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Abstract
Grouping well-connected nodes that also result in label-homogeneous clusters is a task often known as attribute-aware 
community discovery. While approaching node-enriched graph clustering methods, rigorous tools need to be developed for 
evaluating the quality of the resulting partitions. In this work, we present X-Mark, a model that generates synthetic node-
attributed graphs with planted communities. Its novelty consists in forming communities and node labels contextually while 
handling categorical or continuous attributive information. Moreover, we propose a comparison between attribute-aware 
algorithms, testing them against our benchmark. Accordingly to different classification schema from recent state-of-the-art 
surveys, our results suggest that X-Mark can shed light on the differences between several families of algorithms.

Keywords  Network models · Synthetic benchmarks · Labeled community discovery · Node-attributed community 
discovery

1  Introduction

Networks are the natural way to express phenomena whose 
unit elements exhibit complex interdependent organization. 
During the last decades, the availability of data expressing 
meaningful complex structures has increased significantly; 
hence, the definition of network science [as] the study of 
the collection, management, analysis, interpretation, and 
presentation of relational data (Brandes et al. 2013), built 
on top of the mathematical tools of graph theory. Among the 
massive number of complex network fields and sub-fields, 
community discovery (henceforth, CD) is one of the most 
important and critical tasks, aiming to group the actors of a 
system according to the relations they form. The lacking of 
general criteria—from the ill-posed definition of community 
to the uncountable number of alternative approaches—leads 
to the challenging problem of evaluating the quality of the 

resulting CD partitions. Classically, both internal measures 
and external methodologies have been provided to test the 
goodness or the quality of the CD algorithms. An internal 
evaluation adopts a quality measure to assess the well-
defined structural segmentation of the communities; con-
versely, an external evaluation aims to estimate the agree-
ment between the communities and a possible ground-truth 
partition. In real-world networks, ground-truths are often 
defined by one specific property/attribute whose values are 
attached to the nodes. Several epistemological issues behind 
the practice of evaluating CD outputs against such ground-
truths were recently investigated (Peel et al. 2017); although 
some possible variants to the issue (Rabbany and Zaïane 
2015), real-world networks are not recommended for test-
ing purposes. Another option consists of adopting synthetic 
benchmarks designed explicitly to mimic the meso-scale 
level of real-world networks by building artificially planted 
sets of communities and evaluate the CD algorithm perfor-
mances on various difficulty levels. Moreover, driven by the 
homophily principle (McPherson et al. 2001), node attrib-
utes are often used to improve CD—or, at least, redefine it 
w.r.t. external aspects (Chunaev et al. 2020)—by leveraging 
both topological and label-homogeneous clustering criteria. 
The node-attributed network encodes information about the 
node’s properties/qualities, in form of attributes, accordingly 
to the general purposes of feature-rich networks (Interdonato 
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et al. 2019), where the goal is to merge the graph topology 
together with other possibly meaningful external informa-
tion. In the redefinition of the CD task—known as node-
attributed or labeled CD task (henceforth, LCD)—the aim is 
to find well-connected communities that are also homogene-
ous w.r.t. the attributes carried by the nodes. It follows that 
the evaluation environment should be improved at the same 
time. Thus, for testing LCD algorithm outputs, only connec-
tivity-based benchmarks are not enough. Motivated by all 
the above-mentioned evaluation issues, often not approached 
in a systematic manner in the LCD task, we aim to address 
them in this work (i) by building a synthetic generator with 
attribute-aware planted communities, X-Mark, and (ii) by 
testing different LCD approaches against it. In detail, our 
two main contributions are to provide a new benchmark for 
testing LCD algorithms, then carefully evaluate them being 
aware of the class they belong according to state-of-the-art 
taxonomies, by highlighting their ability to perform better/
worse on incrementally complex real-world scenarios.

The rest of the paper is organized as follows. In Sect. 2, 
we will review the state-of-the-art of attribute-aware net-
work models, synthetic benchmarks, and LCD approaches. 
In Sect. 3, we will introduce X-Mark  our node-attribute 
enriched network generator that handles label-homogeneous 
communities, embedding both categorical and continuous 
attributes. In Sect. 4, we will test some LCD families of 
approaches against X-Mark, to prove to what extent the algo-
rithms can reconstruct the artificial communities embedded 
in the benchmark. Finally, Sect. 5 will conclude the work, 
summarizing the results and possible future lines of research.

2 � Related work

An overview of several topics is needed to provide the full 
context surrounding the present work, i.e., the state-of-
art about network models, synthetic generators, and LCD 
techniques.

Network models Network models aim to capture and 
replicate some essential properties underlying real-world 
phenomena, from heavy-tailed degree distributions to high 
clustering coefficients and short average path lengths [i.e., 
small-world properties (Watts and Strogatz 1998)], as well 
as nonzero degree-degree correlation, community structure, 
and homophily. The well-known Preferential Attachment 
mechanism (henceforth, PA) of the Barabási-Albert model 
(Barabási and Albert 1999) generates scale-free networks 
with a power-law degree distribution, following the princi-
ple that the more connected a node is, the more likely it is 
to receive new links. Extensions of PA include steps for the 
formation of triads (Holme and Kim 2002), or for allowing 
the growth of degree-assortative networks (Catanzaro et al. 
2004) or communities with power-law distributions (Xie 

et al. 2007). Alternative approaches—such as the Commu-
nity Guidance Attachment and Forest Fire Models (Lesko-
vec et al. 2005)—can exploit other network properties, e.g., 
self-similarity and hierarchies, for generating community 
structure.

