.2 5.8 5.0
HCCs: kNN 9.0 22.7 97.5 206.4 4.3 4.3 4.7 4.6
HCCs: Threshold 5.2 11.9 34.6 64.0 2.2 2.3 2.7 2.7

12 BTP refers to the British Transport Police, the conduct of which 
was discussed in accounts of the arrest of a Black man at a London 
train station in mid-2016, e.g. https:// www. thegu ardian. com/ uk- news/ 
2016/ jul/ 28/ man- compl ains- after- police- place- spit- hood- over- head- 
during- arrest- london- bridge.

https://www.theguardian.com/uk-news/2016/jul/28/man-complains-after-police-place-spit-hood-over-head-during-arrest-london-bridge
https://www.theguardian.com/uk-news/2016/jul/28/man-complains-after-police-place-spit-hood-over-head-during-arrest-london-bridge
https://www.theguardian.com/uk-news/2016/jul/28/man-complains-after-police-place-spit-hood-over-head-during-arrest-london-bridge


Social Network Analysis and Mining (2021) 11:111 

1 3

Page 31 of 42 111

they concentrated their messaging on particular topics, 
some politically charged. It is arguable that their contribu-
tions helped inflame tensions and stoke divisions in socially 
sensitive topics, not just in the United States, but in the UK 
as well, and at the very least sought to draw the attention 
of others.

The green HCC may be acting in distractor or polluter 
roles, as previously suggested, given their contribution of 
72,428 tweets over the year (an average of nearly 40 tweets 
per account every day).

4.3.10  Validation of inauthentic behaviour detection

The approach presented can be used to perform analytics 
similar to the Rapid Retweet Network used by Pacheco 
et al. (2020), who used it to expose tight clusters of bot-like 
accounts, which retweeted the same tweet within 10 s of it 
appearing. We varied this for the DS1 dataset (due to its 
small nature) and searched for accounts which retweeted the 
same tweet within 10 s, regardless of the age of the original 
tweet. We discovered a tight cluster of accounts, most with 
relatively high Botometer CAP scores13 (Davis et al. 2016), 
shown in Fig. 20. The scores were as follows: node 26: 
0.787; node 22: 0.381; node 2: 0.949; and node 17: 0.464. 
All were high relative to the other accounts in the corpus, 

most of which had scores well below 0.2; all four were had 
scores well above 0.2, but the scores of two were also well 
above the ‘bot’ threshold of 0.6. On further inspection, they 
appeared to support vocational training and left-wing issues 
and posted retweets almost exclusively, but the content all 
related to the election. This finding enhances the bot ratings 
by making it clear which bots (or bot-like accounts) appear 
to work together. It also raises further questions regarding 
bot detection systems, however, as some of the accounts 
appeared to be genuinely human, though unusually active. 
These accounts appeared to work together to actively dis-
seminate messages aligned with their preferred narrative, 
though with a very low IRR (just shy of 10% ) despite most of 
their activity being retweets ( 97.7% ), so to a certain degree it 
matters not whether they are automated or genuinely human-
driven, but whether they are engaging in astroturfing or other 
inauthentic behaviour. In this circumstance, they may be 
genuine agenda-driven users, but they were definitely all 
highly attentive to the same sources. Alternatively, when 
we consider their bot ratings more closely, it is possible that 
there is a mixture of account types, with node 26, in par-
ticular, acting as an automated ‘cheerleader’ for nodes 22 
and 17. Examining relative timings of their posts (to answer 
whether node 26 consistently was the second co-retweeter 
when paired with nodes 22 and 17) could reveal support for 
this hypothesis.

13 The English score variant was used as both the datasets were 
either primarily in English or aimed at English speaking audiences.

Fig. 21  Annotated account/URL bipartite network constructed from 
co-URL analysis of the ArsonEmergency dataset. Circles represent 
HCC accounts (Threshold, t = 0.1 , � = 10  s) and triangles represent 
URLs mostly referring to news articles. Accounts are linked to the 
URLs they shared, with multi-edges representing each use of a par-
ticular URL. URL nodes are sized by in-degree, and all coloured pale 
green. Supporter nodes are coloured red, Opposer nodes are blue, 

while Unaffiliated ones are green. The most widely shared articles are 
annotated with the website on which they are hosted (N.B. ABC = 
Australian Broadcasting Corporation, SMH = Sydney Morning Her-
ald). Blue annotated articles are categorised as DEBUNKING, while 
red ones are categorised as supporting or prominently discussing the 
‘arson’ NARRATIVE
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Fig. 22  Annotated account/URL domain bipartite network con-
structed from co-domain analysis of the ArsonEmergency dataset. 
Circles are HCC accounts (Threshold, t = 0.1 , � = 10 s) and triangles 
represent the domains of URLs used in tweets. Accounts are linked 
to the domains of URLs they shared, with thicker, darker edges rep-
resenting frequent use of a particular domain. Domain nodes are 
sized by in-degree, and all coloured pale green. Supporter nodes are 
coloured red, Opposer nodes are blue, while Unaffiliated ones are 
green. The most frequently referred to domains are annotated with the 

