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Abstract
In the aftermath of a disaster event, it is of utmost important to ensure efficient allocation of emergency resources (e.g. 
food, water, shelter, medicines) to locations where the resources are needed (need-locations). There are several challenges 
in this goal, including the identification of resource-needs and resource-availabilities in real time, and deciding a policy 
for allocating the available resources from where they are available (availability-locations) to the need-locations. In recent 
years, social media, and especially microblogging sites such as Twitter, have emerged as important sources of real-time 
information on disasters. There have been some attempts to identify resource-needs and resource-availabilities from micro-
blogging sites. However, there has not been much work on having a policy for optimized and real-time resource allocation 
based on the information obtained from microblogs. Specifically, the allocation of critical resources must be done in an 
optimal way by understanding the utility of emergency resources at various need-locations at a given point of time. This 
paper attempts to develop such a utility-driven model for optimized resource allocation in a post-disaster scenario, based 
on information extracted from microblogs in real time. Experiments show that the proposed model achieves much better 
allocation of resources than baseline models—the allocation by the proposed model is not only more efficient in terms of 
quickly bringing down resource-deficits at various need-locations, but also more fair in distributing the available resources 
among the various need-locations.
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1  Introduction

In recent years, several major natural disasters such as hur-
ricanes, earthquakes, and floods have caused massive dev-
astation and loss of life and assets around the world (Li 
et al. 2017; Radianti et al. 2015). In the aftermath of any 
disaster, a crucial step is to coordinate the distribution of 
emergency resources from different warehouses (where 
resources are available) to various need-locations (where 
resources are needed) in real time. However, according to the 
World Disaster Report 2018,1 millions of victims in crisis do 

not receive the vital resources they urgently need, primar-
ily due to two reasons—(i) lack of first-hand information 
about resource-needs and resource-availabilities in real time, 
and (ii) lack of appropriate resource allocation strategies in 
post-disaster scenario when the availability of emergency 
resources is often scarce and constrained.

Evidently, the first challenge is to decide how to obtain 
information of resource-needs and resource-availabilities in 
real time. Many recent studies have shown that Online Social 
Media, especially microblogging sites such as Twitter and 
Weibo, are important repositories of real-time information 
during disasters (Imran et al. 2015; Varga et al. 2013; Rudra 
et al. 2015; Bhavaraju et al. 2019; Pourebrahim et al. 2019; 
Hiltz et al. 2020). There are three challenges in utilizing 
microblogs for post-disaster resource allocation—(i) iden-
tifying tweets informing about needs of resources (which 
we call as a need-tweet) and availability of resources (which 
we call as an availability-tweet), from among thousands 
of conversational/opinion tweets, (ii) extracting essential 
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information like resource name, resource quantity and loca-
tion names from the need-tweets and availability-tweets, and 
(iii) matching resource-needs and resource-availabilities in 
such a way that allocation of scarce resources is optimal.

In this scenario, our broad objective is to develop a holis-
tic approach for efficient distribution of emergency resources 
in a post-disaster situation, utilizing real-time information 
available on social media (specifically Twitter). To this end, 
our prior works have already proposed methodologies for the 
first challenge stated above, i.e. for identification of need-
tweets and availability-tweets (Basu et al. 2019, 2017a). We 
have also developed a mechanism for understanding need-
tweets and availability-tweets, and for extracting critical 
information such as name and quantity of resource, location 
name from such tweets (i.e. the second challenge) in another 
prior work (Dutt et al. 2019). However, there has not been 
much work on the third challenge, namely optimal allocation 
of resources based on needs and availabilities extracted in 
real time from social media.