Network models that include homophily in the genera-
tive process aim to study how such a principle can influence 
the properties and the evolution of a system. A standard 
procedure shared by several models is that the probability 
of forming connections depends both on the degree (i.e., 
PA) and the attributes the nodes encode (Gong et al. 2012; 
Pasta et al. 2014; Kim and Altmann 2017; Shah et al. 2019). 
Several analytical experiments suggest that modeling homo-
phily-aware networks produces interesting results. In Kim 
and Altmann (2017), the authors observe different shapes 
of the cumulative degree distributions, which transform 
from concave to convex when homophily is forced to have 
a substantial role in the generative process; such a convex-
ity is interpreted as the power of homophily to amplify the 
rich-get-richer effect (more than considering only the PA); in 
Pasta et al. (2014), it is observed that high degree assortativ-
ity acts as a negative force to generate homophilic networks. 
moreover, the mechanism of focal closure (i.e., the forma-
tion of links between similar nodes without common neigh-
bors) differs from structural closure (Murase et al. 2019), 
and their cumulative effects imply the formation of core-
periphery structures (Asikainen et al. 2020). In the context 
of opinion dynamics, several works introduce homophily-
aware network generators for exploiting controlled analysis 
of human dynamics: false uniqueness and false consensus 
are amplified in heterophilic and homophilic networks, 
respectively (Lee et al. 2017); higher homophilic networks 
exhibit meaningful community structure and have a role in 
the formation and cohesion of groups (Gargiulo and Gandica 
2016). In such models, it is worth noticing that communi-
ties are not built-in, since they are extracted a-posteriori 
with a CD algorithm. These example leads us to make an 
important distinction between network modeling and syn-
thetic benchmarks.

Synthetic benchmarks Synthetic benchmarks allow 
researchers to evaluate their algorithms on data whose 
characteristics resemble those observed in real-world net-
works. Contrary to network models, the rationale behind 
the construction of synthetic benchmarks is to use ground-
truths to evaluate the fitness of the partitions resulting from 
CD methods. Among the most famous generators used for 
classic CD, we find the Girvan–Newman (GN) (Girvan and 
Newman 2002) and the Lancichinetti–Fortunato–Radic-
chi (LFR) (Lancichinetti et al. 2008) benchmarks, as well 
as the family of stochastic blockmodels (SBMs) (Holland 
et al. 1983; Karrer and Newman 2011). The GN benchmark 
Girvan and Newman (2002) is a graph of 128 nodes with 
an expected degree of 16, divided into four communities 
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of equal sizes. Two parameters identify the probabilities of 
intra- and inter-clusters links, respectively. The LFR bench-
mark (Lancichinetti et al. 2008) allows for a user-defined 
number of nodes and distributes both node degrees and com-
munities size according to a power-law. A parameter (i.e., 
the structure mixing � ) identifies the fraction of links that a 
node has to share with other nodes in its cluster, while the 
remaining fraction is shared with random nodes in other 
parts of the graph. In the SBM (Holland et al. 1983), nodes 
are assigned to one of k user-defined communities; then, the 
links are placed independently between nodes with prob-
abilities that are a function of the community membership 
of the nodes; a degree-corrected version of SBM allows to 
identifying heterogeneous node degrees (Karrer and New-
man 2011).

Such methods are designed to evaluate static graph par-
titions and do not natively support the generation/analy-
sis of node-attributed graphs. Homophily-aware synthetic 
benchmarks are developed to cope with the limitation of 
such classic benchmarks, allowing for a more reliable con-
trolled environment testing for LCD methods. Among the 
benchmarks specifically designed to generate node-attrib-
uted networks with communities, we find LFR-EA (Elhadi 
and Agam 2013), ANC (Largeron et al. 2015), and acMark 
(Maekawa et al. 2019). In LFR-EA (Elhadi and Agam 2013), 
the LFR benchmark is extended with a noise parameter that 
controls the percentage of homogeneity within communi-
ties. The user can define the number of attributes and the 
number of values for each attribute, as well as the percent-
age of random sampling with or without replacement (i.e., 
how the values distribute among the communities). Interest-
ing LCD testing against LFR-EA can be found in Pizzuti 
and Socievole (2018) and Berahmand et al. (2020). In ANC 
(Largeron et al. 2015), nodes with only continuous attributes 
are generated, whose values are sparse out through a user-
defined standard deviation parameter; some representative 
nodes of each community are initialized, then a K-medoids 
clustering is performed to build communities, and a user-
defined number of intra and inter-links is generated. The 
node community assignment depends only on the labels of 
representative nodes. An LCD testing against ANC can be 
found in Falih et al. (2017) and Liu et al. (2020). In acMark 
(Maekawa et al. 2019), a bayesian approach is used to gener-
ate node-attributed graphs with communities. It enables to 
specify various degree distributions, cluster sizes, and both 
categorical and continuous attribute types.

Finally, it is also worth mentioning a set of works modi-
fying SBMs to cope with node covariates, as in Tallberg 
(2004), where this is achieved via a multinomial probit 
model. Often referred as CSBMs (covariate stochas-
tic blockmodels) (Sweet 2015), they consist of a hybrid 
between the network models and synthetic benchmarks 
previously mentioned. Since they can create networks with 

communities correlated with node attributes, they often 
purpose to test the ability of algorithms to make use of 
metadata (i.e., whether they can be helpful to the LCD 
task). The work in Newman and Clauset (2016) gives a 
prototypical example of this, where a correlation between 
structure and attributes is created matching the latter ones 
with the true community assignments of nodes in an SBM; 
this approach is found to be effective also for generating 
multi-layer synthetic networks with ground-truth (Con-
tisciani et al. 2020), and in the network inference problem 
by systematically studying the influence of the attributes 
on the correlation between network data and metadata 
(Fajardo-Fontiveros et al. 2021). Other attributed SBMs 
can be found in Hric et al. (2016), where a multi-layer-
based approach allows developing one layer modeling 
relational information between attributes and the other 
one modeling connectivity, then assigning nodes to com-
munities maximizing the likelihood of the observed data 
in each layer; in Stanley et al. (2019), a similar approach 
is able to handle multiple continuous attributes. Other than 
augmented-SBMs, in Emmons and Mucha (2019), instead, 
the map equation is modified to control the varying impor-
tance of metadata with a tuning parameter.