organisation to which they belong (N.B. ABC and ab.co = Australian 
Broadcasting Corporation, SMH = Sydney Morning Herald, News.
com.au = News Corporation). Blue annotated domains are catego-
rised as DEBUNKING, while red ones are categorised as supporting 
or prominently discussing the ‘arson’ NARRATIVE. The red zone 
includes a number of DEBUNKING domains and is mostly referred 
to by Supporters while the blue zone includes academic and centre 
and left wing domains categorised as DEBUNKING domains, which 
are referred to predominantly by Opposers 

4.3.11  Performance

In Table 13 we present the timings observed for the stages 
of processing for DS1 and DS2 conducted on a Dell Preci-
sion 5520 laptop equipped with an Intel Core i7-7820HQ 
CPU (2.9 GHz), 32Gb RAM, and an NVMe PC300 480Gb 
SSD, running Windows 10. Parsing raw data is relatively 
cheap, with DS2’s 1.5m tweets processed in just over a min-
ute, and LCN construction is dependent on the degree of 
activity and the number of accounts. DS1’s larger account 
pool increased the size of the networks generated, and all 
associated post-processing. The size of DS1 LCNs were an 
order of magnitude greater than DS2’s (in nodes and edges), 
resulting in increasing execution times for aggregation and 
HCC extraction.

4.4  Applications

Complementing the detailed validation presented above, in 
this section, we offer two case studies in which our method 
has been used to demonstrate its utility. Extending a study 
of polarised online communities in a discussion of bush-
fires in Australia (Weber et al. 2020), the co-URL and co-
URL domain analysis we conducted revealed how sources 
of information were used by discussion participants, and 
how that use differed between the polarised communities. 
A second study of Twitter activity during the Democratic 

and Republican Conventions in the United States in August, 
2020, makes use of co-retweeting analysis in order to reveal 
influence attempts with social bots and co-hashtag analysis 
to discover discussion groups and their relations.

4.4.1   #ArsonEmergency and Australia’s “Black 
Summer”

During the Australian summer of 2019–2020, Graham 
and Keller (2020) discovered inauthentic behaviour on the 
Twitter hashtag #ArsonEmergency in the first week of 
January 2020, which was first reported in the technology 
media (Stilgherrian 2020) and then in the mainstream media. 
Weber et al. (2020) performed a further study of activity 
on the hashtag for the first 18 days of January, observing 
both before and after the story became widely known. 
Analysis of the 27,546 tweets revealed two clearly polar-
ised retweeting communities: one with 497 members sup-
porting the narrative that arson was the cause of the bush-
fires and that eco-activism had prevented forest fuel load 
management (Supporters) and one with 593 members that 
countered the narrative, providing evidence that the fires 
were mostly started by natural or unintended causes (e.g. 
lightning and sparks from machinery) and the bushfires’ 
ferocity was exacerbated by climate change (Opposers). The 
remaining 11,782 accounts in the dataset were referred to as 
Unaffiliated.
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Differences between the communities’ interaction and 
information sharing behaviour was apparent. Support-
ers interacted with other accounts more by using replies, 
quotes, and mentions more than Opposers or the Unaffilated, 
as well as more hashtags and ‘external’ URLs (i.e. referring 
to domains other than twitter.com), but they retweeted 
less. Notably, an analysis of the most shared URLs revealed 
that Opposers shared articles debunking the narrative exclu-
sively, while Supporters shared a mixture of articles, mostly 
ones supporting or actively discussing their preferred nar-
rative as well as some conspiratorial content. Unaffiliated 
accounts shared narrative-focused URLs initially, but in the 
latter phase of the collection they shared debunking articles 
nine times more often.

Analysis of the co-use of URLs (Threshold, t = 0.1 , 
� = 10 s) revealed further behavioural differences between 
the communities (Fig. 21). Opposers were more focused 

than Supporters in the URLs they shared, relying on a small 
set of debunking articles, which were ultimately also heav-
ily shared by Unaffiliated accounts. Supporters were less 
tightly clustered around particular articles, and did share 
some debunking material as well as a variety of narrative-
aligned articles.