It can be noted that, in our prior work (Dutt et al. 2019), 
we developed an algorithm for matching need-tweets with 
availability-tweets considering overlapping mentions of 
resources and geographical proximity between the need-
location and the availability-location. However, this meth-
odology considered each need-tweet and each availability-
tweet in isolation (i.e. individually). For instance, the same 
resource-availability of 100 units of resource R1 can be 
chosen to match two resource-needs for R1, both of which 
need 80 units of R1—evidently, this matching cannot hap-
pen in practice. Hence, the methodology of  (Dutt et al. 
2019) is not suitable in practical scenarios, where there are 
many resource-needs and resource-availabilities appearing 
together. Hence, in the present work, we have developed 
a framework to match a sequence of resource-needs and a 
sequence of resource-availabilities, considering a utility-
driven model for optimal allocation of resources.

Our framework is based on a prior work by Basu et al. 
(2018b) who formulated a resource allocation strategy 
considering the demand and utility of resources. How-
ever, Basu et al. considered data extracted from Govern-
ment reports that are compiled months after the actual 
disaster event occurred (details given in Sect. 2). These 
reports are complete and accurate but not real time. Thus, 
Basu et al. considered a fixed set of shelter-points as the 
need-locations (where resources are needed), and a fixed 
set of warehouses as the availability-locations (where 
resources are available). Also, Basu et al. assumed com-
plete knowledge of resource needs and allocations at every 
shelter-point on every day. In practice, in a post-disaster 
scenario, need-locations and availability-locations can 
change on a day-to-day basis for various reasons, such 
as aftershocks of an earthquake, or flash floods affecting 
new regions. Also, information about resource-needs and 

resource-availabilities is very sparse on social media, and 
it is not practical to assume complete knowledge of needs 
and allocations on a day-to-day basis. Thus, the proposed 
scheme of Basu et al. (2018b) is not flexible enough to 
deal with the dynamic scenario in a post-disaster situa-
tion, as is observed from microblog streams collected in 
real time.

In the present work, we have adapted the model by Basu 
et al. (2018b) to make it suitable for real-time resource allo-
cation in a practical post-disaster situation. First, we propose 
to employ a semi-automatic approach based on the meth-
odology developed in our prior work (Dutt et al. 2019) to 
extract need-tuples from need-tweets and availability-tuples 
from availability-tweets. These need-tuples and availabil-
ity-tuples store critical information such as the name of 
the resource needed/available, the quantity that is needed/
available, the location where the resource is needed/avail-
able, etc. The resource allocation model takes as input these 
tuples extracted from the microblogs posted every day. Next, 
we propose several changes to the existing model of Basu 
et al. (2018b), that include—(i) considering variations in 
the set of need-locations and the set of availability-locations 
with time (which can change in practice in a disaster sce-
nario), (ii) making the utility computation tolerant to miss-
ing information, such as computing utility of a resource at 
a need-location for which there is no prior information on 
the amount of resources allocated earlier (which was not 
possible in the original model), (iii) considering unfulfilled 
resource-needs and residual resource-availabilities on a cer-
tain day t while doing the resource allocation on the next 
day t + 1 , and so on. All these adaptations make the model 
developed in this work much more suitable for applica-
tion on information collected from social media sites such 
as Twitter (which is real time but can be incomplete and 
sparsely available).

Using a working example derived from tweets posted 
during a real-life disaster event, we show that our proposed 
model results in more efficient resource allocation than some 
baseline approaches including that of our prior work (Dutt 
et al. 2019). Specifically, the proposed model can bring 
down the resource deficit at various need-locations much 
more quickly, compared to the baseline approaches. We also 
show that our proposed model leads to resource allocation 
that is more fair—other approaches may result in a situation 
where resources are allocated to only a subset of need-loca-
tions, while others face starvation; in contrast, our proposed 
model attempts to distribute the resources more evenly, 
so that no need-location faces starvation of resources. We 
believe that our proposed model would help disaster man-
agement authorities in allocating resources more efficiently 
and effectively in real time, during future disaster events.