Labeled or node-attributed community discovery LCD 
focuses on obtaining structurally well-defined partitions 
that also result in label-homogeneous communities. Several 
comparative studies and survey have been proposed to clas-
sify the large and increasing amount of node-attributed CD 
algorithms by leveraging taxonomies that allow grouping 
the algorithms according to the point-of-view adopted for the 
clustering step. Figure 1 summarizes them. While Bothorel 
et al. (2015) proposes a preliminary low-level classification, 
Falih et al. (2018) aggregates the algorithms into three gen-
eral families: ( ia ) topological-based, ( iia ) attributed-based, 
and ( iiia ) hybrid approaches. Such a taxonomy focuses pri-
marily on how the original graph is manipulated for taking 
attributive information into account, namely ( ia ) attaching it 
to the topology, or ( iia ) merging them together at the expense 
of the original links, or ( iiia ) using an ensemble method. 
The important aspect of time (e.g., modifying the original 
structure before or contextually to the clustering step), leads 
(Chunaev 2020) to propose a different classification schema: 
algorithms are grouped according to the moment when 
structure and attributes are fused, distinguishing between 
( ib ) early-fusion, ( iib ) simultaneous fusion, and ( iiib ) late-
fusion approaches.

Just to give an idea of the complexity of defining appro-
priate taxonomies, an approach like CESNA (Yang et al. 
2013), built on top of a probabilistic generative process 
while treating node attributes as latent variables, can be 
viewed either as a hybrid or a simultaneous fusion approach, 
but also as an approach similar to the hybrid network models 
outlined in the previous paragraph.
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For a review of some specific LCD algorithms, demand-
ing detailed information is left to the mentioned surveys. 
Nevertheless, the LCD approaches that we test against 
X-Mark will be described better in the appropriate analyti-
cal section.

3 � X‑Mark

Throughout the work, we refer to the following definition of 
the node-attributed graph:

Definition 1  (Node-attributed Graph) G = (V ,E,A) is a 
node-attributed graph, where V is the set of nodes, E the set 

of edges, and A a set of categorical or continuous attributes 
such that A(v), with v ∈ V  , identifies the set of categorical 
or continuous values associated to v.

X-Mark1 aims to generate an undirected and unweighted 
node-attributed graph G along with an attribute-aware 
planted partition C while guaranteeing: (i) power-law node 
degree and (ii) community size distribution; (iii) user-
defined noise distribution within homogeneous communi-
ties; (iv) user-defined intra/inter-community edge distribu-
tion. In detail, X-Mark network generation procedure works 
as reported in Algorithm  1 - subject to the controlling 
parameters summarized in Table 1. In detail, it articulates 
into four steps:

Fig. 1   LCD taxonomies, where 
the middle level (in green) is a 
sub-hierarchy of two possible 
higher-level schema (in blue and 
red, respectively) (Color figure 
online)

1  Python code available at: https://​github.​com/​dsalv​az/​XMark

https://github.com/dsalvaz/XMark
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Step 1: Nodes generation and degree assignation - subject 
to the average degree ⟨k⟩ and the power-law exponent � (line 
1, Algorithm 1);

Step 2: Community size sequence generation imposing 
the power-law exponent � (line 2), and identification, for 
each attribute, of the representative label of each commu-
nity, sampled from mcat or mcont (line 3-4)2; in detail: (i) for 
each categorical attribute, a random assignment from the 
mcat possible values in the domain of the attribute, where 
mcat ≥ 2 ; (ii) for each continuous attribute, a random assign-
ment from an ad-hoc multimodal distribution having mcont 
possible peaks, where mcont ≥ 2 , and the first peak has mean 
0, while the other ones are � values positively distant from 
the previous peak;

Step 3: Communities and node’s attribute generation 
(lines 5-8) handling different strategies for categorical and 
continuous attributes, i.e.,: (i) for each categorical attribute, 
assign to the node the same value of its community with 
probability 1 − � ; (ii) for each continuous attribute, assign to 
the node a value picked from a normal distribution assum-
ing the community label as the distribution mean and � as 
it standard deviation;

Step 4: Edge sampling - subject to the expected ratio 
among intra/inter-community edges as expressed by the 
mixing parameter � (line 9), as previously defined in Lan-
cichinetti et al. (2008).

Among the model hyper-parameters reported in Table 1, 
the following are peculiar to X-Mark: (i) � : it tunes the level 
of noise within each community. A low value of � implies 
the emergence – within each community – of a majority 
label, with � = 0 modelling the extreme scenario where all 

the nodes within a community share the same categorical 
attribute value;

(ii) � : it affects the speed at which the benchmark starts to 
produce less well-separated clusters according to the attrib-
ute values distribution: in this work, we impose � = 10 ; (iii) 
mcat and mcont are integers modeling the domain for categori-
cal and numerical attributes respectively; in the rest of the 
article, for the sake of simplicity, we will implicitly treat 
such parameters as lists of integers, meaning that each attrib-
ute has its proper m value in the range expressed by the list.

3.1 � X‑Mark characterization

In this subsection, we provide an overview of some X-Mark 
characteristics. For this purpose, we introduce a set of meas-
ures for the analysis; then, we split the study according to 
the differences between the categorical and the continuous 
attributes modeling.