Co-domain analysis (Threshold, t = 0.1 , � = 10 s) iden-
tified not just distinct URLs but distinct URL domains 
favoured by the different communities. Figure 22 shows 
two clusters of domains: the red one contains domains from 
a number of conservative and right wing media organisa-
tions, while the blue one contains academic and centre and 
left wing media organisations. Although Supporters mostly 
referred to the narrative-supporting domains while the 
Opposers mostly referred to the debunking domains, it is 
notable that members of both communities referred heavily 
the ABC and the Guardian, which both published articles 

Fig. 23  Co-retweeting HCCs detected during the August 2020 DNC 
and RNC (Threshold, t = 0.1 , � = 10  s). Nodes are HCC mem-
ber accounts, sized by the number of tweets they contributed to the 
discussion, and joined by edges sized and labelled according to the 

number of times they retweeted the same tweet. The nodes are col-
oured by Louvain cluster for convenience, but any matching colours 
between the DNC and RNC subfigures has no meaning

Fig. 24  Account/hashtag two-level networks of co-hashtag HCCs 
and the hashtags they used during the August 2020 DNC and RNC 
(FSA_V, � = 0.3 , � = 10  s). Circular nodes are HCC member 
accounts, coloured by HCC, and hashtags are yellow diamond nodes. 
The links between accounts are sized by their co-hashtag frequency 

(i.e. how often they used the same hashtag in the same time window). 
visone’s stress minimisation layout was used for both networks. Nota-
ble clusters have been highlighted with red dashed ovals and num-
bered, while particular hashtag clusters have been highlighted with 
blue diamonds
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debunking the arson theory, often with reports from local 
fire fighting and law enforcement organisations. What is lost 
at this level of analysis is the way in which the articles were 
discussed when mentioned in tweets, including whether the 
tweets were agreeing or attacking the article content.

These co-analyses reveal how focused the polarised 
communities were in their information sharing activities, 
contributing to the argument that the targeted efforts of the 
Opposer community may have helped influence the broader 
Unaffiliated community into sharing debunking articles.

4.4.2  Twitter discussion groupings during the 2020 US 
political conventions

A second case study making use of these techniques relates 
to the search for social bots attempting to influence the 
online discussion surrounding the Democratic and Repub-
lican National Conventions in August 2020, at which the 
parties formally nominated their candidates for the Presi-
dential Election, later that year. For a 96 hour period over 
each 4-day convention, tweets were filtered using RAPID 
(Lim et al. 2019), starting with #demconvention and 
#rnc2020 as seed hashtags for the Democratic National 
Convention (DNC) and the Republican National Convention 
(RNC), respectively. For the three hours prior to the formal 
collection period, RAPID’s topic tracking feature was ena-
bled, adding hashtags that appeared frequently in the tweets 
observed, bolstering the filter terms for each convention:

• DNC: #demconvention  , #bidenharris , 
#bidenharris2020, #khive, #signsacros-
samerica, #unitedforbiden, and #wewantjoe;

• RNC: #rnc2020 , #rncconvention, and #nev-
ertrump.

Despite the disparity in hashtags, each dataset ultimately 
comprised approximately 1.5 million tweets by over 400 
thousand unique users at each convention. Bots are often 
used to boost tweets, reaching other accounts that follow 
them, or by flooding hashtag communities or gaming trend-
ing algorithms (Woolley 2016; Hegelich and Janetzko 2016; 
Keller et al. 2019; Graham and Keller 2020; Graham et al. 
2020). Social bots are specifically designed to mimic genu-
ine human users, hiding the fact they are automated (Fer-
rara et al. 2016; Grimme et al. 2018). They do this to avoid 
detection, and in doing so can contribute to astroturfing cam-
paigns, artificially boosting narratives while making them 
appear as simple popular grass roots movements.

By searching for Boosting via co-retweet (Threshold, 
t = 0.1 , � = 10  s), several HCCs were identified in each 
convention (see Fig. 23). Analysis of the HCC members 
using Botometer (Davis et al. 2016) found the majority 
had CAP scores above 0.6, indicating a high probability 

that they made use of automation. Further analysis of the 
HCCs’ content provided some indication of their agendas, 
and examination of their account age and posting rates ena-
bled categorisation into official accounts (verified by Twit-
ter), unofficial reposters (topic-focused aggregators), and 
accounts that gave the appearance of typical human users. 
These ‘normal people’, however, posted at very high average 
daily rates for years, often at far greater rates than previous 
automation detection methods have used (e.g. 50 tweets a 
day, Neudert 2018).