Evaluation Measures To characterize the behaviour of 
the model in presence of categorical attributes, we relate the 
observed and expected label homophily. In detail, we calcu-
late the observed homophily, H, as the probability that two 
nodes share the same attribute value, and compare it to the 
expected one, Hexp , namely, the probability that a randomly 
chosen node pair shares the same attribute value. Formally:

Since H and Hexp do not take the homophilic contribution 
of each community/node into account explicitly, we also 
provide (i) a function capturing noise within communities 
(i.e., the percentage of the majority attribute value within a 
cluster), namely Purity (Citraro and Rossetti 2019), and (ii) 
two measures for explaining the homophilic contribution 
of each node, namely Peel’s assortativity (Peel et al. 2018) 
and Conformity (Rossetti et al. 2020). Given a community 
C, its purity Pc is the product of the frequencies of the most 
frequent categorical attribute values carried by the nodes 
within C, formally:

where A is the attribute value set, a ∈ A is an attribute 
value, and a(v) is an indicator function that takes value 1 

(1)H =
|(u, v) ∈ E ∶ A(u) = A(v)|

|E|

(2)Hexp =
|(u, v) ∶ A(u) = A(v)|

|N|(|N| − 1)

(3)Pc =
�

a∈A

maxa∈A(
∑

v∈c a(v))

�c�

Table 1   Description of tunable parameters

Parameter Description

|V| Number of nodes
⟨k⟩ Average degree of nodes
� Power-law exponent for node degree sequence
� Power-law exponent for community size sequence
mcat Number of values in the domain of a categorical 

attribute (at least 2)
� ∈ [0, 1] noise parameter
mcont Number of peaks (at least a bimodal distribution)
� Standard deviation
� ∈ [0, 1] Mixing parameter

2  Note that the same expressiveness can be preserved with a single 
parameter, m: the distinction aims to show the qualitative difference 
between the two attribute types, i.e., categorical or continuous attrib-
utes.
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iff a ∈ A(v) . The purity of a complete partition is then the 
average of the purities of the communities that compose it:

Since homophily H gives only one global score, we might 
not identify the contribution of single nodes or observe dif-
ferences between the intra- and inter-homophilic connec-
tions. Peel’s assortativity and Conformity compute for each 
node its homophilic embeddedness within the neighborhood 
it belongs.

We evaluate continuous attributes, using the Within-
Cluster Sum of Squares (WCSS):

where, for each community C from i to k, M is the centroid 
of nodes within the community.

Moreover, we leverage the concept of silhouette for rep-
resent graphically how well clusters are tight and separated 
to each other. Detailed information is left to the reference 
paper (Rousseeuw 1987).

Finally, to analyze the degree of connectivity of homoge-
neous clusters, we compute the modularity score, e.g., the 
fraction of the edges that fall within the given community 
C minus the expected fraction if they were distributed fol-
lowing a null model.

where m is the number of graph edges, Av,w is the entry of 
the adjacency matrix for v,w ∈ N , kv, kw the degree of v, w 

(4)P =
1

|C|
∑

c∈C

Pc

(5)WCSS =

k∑

i=1

∑

v∈Ci

|v −M|2

(6)Q =
1

(2m)

∑

vw

[
Avw −

kvkw

(2m)

]
�
(
cv, cw

)

and �(cv, cw) identifies an indicator function taking value 1 
iff v, w belong to the same community, 0 otherwise.

Categorical attributes. In this scenario, homogeneous 
communities are well-connected sets of nodes within which 
most of them share the same attribute value. The � parameter 
models the percentage of nodes labeled according to a ran-
domly assigned attribute value among the user-defined mcat 
possible ones; the remaining fraction is labeled according 
to the preferred community value. Thus, imposing � = 0.2 
means that at least 80% of nodes within a community share 
the same attribute value. The rationale behind the inclusion 
of the majority value justify the case of a binary categorical 
attribute (i.e., mcat = 2 ), where � = 1 leads to a lower bound 
of observed homophily of 0.5.

Figure 2 a shows the value of H as function of � and � . 
We focus on two different setups, mcat = 2 and mcat = 5 : in 
the former, the minimum observed homophily is around 0.5 
(as Hexp , not displayed); in the latter, the minimum observed 
homophily is around 0.3 (as Hexp , not displayed). In general, 
the plots in Fig. 2 a show us how X-Mark can implicitly model 
homophily by only considering clusters homogeneity. Indeed, 
H decreases as both randomly rewired connections and attrib-
ute noise within communities increase; e.g., for high values of 
� and � (i.e., from 0.6 to 0.9), H and Hexp tend to coincide, with 
the consequence of creating a very hard scenario for all struc-
tural-only, attribute-only and attribute-aware CD strategies.

To better understand how homophily emerges from such 
parameters, we analyzed the network node-centric homo-
philic behaviour. Peel’s assortativity and Conformity give 
us two different points of view. In Fig. 2 c, we show the local 
homophily scores of the two measures for the outlined set-
ups. In particular, two peaks emerge when well-defined (i.e, 
well-connected and homogeneous) communities are mod-
elled (i.e., � = 0.2 and � = 0.2 ), telling us that the network 

Fig. 2   a: 3D plots with relative 2D projections including IQR ranges 
(15 iterations) in functions of � and � (1 attribute, mcat = [2] or 
mcat = [5] ); b: purity and modularity in functions of � and � (1 attrib-

ute, mcat = [5] ); c: Peel’s assortativity and conformity on four net-
works with different combinations of low and high � and � values (1 
attribute, mcat = [5])
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has a large (majority) homophilic behavior, but smaller 
heterophilic zones emerge mostly from inter-cluster noise. 
Noisy communities decrease the within-cluster homophilic 
contribution even if the former ones are well-connected (i.e., 
� = 0.2 and � = 0.8 ). The distributions observed for both 
measures describe similar scenarios: nodes tend to concen-
trate around a mean value neither homophilic nor hetero-
philic, except for very well-defined and homogeneous com-
munities. To conclude, it follows that clustering modularity 
only depends on the parameter � , and clustering purity, only 
on the parameter � . Figure 2b summarizes it.

Continuous attributes Considering a continuous attrib-
ute scenario, homogeneous communities are clusters with 
low standard deviations. As outlined in Fig. 3 (the leftmost 
3D plot of the figure), the Within-Cluster Sum of Squares 
(WCSS) increases as � increases, independently from the 
structure mixing parameter � . Modeling continuous attrib-
utes by controlling mcont allows deducing the number of 
dense and well-separated clusters – in particular, when using 
low � values. In Fig 3, we show some examples, by using 
the following mcont configurations on two networks with low 
( � = 1.5 ) and relatively high ( � = 7.5 ) standard deviations, 
respectively: mcont = [2, 2] , mcont = [2, 4] , and mcont = [3, 3] . 
Indeed, well-separated clusters are visible when � is low. We 
executed K-Means (MacQueen 1967) over the network con-
figured with mcont = [2, 2] to show that the centroid-based 
clustering algorithm is able to recognize automatically the 
number of planted components from the attribute point-of-
view. On the other hand, such well-separated clusters do not 
match with the planted component of communities emerging 
from the structural point-of-view, i.e., the number of com-
munities subject to the � parameter. We can continue to refer 
to the first ones as the attribute-component of the partition, 
and to the second ones as its structural-component. Indeed, 
the differences among those two components are relevant 
since they induce potentially distinct, although meaningful, 

clustering. In Fig. 3, we show the silhouette scores of each 
clustering found by K-Means with (i) k = 4 (optimal value 
suggested by the elbow method), and (ii) k equal to the 
number of planted communities generated by X-Mark. The 
silhouette scores are different, and less qualitatively good 
clusters are found according to the latter strategy, i.e., while 
considering the structure-point-of-view to tune an attribute-
only clustering approach.

With this last point, we anticipate one of the fundamental 
problems dissected in the next section: how to combine the 
attribute-component view and the structural one while per-
forming an attribute-aware graph clustering?

4 � Experiments

This section provides an analytical framework of comparison 
between LCD algorithms against X-Mark. We compare the 
algorithms by considering the several classification schema 
emerging in LCD literature, as we discussed in Section 2.

Algorithms We compare ( ia ) topological-based, ( iia ) 
attributed-based, and ( iiia ) hybrid algorithms, contextually 
to ( ib ) early-fusion, ( iib ) simultaneous-fusion, and ( iiib ) late 
fusion ones.

Ensemble/Selection ( iiia, iiib ): methods falling within 
this category aim to fuse (or choose between) topological 
and attribute information after that both CD (for struc-
ture) and classic clustering methods (for attributes) are 
performed. We consider: (i) CSPA (Strehl and Ghosh 
2002; Elhadi and Agam 2013), a method that uses a graph 
representation to solve cluster ensemble, by partitioning 
an induced similarity graph built on top of the binary simi-
larity matrices extracted from the partitions; (ii) MCLA 
(Strehl and Ghosh 2002), another graph-based approach, 
where each partition is represented as a node, then linked 
to the other ones by considering their similarity; (iii) 

Fig. 3   From left to right, WCSS values in functions of � and � ; sil-
houette analysis of K-Means graph segmentation ( mcont = [2, 2] and 
� = 1.5 ), by using two strategies for determining k, i.e., k = 4 (elbow 
method), and k equal to the community size sequence cardinality; 

other attribute distributions of graphs generated from several mcont 
and � combinations, and a focus on K-Means graph segmentation 
( mcont = [2, 2] and � = 7.5 ) by selecting k = 4 (elbow method): higher 
� values lead to ill-defined clusters
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Selection (Elhadi and Agam 2013), that chooses a prefer-
able partition between a structural and an attributive one 
(Louvain (Blondel et al. 2008) and K-Means, respectively, 
in this work); the choice is made by looking at the esti-
mated mixing parameter � of the graph: if such a value 
is less than a certain experimental value �lim (i.e., 0.55, 
in the current study), Louvain is selected, K-Means oth-
erwise; (iv) Late-Fusion (Liu et al. 2020), that combines 
two partitions (again, a structural and an attributive one) 
by integrating their adjacency matrices through a linear 
combination; then, a CD algorithm segments the final 
induced graph.

Modifying Quality Functions ( ia, iib ): methods falling 
within this category aim to modify the objective functions of 
classical CD algorithms by integrating attribute-aware crite-
ria for attributes. We consider: (i) EVA (Citraro and Rossetti 
2019, 2020), a Louvain extension that integrates an attrib-
ute-aware function (i.e., Purity) for grouping homogeneous 
communities through a linear combination. It works with 
categorical and ordinal attributes; (ii) I-Louvain (Combe 
et al. 2015), a Louvain extension that includes an attribute-
aware objective function called Inertia; no parameters are 
involved, but the algorithm works only with continuous 
attributes;

Distance-based ( iia, ib ): methods falling within this cat-
egory perform the attribute-aware clustering on a distance 
matrix obtained by fusing structure and attributes distance 
functions; common metrics for structure distance are the 
shortest path lengths or Jaccard similarity. We consider: (i) 
ANCA (Falih et al. 2017), that selects a set of seeds toward 
which each nodes characterize their topological and seman-
tic similarity, then computes a distance matrix factoriza-
tion and runs K-Means over it; we apply the BiCC criteria 
for seed selection and the shortest path length to compute 
topological similarity, as suggested in the original paper; 
(ii) StoC (Baroni et al. 2017), that uses a multi-objective 
distance to fuse structure and attribute node similarities; 
the user is assumed to provide a semantic attraction ratio 

�s and a topological one �t , to let the method compute from 
itself a distance threshold � extracting �-close clusters, i.e., 
nodes which are within a maximum distance � from a given 
random seed, and a distance length l to define the l-neigh-
borhood of a node; in this work, several values of �s and �t 
are selected.