The largest HCC (the large blue HCC in Fig. 23b) con-
sisted of a cluster of potential social bot accounts supporting 
an official political campaign account, @TrumpWarRoom, 
responsible for 2085 tweets during the Republican Conven-
tion. For each pair of members in each HCC, we considered 
the proportion of time that one account retweeted a tweet 
before the other, to determine if both accounts were poten-
tially working together (in which case, they would be equally 
likely to retweet a tweet first), or if one was a ‘cheerleader’ 
for the other (in which case the cheered account would 
always retweet first, quickly followed by the other account). 
We found strong evidence that at least three of the accounts 
were cheerleaders for @TrumpWarRoom, retweeting the 
same tweet within ten seconds on 214, 229, and 89 occa-
sions over the four day collection period. These particular 
accounts had daily tweeting rates of 78.7, 209.4 and 147.4 
tweets per day for 0.9, 8.5 and 3.6 years, respectively. Given 
the age of these accounts, it is clear that they have success-
fully avoided Twitter’s bot scanning processes for some con-
siderable time.

We also applied co-hashtag analysis (FSA_V, � = 0.3 , 
� = 10 s) to the two datasets and plotted two-level networks 
of the resulting HCCs with the hashtags they used (Fig. 24). 
Regardless of the content, a number of structures are imme-
diately apparent. These include:

• clusters that are bound by a few yellow diamond hashtag 
nodes (e.g. DNC clusters 5, 6 and 8) or lie between 
hashtags (e.g. DNC clusters 2 and 4);

• fan shapes that consist of a small number of accounts 
using a wide variety of hashtags (e.g. DNC clusters 1 and 
7);

• island clusters that are bound by the hashtags they use 
but are isolated from the broader community which has 
ignored the hashtags they are using (e.g. DNC clusters 7 
and 8).

The fact that the clusters are coloured according to their 
HCC in Fig. 24 highlights what FSA_V regards as distinct 
clusters are, in fact, bound together by the topics they are 
discussing (by the hashtags they are co-using). This indi-
cates that there may be benefit in re-introducing the re-stitch-
ing step in FSA (Şen et al. 2016) that FSA_V avoids, or also 
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experimenting further with FSA itself. Using conductance 
cutting (Brandes et al. 2007) for cluster detection aligned 
better with the visible clusters, but these clusterings may be 
somewhat misleading, as it may combine polarised HCCs, 
as can be seen on closer inspection below.

Several co-hashtag clusters in Fig. 24a provide insight 
into the nature of parts of the online discussion.

• Cluster 5 is closely centred on two hashtags (#good-
year and #ohio) that relate to then US President Don-
ald Trump’s call for a boycott of Goodyear tires,14 though 
it is unclear whether the surrounding accounts are for or 
against the boycott. Several hashtags linked on the left 
edge of the cluster indicate that some are against, as they 
refer to support for the then Democratic candidate Vice 
President Joe Biden.

• The fan-shaped cluster 1 at the top consists of two 
accounts that are attempting to disseminate their message 
across America, as each hashtag is a US state code (e.g. 
#ga for Georgia) or a minority group (e.g. #latinos). 
These hashtags are all apparently unique, apart from the 
one highlighted just below cluster 1 surrounded by a blue 
diamond (#blm) linking cluster 1 to cluster 2, and the 
one to the left (another state code, #nc, for North Caro-
lina).

• Cluster 2 binds a number of HCCs spanning two rela-
tively disjoint hashtags, one being #vote (below the 
cluster) and the other being the name of a musician who 
had recently encouraged his fans to vote.

• Cluster 3 is more diffuse than the others and appears to 
relate to a discussion of data science and big data in the 
context of the election campaign.

• Cluster 4 appears to join a number of potentially opposed 
HCCs, as they refer to #trump2020landslide and 
#snowflakes as well as #epstein15 and #trump-
virus (a condemnation of the Trump administration’s 
handling of the response to the COVID-19 pandemic), 
the final hashtag which links the cluster into the broader 
community.

• The island clusters 7 and 8 are focused on groups of 
particular politicians, which were not picked up by the 
broader community: Republicans who had pledged to 

vote for the Democratic presidential candidate and US 
Congress members known to campaign for social equal-
ity, respectively.

The links between the clusters are sometimes deceptive. 
Already, we observed that some single clusters include 
polarised HCCs, however it is also possible to see inter-
nally (politically) consistent clusters that are linked but also 
contrary in their views. DNC cluster 1 (in Fig. 24a) is linked 
to the left by #nc to another left-leaning cluster (calling for 
gun control), which itself is linked to the left by #america 
to another small cluster, which is clearly right-leaning (one 
of its hashtags is #voteredtosaveamerica). These 
visualisations may highlight how HCCs can be merged, but 
care must be taken when interpreting them.