CSPA and MCLA were implemented in python3; Late-
Fusion4, ANCA5 and EVA6 implementations are the ones 
of the original authors; the latter is also available on the 
CDLib Python library (Rossetti et al. 2019), together with 
the I-Louvain one. The code of SToC was gently released by 
the corresponding authors on our requests.
X-Mark settings and evaluation 
We report in Tab. 2 the X-Mark parameter values used for 
the graphs generation. We leverage the widely adopted 
(Fortunato and Hric 2016) Normalized Mutual Normalized 
Information (henceforth, NMI) to compare X-Mark com-
munities to the ones identified by the selected algorithms. 
NMI is formally defined as in the following:

where H(X) is the entropy of the random variable X associ-
ated with an algorithm partition, H(Y), the one related to the 
ground-truth one, and H(X, Y), the joint entropy. NMI ranges 
in [0, 1], and it is maximized when the algorithm partition 
and the ground-truth one are identical.

Evaluation: ensemble/selection As previously intro-
duced while analyzing the continuous attributes generation, 
the naıve number of communities subject to the sequence 
obtained by tuning the � parameter (i.e., the structural-com-
ponent of the ground-truth partition) might not correspond 
to the naıve number of clusters subject to the attribute value 
distribution (i.e., the attribute-component one), in particular 
when the benchmark is instantiated to model well-connected 
communities that also produce well-separated clusters (i.e., 
imposing low � and � values).

To test the ensemble algorithms on X-Mark, we define 
three different case of scenarios, identified as a, b, and c - 
subject to specific mcont values, namely:

(i) mcont = [ |C|, |C| ], where | C | is the cardinality of the 
partition set; we aim to generate as much peaks as the num-
ber of graph communities, in order to avoid any issue related 
to the differences between the structural- and the attribute-
component, i.e., the fact that similar nodes w.r.t. they attrib-
utes actually do not correlate with the connections they 

(7)NMI(X, Y) =
H(X) + H(Y) − H(X, Y)

(H(X) + H(Y))∕2

Table 2   List of parameter values used for the analyses

Parameter Value(s)

|V| 2000
⟨k⟩ 10
� 3
� 2
mcat [2,4]
� [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
mcont [2, 2]; [2, 4]; [ |C|, |C| ] where | C | is the 

cardinality of the partition set
� [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
� [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

3  https://​github.​com/​GGiec​old/​Clust​er_​Ensem​bles
4  https://​github.​com/​chang​liu94/​attri​buted-​commu​nity-​detec​tion
5  https://​github.​com/​Issam​falih/​ANCL
6  https://​github.​com/​Giuli​oRoss​etti/​Eva

https://github.com/GGiecold/Cluster_Ensembles
https://github.com/changliu94/attributed-community-detection
https://github.com/Issamfalih/ANCL
https://github.com/GiulioRossetti/Eva
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establish; to cope with this framework, two solutions are 
proposed to infer the number of k required by the attribute-
component: a k is the one chosen by the elbow method, that 
picks the elbow of the curve described by the WCSS values 
as the number of clusters to use; b: k = |C| , i.e., the number 
of structural-component communities.

(ii) mcont = [2, 4] , where c k is chosen according to the 
elbow method.

The proposed analysis is designed to increasingly 
resemble real-world scenarios, since the gap between 
structural- and attribute-components increases from 
mcont = [ |C|, |C| ] to mcont = [2, 4] , and an only-attribute 
clustering algorithm can find the cluster cardinality 
estimation more difficult. In other words, the algorithm 
performances should decrease when their attribute-com-
ponent needs to determine the number of clusters k by 
only looking at attribute information and, contextually, 
this one does not match with the heavy-tailed topologi-
cal constraints of the community size sequence. Thus, in 
the former scenario (i.e., mcont = [ |C|, |C| ] with k chosen 
according to the WCSS elbow curve), such a gap is flat-
tened, because the attribute domains equal the number of 
topological communities, i.e., we have a different peak 
for each graph community. Then, on the same benchmark 
instance, we test an alternative solution for the estimation 
of k (i.e., mcont = [ |C|, |C| ]), to observe how the algorithms 
perform if we use only topological information to deter-
mine k. Finally, a more likely real-world scenario gener-
ates an attribute-aware planted partition where the attrib-
ute domains do not match with the number of communities 
(i.e., mcont = [2, 4] ) and where an elbow method is used to 

determine k, because, in real-world contexts, we cannot 
have information about the real number of graph clusters.

Figure 4 shows a selection of the obtained results. The 
letters above the plots (A, B, C) refer to the three scenarios 
previously introduced. All the plots report the NMI between 
the X-Mark ground-truth partitions and the ones obtained by 
the algorithms, as functions of � and � parameters. Above 
each ensemble/selection method (whose results are high-
lighted in green), we focus on the only-topological and 
only-attribute algorithmic approaches that each method uses 
to obtain a consensus partition from their fusion/selection, 
i.e., Louvain Blondel et al. (2008) (values highlighted in 
red) and K-means (MacQueen 1967) (in blue). Intuitively, 
Louvain is only affected by the mixing parameter tuning; 
conversely, K-means is only affected by the value dispersion 
due to the standard deviation increase. When the attribute 
domains equal the number of topological communities (i.e., 
Fig 4 a), we also observe partition similarities when � is 
relatively high, contrary to the other two scenarios. Most 
importantly, the similarity between the benchmark ground-
truths and K-means clustering decreases when k is supposed 
to match the real number of communities (i.e., Fig. 4 b) 
or in the most likely real-world network simulation (i.e., 
Fig. 4 c).