Analysis of the RNC co-hashtag HCCs and their hashtags 
in Fig. 24b offers further examples of these observations and 
offers new insights. Clusters 1 and 2 are joined by the blue 
diamond-highlighted hashtag, #blacklivesmatter, but 
cluster 1 is a detractor group (using #alllivesmatter) 
while cluster 2 is a supporter group using several Black 
rights-related hashtags. Cluster 4 discusses riots following 
Black Lives Matter protests in Kenosha, Wisconsin, how-
ever, while the two sets of hashtags highlighted at the top of 
the cluster relate mostly to current events (e.g. #kenosha 
and #covid19 on the left, and #kenoshariots and 
#thursdaythoughts, plus #walkaway, which links 
to a small fan, as it is a pro-Republican statement to avoid 
conflict), the hashtags at the bottom of the cluster are more 
clearly right wing or conservative in nature, referring to a 
relevant media organisation, #kag2020 (Keep America 
Great, a pro-Trump slogan) and #ccot (Christian Con-
servative on Twitter). Whereas cluster 4 in Fig. 24a includes 
polarised HCCs, the placement of the hashtag nodes they 
are linked to offers no guidance on how they might be sep-
arated. Cluster 4 in Fig. 24b indicates that an alternative 
layout algorithm may aid analysis. Cluster 6 represents a 
concerted anti-Trump effort with many attacking hashtags, 
but the isolation of the HCC at the cluster’s centre makes it 
clear that not many of the others tweeting during the RNC 
took its lead. Cluster 5 is an effort to draw attention to an 
instance of police brutality, which also did not gain traction 
with the broader co-hashtag community.

5  Conceptual comparison and critique

Methods to discover coordinated behaviour by inferring 
links between accounts based on related interactions is not 
unique. Cao et al. (2015) and Giglietto et al. (2019) iden-
tified groups of accounts based on the URLs they shared 
in common, while Lee et al. (2013), Keller et al. (2019), 
Dawson and Innes (2019) and Graham et al. (2020) relied 

14 The Goodyear factory in Ohio banned clothing with political mes-
saging, including the Trump campaign’s MAGA caps, during the 
election campaign: https:// www. abc. net. au/ news/ 2020- 08- 20/ donald- 
trump- calls- for- goody ear- boyco tt- over- alleg ed- maga- ban/ 12577 372.
15 Jeffrey Epstein was a billionaire arrested for sex crimes before 
dying in custody, however he was known to Donald Trump, and 
therefore this hashtag’s use can be seen as an attack on his political 
campaign: https:// www. forbes. com/ sites/ liset tevoy tko/ 2020/ 10/ 18/ spi-
der- book- excer pt- how- trumps- presi dency- helped- expose- jeffr ey- epste 
in/.

https://www.abc.net.au/news/2020-08-20/donald-trump-calls-for-goodyear-boycott-over-alleged-maga-ban/12577372
https://www.abc.net.au/news/2020-08-20/donald-trump-calls-for-goodyear-boycott-over-alleged-maga-ban/12577372
https://www.forbes.com/sites/lisettevoytko/2020/10/18/spider-book-excerpt-how-trumps-presidency-helped-expose-jeffrey-epstein/
https://www.forbes.com/sites/lisettevoytko/2020/10/18/spider-book-excerpt-how-trumps-presidency-helped-expose-jeffrey-epstein/
https://www.forbes.com/sites/lisettevoytko/2020/10/18/spider-book-excerpt-how-trumps-presidency-helped-expose-jeffrey-epstein/
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on the similarity of the content posted by accounts to do the 
same. Giglietto et al. explicitly added a temporal element by 
considering potential links only between accounts that share 
a URL within a constrained time frame. Their “rationale is 
that, while it may be common that several entities share the 
same URLs, it is unlikely, unless a consistent coordination 
exists, that this occurs within the time threshold and repeat-
edly.”16 To the knowledge of the authors, only three other 
proposed approaches appear to generalise the idea to allow 
links between accounts to be inferred based on a variety 
of behaviours common to the major OSNs: Pacheco et al. 
(2021), Graham et al. (2020), and Nizzoli et al. (2021).

Pacheco et al.’s method creates strong ties between accounts 
that share similar behavioural traits. Behavioural traits are 
extracted from social media data (e.g. hashtags or URLs) and, 
together with the accounts using them, a bigraph is created, 
similar to our account/reason networks. A weighted account 
network is projected from this bipartite network, linking 
accounts that have edges to the same trait node. The more 
shared traits, the heavier the edge between accounts. Finally, 
the account network undergoes cluster analysis specific to 
the nature of coordination sought. In their examples, Twitter 
accounts linked by using the same account handle are divided 
into clusters by virtue of the connected component in which 
they appear. A second example examining share market “pump 
and dump” scams links accounts based on the similarity of the 
text they post, using text frequency/inverse document frequency 
(TF-IDF), and then clusters are discovered by simply filter-
ing out edges with a final weight less than 0.9. A third exam-
ple connects accounts that use multiple hashtags in the same 
order in their tweets. The approach was employed searching 
for co-retweeting communities spreading propaganda attacking 
the Syrian White Helmet movement by linking accounts that 
retweeted tweets within 10 s Pacheco et al. (2020).