Briefly, consensus and selection methods depend on both 
the two output types. Among the consensus methods, the 
Late-Fusion one seems to perform better than CSPA and 
MCLA, in particular because the � parameter, when is set 
to 0.5, can tune a better trade-off between the two clustering 
typologies. The Selection method chooses between a topo-
logical-only and an only-attribute algorithm according to the 

Fig. 4   Ensemble/selection analysis: NMI similarities in functions of 
� and � ; the letters above each experimental framework correspond to 
different X-Mark benchmark instances against which the algorithms 

are tested (i.e., a: mcont = [ |C|, |C| ], k = elbow(G) ; b: mcont = [ |C|, |C| 
], k = |C| , c: mcont = [2, 4] , k = elbow(G))
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moment when the graph structure is ambiguous. Until a very 
low � value, Louvain is maintained as a clustering choice, 
then KMeans is selected, but its performances depend on the 
attribute dispersion tuned by � : if the structure is ambiguous 
and the attributes are clear, the Selection method performs 
well (and better than a consensus method, since it only uses 
K-means and not a combination of clustering); however, 
such achievement is strongly affected by the involved sce-
nario (a or c).

Within the LCD context, these approaches work well if 
the two types of outputs correct each other. Again, observ-
ing the Louvain and KMeans NMI in Fig 4 a, we can see 
how both the methods can recognize the true X-Mark syn-
thetic communities, respectively, when a well-separated 
structure (low � ) and well-separated attributes (low � ) are 
generated; thus, switching from Louvain to K-means in the 
Selection method gives such a method a similarity con-
tinuity (w.r.t. the true communities) from an ambiguous 
structure to clear attributes. In some sense, since commu-
nities from a network point of view do not exist, a classic 
clustering method is performed. However, the switching 
from an ambiguous structure to clear attributes gives worse 
results when more likely real-world scenarios are simulated 
(Fig 4 c), that is when two well-separated and poorly inter-
connected dense communities sharing the same majority 
attribute values exist.

Evaluation: modifying quality functions Contrary to 
ensemble/selection methods, algorithms that modify a 
topological quality function do not fuse the clustering of 

two already performed only-topological and only-attributes 
methods, but they extend an only-topological approach 
including the attributes into the maximization of a function 
aiming to find well-connected (and homogeneous) com-
munities. Here, we will focus on EVA and ILouvain, that 
work, respectively, on categorical and continuous attributes. 
They do not need to specify a required number of clusters. 
EVA needs to tune the parameter of the linear combination 
used to balance the topological and semantic importance 
when grouping nodes, i.e., the � parameter. ILouvain does 
not need any parameter tuning since its function is normal-
ized to give the same importance to relational and attribute 
information.

Figure 5 shows the NMI between the X-Mark ground-
truth partitions and the ones obtained by EVA (Fig 5 a) 
and ILouvain (Fig 5 b), as functions of � and � (EVA) 
or � (ILouvain). We test EVA only against a benchmark 
instances generated with mcat = [2, 4] (results, not showed, 
with mcat = [ |C|, |C| ] were similar). When � = 0 , only the 
topological function component (i.e., modularity) is opti-
mized, and it is equivalent to run Louvain; when � = 1 , 
only the attribute component (i.e., purity) is optimized, 
equivalent to cluster the set of the biggest connected com-
ponents whose nodes share the same label profiling. In the 
figure, we show results for � = [0.5, 0.8, 0.9, 1] : we focus 
only on values towards the homogeneity optimization to 
see to what extent the attributes influence clustering. EVA 
matches the X-Mark communities outperforming its natu-
ral baseline, Louvain: when � increases, EVA can exploit 

Fig. 5   Modifying quality function analysis: NMI similarities in functions of � and � (a) or � (b); in detail, EVA is run against a X-Mark instance 
generated using mcat = [2, 4] , while ILouvain, using mcont = [ |C|, |C| ] (above) and mcont = [2, 4] (below)
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attribute information to find the homogeneous communi-
ties that emerge from the random configuration of links 
between communities. In other words, a flat surface means 
that an algorithm focuses only on the attribute information: 
regarding EVA, this is quite evident when � = 1 . A good 
trade-off is the one able to maintain high NMI when � is 
low, and to not decrease to zero when � is high contextually 
to a low level of attribute noise. Conversely, ILouvain per-
forms poorly on X-Mark. Similarly to the framework pro-
posed for ensemble/selection methods, we tested ILouvain 
against a benchmark generated using mcont = [ |C|, |C| (Fig 5 
b, above), and mcont = [2, 4] (Fig 5 b, below). The obtained 
results underline that ILouvain is not able to exploit attrib-
utes (i.e., NMI equal to 0 for high � ). Even fusing the two 
components (attributes and modularity) does not allow to 
recognize structurally well-defined clusters (i.e., NMI low 
for low � ); by consequence, ILouvain performs worse than 
its baseline, Louvain, being possible the case that the ILou-
vain objective function cannot tune the relative contribution 
of structure and attributes.