In contrast, Graham et  al.’s “coordination network 
toolkit”17 (CNT) is written in Python (as is ours), and relies 
on a database populated with information extracted from 
tweets to carry out searches for: coordinated retweeting 
(retweeting the same tweet); co-tweeting (tweeting identical 
text); co-similarity (tweeting similar text); co-linking (shar-
ing the same URL); and co-replying (replying to the same 
tweet). The database implementation uses an inner join to 
improve the performance of searching for evidence of coor-
dination between pairs of accounts (which, similar to our 
approach, requires pairwise comparison of all accounts in 
the dataset). This implementation would need to be modi-
fied to suit a streaming data source, but could theoretically 
be applied to data from a variety of OSNs as it employs a 
technique similar to our Steps 1 and 2.

The approach of Nizzoli et al. (2021) is very similar to 
ours, however it explicitly begins by selecting a set of users of 
interest, whereas we begin with a corpus of posts and our set 
of users is defined by those present in it. Nizzoli et al. make 
clear that the users may be defined by using the corpus in the 
same way at the outset, or may be otherwise nominated by 
virtue of being superproducers or superspreaders or follow-
ers of a prominent account. They also introduce a filter step 
before the extraction of HCCs. Pacheco et al. (2021) filter 
their user similarity network with an arbitrary filter, which, as 
pointed out by Nizzoli et al., results in a binary classification 
of coordinating and non-coordinating users, but importantly 
disregards the effect of the network structure. Instead, Niz-
zoli et al. rely on multiscale filtering approaches for complex 
networks, which retain network structures (not just individual 
edges) based on statistical significance. Furthermore, these can 
be scaled to retain more or less of the network, permitting 
examination of the ‘degree’ of coordination, not just a binary 
answer to whether or not it is present. They propose an iterative 
algorithm at this point for detecting clusters of coordinating 
users, which makes use of an increasingly strict definition of 
user similarity (i.e. coordination) and each time relies on the 
communities found in the previous step as the starting point, 
guaranteeing they are kept in some form. This makes it pos-
sible to track communities at different levels of coordination, 
similar to how k core decomposition provides insight into how 
deeply particular nodes and structures are embedded within 
a network. Finally, they apply a validation step, studying the 
resulting networks with network measures, and text analysis of 
the posts of the HCCs, but all as a function of the resolution at 
which the HCCs were detected. The FSA_V algorithm is our 
alternative to their filtering and cluster detection steps. The 
ability for Nizzoli et al. to examine different degrees of coor-
dination is a distinguishing factor, however they also (just like 
Pacheco et al. 2021) must decide beforehand what similarity 
measure to connect users with—this is equivalent to the behav-
iours that underpin the coordination strategies we discussed 
in Sect. 2, however they make the point that the similarity 
measure may involve any relevant information about the user 
profiles, not just their behaviour within the corpus. The tempo-
ral aspect of the coordination is not discussed, presumably as it 
is assumed to be a component of the user similarity measure.

Giglietto et al.’s CoorNet R package does not allow speci-
fication of a time window directly, but instead uses a propor-
tion threshold to determine what to regard as an anomalously 
small but active time window, and thus requires access to an 
entire dataset. It is designed to study Coordinated Link Shar-
ing Behaviour (Giglietto et al. 2020a) and thus only considers 
URLs in posts, however, it accepts URLs from a variety of 
sources, including via CrowdTangle18 and MediaCloud.19

18 https:// www. crowd tangle. com/.
19 https:// www. media. mit. edu/ proje cts/ media- cloud/ overv iew/.

16 Quoted from the README of Giglietto et al.’s open-source code 
(as of 2021-01-19): https:// github. com/ fabio gigli etto/ CooRn et.
17 https:// pypi. org/ proje ct/ coord inati on- netwo rk- toolk it/.

https://www.crowdtangle.com/
https://www.media.mit.edu/projects/media-cloud/overview/
https://github.com/fabiogiglietto/CooRnet
https://pypi.org/project/coordination-network-toolkit/
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Our method is similar to all of these but is described in 
greater detail, relies upon a discrete window-based approach 
to apply temporal constraints, and we provide and evalu-
ate a novel cluster extraction algorithm, and an open-source 
implementation is available. By applying time constraints 
in discrete windows, connections may be missed across 
windows, but this makes it easier to apply in near real-time 
streaming settings. If one were to infer connections between 
accounts as each new tweet is posted, it could create a poten-
tially significant, ongoing processing cost depending on the 
number of unique accounts observed in the current time 
window. As new posts arrive, new nodes may need to be 
added to the account network, while others may need to be 
removed, along with their adjacent edges (which, it is impor-
tant to recall, represent indirect evidence of coordination, 
not the individual timestamped interactions as one might 
find in a social network based on direct retweets, mentions 
or replies). Furthermore, this constantly updated account 
network must be complete, i.e. edges should always be added 
in case the evidence they represent may be consolidated by 
future posts.

If the choice of time window is very short (e.g. 10 s, as 
per Pacheco et al. 2020), and LCNs from adjacent windows 
are aggregated (as per our method), the absence of a truly 
sliding window like Graham et al.’s may not significantly 
affect results, as ongoing high levels of coordination will 
appear over multiple windows. In contrast, if the time win-
dow is longer (e.g. five or more minutes), then the hard 
boundary between windows may cause coordinated activi-
ties to be missed. The question is, then, what kind of coordi-
nation is being sought. Teams of bots tweeting or retweeting 
the same tweet within small time frames will be vulnerable 
to detection, however a deliberate covert human team with 
sockpuppet accounts may escape detection (at least initially) 
by varying the time frame over which retweets are posted 

(e.g. spread them unevenly over an hour or more), but if the 
same accounts cooperate for extended periods, our method 
will find them once their activities are aggregated. One type 
of coordination that is very difficult to detect is single event 
boosts of a post: e.g. when, say, 1000 paid accounts retweet 
or reply to a single tweet or comment on an online review. 
In a large discussion, 1000 tweets will not stand out, but, 
depending on how connected the paid accounts are to the 
broader discussion, they may spread the content a consid-
erable distance through the network. Furthermore, gaming 
OSN trending algorithms may not be difficult,20 and even a 
thousand retweets may result in a valuable degree of influ-
ence in comparatively smaller communities (e.g. Australia).

As a final comment, all methods discussed in this sec-
tion are suited to post-collection analysis. Graham et al.’s 
relies on the power of database systems to build the LCN 
but avoids exploring clustering analysis for HCCs. Gigli-
etto et al.’s relies on R’s expressivity and filtering based on 
anomaly detection, while our implementation uses Python 
and batch mode processing to enable flexibility in the choice 
of cluster analysis technique. Pacheco et al.’s implementa-
tion is in Python, but has been applied to very large datasets, 
and so may also rely on a high performance language (e.g. 
Java) or distributed processing platform, such as Hadoop. 
Nizzoli et al. do not mention the availability of their imple-
mentation, only that their test dataset will be forthcoming.

Our paper is the only one of these to address the concept 
of searching for multiple coordination criteria, and how to 
treat the combination of their evidence, and the attendant 
complications explored in Step 4 of Sect. 3.1. Magelinski 
et al. (2021) have proposed second-order interactions to 

Fig. 25  The semantics of edges in LCNs requires clarification. If A is 
connected to B and B is connected to C, it may be due to the events in 
Situation 1 or Situation 2, but any inference of a relationship between 
A and C will be different depending on which it actually occurred. 

Each window, w
x
 , starts at timestamp start(w

x
) and has duration 

duration(w
x
) . An arrow between, e.g. A and the Twitter bird 1 implies 

A retweeted tweet 1 within a specific window

20 OSN gaming efforts of the form “Let’s get X trending” are quite 
common in Australia, e.g. https:// twitt er. com/ Timot hyjgr aham/ status/ 
13517 42513 04480 7680.

https://twitter.com/Timothyjgraham/status/1351742513044807680
https://twitter.com/Timothyjgraham/status/1351742513044807680
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address this, but only in combination (e.g. connect accounts 
using the same hashtag+URL in tweets). In fact, the other 
papers primarily treat the coordination criteria (i.e. user sim-
ilarity measure) as entirely dependent on the current inves-
tigation and no generalisation of the concepts is discussed.

6  Future work

The most important directions to take this work relate to the 
following aspects: 

1. Temporal analysis. Temporal analysis of the evolution 
of HCCs and their influence on the broader discussion 
over time will provide insight into how the HCCs oper-
ate and achieve their goals, and perhaps will reveal dis-
tinct classes of HCCs and the strategies they employ.

2. The semantics of LCN edges. Further theoretical 
research relying on the temporal aspect is also required 
to determine the real meaning of edges in the LCN. 
Figure 25 provides an illustration of where there is 
ambiguity. If accounts A, B, and C all retweet tweet 
1 within a single time window, or at least overlapping 
time windows, then we join A to B and B to C in the 
LCN, and there is a reasonable assumption that A and 
C may be related somehow. This is less clear when A 
and B retweet tweet 1 and B and C retweet tweet 2, both 
in different time windows; it is much less reasonable 
to assume a relationship between A and C in that case 
(especially if the time windows are far apart), but both 
situations result in the same LCN structure: A connects 
to B and B connects to C. This is now under investiga-
tion (Weber and Falzon 2021).