Evaluation: Distance-based Finally, we focus on two dis-
tance-based methods, ANCA and SToC. Such methods can 
use both categorical and continuous attributes, which can be 
exploited even together. We focus only on the two attributes 
types taken individually, generating X-Mark networks with 
mcat,mcont = [2, 4] (not showed, results with mcat,mcont = [ 
|C|, |C| ] were similar). Regarding SToC, the user is allowed 
to tune some dummy parameters, �s , that forces towards 
attribute similarities, and �t , that forces towards topological 

similarity: we noticed that similar results are achieved test-
ing SToC against the categorical benchmark instance, thus 
we show only �s = �t = 0.5 (Fig. 6 a, right, below), that 
is also one of the setting parameter solution proposed in 
the reference paper (Baroni et al. 2017); for the continuous 
attributes, instead, we tested SToC also both with �s = 0.2 , 
�t = 0.8 , performing a topological clustering, and �s = 0.8 , 
�t = 0.2 , a more attribute-aware one. As we can observe 
from Fig. 6 b, ANCA performs relatively worse than the 
other approaches, particularly if compared with the ensem-
ble/selection methods, or EVA. The trend of the ANCA 3D 
plots appears reasonable, but (i) the NMI decreases only as 
function of � , suggesting that only the topological compo-
nent is taken into account for the clustering task, and (ii) 
maximal NMI values are lower than the ensemble/selec-
tion methods or EVA. Similarly, the trend of the SToC 3D 
plots are reasonable, but (i) it resembles a flat surface (par-
ticularly, while clustering categorical attributes, Fig. 6 a, 
below, right), suggesting that only the attribute component 
is taken into account for the clustering task (as we already 
saw for EVA when its � parameter is equal to 1), and (ii), 
again, the maximal NMI values are lower than other meth-
ods. SToC performances are better while clustering continu-
ous attributes, when the discovery of communities is forced 
towards the topological component (Fig. 6 a, above, left), 
but it decreases for other parameter settings, suggesting that 
the algorithm is, in some sense, confounded by the attribute 
component of the graph.

Fig. 6   Distance-based analysis: NMI similarities in functions of � and � or � for SToC (a) and ANCA (b); mcat,mcont = [2, 4] are the parameters 
used



	 Social Network Analysis and Mining (2021) 11:99

1 3

99  Page 12 of 14

5 � Discussion and conclusion

In this work, we proposed a solution for evaluating labeled 
community discovery (LCD) algorithms. Thus, we modeled 
X-Mark, a synthetic tool for generating node-attributed net-
works with planted communities. Extending some already 
existent intuitions for the generation of only topological-
based benchmarks (e.g., LFR (Lancichinetti et al. 2008)), 
X-Mark firstly generates both the community size and degree 
distribution, then use them to associate each node to a parti-
tion. Label-homogeneity within communities is controlled 
by the probability to have within each community a user-
defined percentage of similar nodes, encoded in a noise 
parameter � for categorical attributes, and the community 
standard deviation � for continuous ones. Once inserted each 
node into its preferable community, the edge rewiring auto-
matically generates assortative patterns within communi-
ties, contributing to the homophilic network behavior. We 
guarantee community homogeneity and network homophily, 
resembling scenarios for simulating node-attributed real-
world network representations.

Indeed, several lines of discussion span from X-Mark, 
among them: (i) how to exploit the X-Mark ability to specify 
different structures and attribute combinations (e.g., clear 
structure vs. clear attributes or clear structure vs. noisy 
attributes), and, generally, (ii) how to fairly compare the 
quality of clustering testing the algorithms against synthetic 
benchmarks. Firstly, we designed our model to be as general 
as possible, leaving the analyst to specify how to combine 
different structure and attribute combinations. Analyzing the 
algorithm performances as functions of the whole range of 
structure and attribute parameter values allowed us to have 
a broad vision of how algorithms perform. Nevertheless, as 
well remarked by several discussions (Fortunato and Hric 
2016; Chunaev 2020; Chunaev et al. 2020), a strong ration-
ale behind many of LCD approaches is often assumed by 
the researchers: the algorithms can exploit nodes’ attributes 
in the CD task because homophily strongly contributes to 
community formation. In other words, since node similari-
ties match with the connections they made, it is useful to 
consider such similarities while grouping closer nodes. 
Nevertheless, it is intuitive to think that some attributes 
might match with the node connections, while others are 
independent from the relational realm of a dataset (see Peel 
et al. 2017; Newman and Clauset 2016). X-Mark can model 
situations where attributes align/not align to topology.

In the future, we plan to extend our tests to LCD algo-
rithms that explicitly exploit attribute information by look-
ing at the combination of clear/noisy structures and clear/
noisy attributes. Moreover, we plan to test LCD algorithms 
against different attribute-aware benchmarks to see if other 
external comparison methods can lead to different results. 

Being based on the same algorithmic schema of LFR, we 
can also plan to extend X-Mark to cope with overlapping 
communities, as well as weighted and directed networks, 
as done for the classic LFR extension (Lancichinetti and 
Fortunato 2009). Dealing with such task variants and dif-
ferent representations is not trivial in the presence of node 
metadata. Since a benchmark aims to resemble real-world 
scenarios, we also need more investigations into real-world 
weighted or directed node-attributed networks. The actual 
lack of a large corpus of studies in this direction makes it 
more difficult to find valuable solutions for these extensions.

Attribute-aware CD, which identifies well-connected 
and label-homogeneous nodes, is a rising theme in complex 
network analysis. We are far away from reaching standard 
procedures for handling attribute information embedded in 
the nodes as well as evaluating different clustering outputs. 
We aimed to take some first steps towards a more careful 
evaluation analysis of attribute-aware CD algorithms, as 
recently provided only in Vieira et al. (2020). Based on the 
present findings, thanks to X-Mark, we can evaluate algo-
rithms performances within a controlled environment, i.e., 
adopting systematic tuning parameters strategies. Among 
others, we observed that ensemble clustering methods can 
suffer the selection of the best k number of communities, 
while algorithms modifying only-structure quality functions 
can outperform their only-structure baseline only when the 
new fitness function is well defined.
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