3. Coordinated amplification strategies. Not all coordina-
tion occurs in short periods of time nor in adjacent time 
windows. For example, an unscrupulous political cam-
paign may purchase the services of 1000 bots—behav-
iour identified by Dawson and Innes (2019)—which are 
then told to retweet a single campaign post once or to 
reply to an opponent’s post with attacks at a particular 
time to maximise the political effect. Alternatively, a 
small group of trolls may post the same tweets harass-
ing a public figure each day at 5pm on weekends but not 
weekdays. Considering how to address broader defini-
tions of coordination will be an ongoing challenge as 
OSNs change their features and people find new ways 
to use and abuse them. Additionally, higher abstractions 
of coordination, as observed in forensic studies of online 
influence campaigns (Benkler et al. 2018; Jamieson 
2020; Singer and Brooking 2019; Nimmo et al. 2020) 
present further challenges for automated detection sys-
tems.

4. Distinguishing authentic and inauthentic behaviour. 
The issue of astroturfing (e.g. Metaxas and Mustafaraj 
2012) brings this into sharp relief: some campaigns are 
genuine grass roots movements driven by a broad desire 
to see policies change (e.g. campaigning to address cli-
mate change), however some are artificially organised, 
aimed at gaming OSN trending algorithms to spread 
their narrative further and to give the appearance of 
genuine wide public support (e.g. efforts to convince 
US Congress to release a politically controversial FBI 
memo, McKew 2018). As covert campaigns become 
more sophisticated and numerous, it will become more 
important for OSNs, law enforcement and relevant 
agencies to focus their efforts on the relevant malicious 
activities and to be able to discriminate harmless fan 
campaigns from harmful disinformation campaigns. 
Others have noted that this problem remains unresolved 
at this time (Vargas et al. 2020).

5. Process improvement. Improving the implementation of 
the process, and how HCC extraction is performed, and 
how validation is conducted will be an ongoing activ-
ity. As demonstrated by Pacheco et al. (2020, 2021) 
and Graham et al. (2020), different types of commu-
nity extraction will suit different types of coordination 
strategy, just as will the choice of strategy to search for 
(e.g. pollution or boost). Introducing a genuine sliding 
window (cf. our distinct, adjacent windows) will prevent 
missing further instances of coordination, but modifica-
tion of the approach will be required to apply it in a near 
real-time setting (cf., Carnein et al. 2017; Assenmacher 
et al. 2020). Finally, to bring some statistical robustness 
to the question of validity, there are measures that can 
be used to determine if the accounts in HCCs engage in 
statistically significant greater or lesser levels of, say, 
retweeting than the general population. Broniatowski 
(2021) has very recently offered a contribution to this 
challenge. These measures will help determine in what 
ways HCC behaviours differ, but will leave unresolved 
the question of intent and the authenticity of that behav-
iour.

7  Conclusion

As coordinated online influence activities grow in sophis-
tication, so must our automation and campaign detection 
methods also improve in order to expose the accounts cov-
ertly engaging in “orchestrated activities” (Grimme et al. 
2018). We have described several strategies for coordinated 
amplification, their purpose and execution methods, and 
demonstrated a novel pipeline-based approach to finding 
sets of accounts engaging in such behaviours in two politi-
cally relevant Twitter datasets. We have also explained 
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and provided examples of how our method is conceptually 
applicable to a range of OSNs based on common features 
and functionality. Using discrete time windows, we tempo-
rally constrain potentially coordinated activities, success-
fully identifying groups operating over various time frames. 
Guided by research questions posed in Sect. 1, our results 
were validated by using a variety of techniques, including 
developing three one-class classifiers to compare the HCCs 
found in two relevant datasets, plus a randomised one, with 
HCCs from a ground truth subset. Two case studies of con-
tentious online discussion were also presented, in which our 
technique was applied to reveal insights into the activity of 
polarised groups in one and the activity of social bots and 
bot-like accounts in the other. The algorithmic complexity 
of our approach was discussed, as well as comparison with 
several similar contemporary approaches.

This technique provides a valuable addition to the suite of 
analytical tools used in deep forensic investigations of SIOs, 
such as Benkler et al. (2018), Jamieson (2020) and Nimmo 
et al. (2020), as well as law enforcement and open-source 
investigation groups—in particular, this technique can help 
reveal entities that deliberately avoid direct connections to 
hide their cooperation.

The temporal analysis of HCC evolution and their 
impact on the broader discussion, theoretical questions of 
the semantics of edges in LCNs, the ability to distinguish 
between authentic and inauthentic coordinated behaviour, 
improvement of HCC extraction and validation techniques 
and application in near real-time processing environments 
all provide opportunities for future research in this increas-
ingly important field.
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