Thus, in the present work, our main contributions can be 
summarized as follows:
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•	 To the best of our knowledge, we make the first attempt 
to develop a resource allocation framework utilizing 
social media data for optimized, real-time resource allo-
cation in post-disaster scenarios. Different from prior 
post-disaster resource allocation models (such as (Basu 
et al. 2018b)), our framework handles unfulfilled needs 
and surplus availabilities in need-locations and availa-
bility-locations, respectively, and can also handle new 
locations and resources evolving dynamically.

•	 We show that our proposed framework can bring down 
resource-deficits in need-locations more efficiently than 
prior models using a small working example derived 
from need-tweets and availability-tweets posted during 
a real-world disaster event—severe floods in the Indian 
city of Chennai in 2015. Specifically, Average Resource 
Deficit (ARD), which measures the rate at which overall 
resource deficit is minimized across all need-locations, 
is seen to be reduced by a much larger extent (between 
20% and 40%) by our method, as compared to methods 
that consider each need and availability separately.

•	 We also show that the resource allocation by our model 
is likely to be more fair (i.e. less chances of a particu-
lar need-location facing starvation for resources) than 
the allocation by methods that consider each need and 
availability separately. This fairness in allocation usually 
comes at the cost of slightly increased deployment time 
of resources.

The rest of the paper is structured as follows. Section 2 
describes related work relevant to the present work. Sec-
tion 3 describes a methodology for extracting need-tuples 
and availability-tuples from microblogs. Section 4 describes 
the resource allocation models; specifically, Sect. 4.2 details 
the model by Basu et al. (2018b), while Sect. 4.3 describes 
our proposed modifications to the model. Section 5 describes 
experiments using a working example, where the pro-
posed model is compared with some baseline approaches 
for resource allocation. Finally, the paper is concluded in 
Sect. 6.

2 � Related work

In the past few decades, OSM has become an important 
source of first-hand information during disasters such as 
earthquakes, floods, hurricanes, terror attacks, and so on. 
It has been observed that during mass emergencies, victims 
and other responding organizations are utilizing Facebook 
and Twitter as an alternative communication mechanism to 
reach out to emergency services. Hence, several academi-
cians have advocated the importance of online social media 
in disaster resilience (Yadav and Rahman 2016). Predomi-
nantly, microblogging sites like Twitter, Weibo have become 

a vital source of such critical information to assist post-dis-
aster relief operations (Pohl et al. 2015; Xu et al. 2017). 
However, it has been observed that critical information is 
often obscured in a deluge of conversational posts (such as 
prayers for victim, sympathy, personal opinions). Thus, auto-
matic extraction of informative tweets that provide useful 
information become challenging (Madichetty and Sridevi 
2020a; Barnwal et al. 2019; Singh et al. 2019). Hence, in 
the past few years, there has been a lot of efforts towards 
extracting such critical information from OSM (predomi-
nantly Twitter) for helping in post-disaster relief operation. 
For instance, some prior works have focused on identifying 
location references from tweets during emergencies (Singh 
et al. 2019; Kumar and Singh 2019). Other prior works have 
also developed methodologies for utilizing multimodal Twit-
ter data, e.g. for earthquake detection (Alqhtani et al. 2018). 
Kumar et al. (2020) developed a deep multi-modal neural 
network framework to identify disaster-related informative 
content from Twitter streams using text and images together. 
The readers are referred to (Imran et al. 2015; Li et al. 2017) 
for comprehensive surveys on efforts to utilize social media 
content during emergencies/disasters.

In the rest of this section, we focus on prior works spe-
cifically related to need and availability of resources in a 
post-disaster scenario.

2.1 � Identification of resource‑needs 
and resource‑availabilities

Some prior studies focused on identifying information 
regarding need and availability of resources in a disaster 
scenario. Tweets providing such information are usually 
referred to a ‘need-tweets’ and ‘availability-tweets’. To 
this end,  (Varga et al. 2013) used NLP-based methodol-
ogies on Japanese tweets posted during an earthquake in 
Japan.  (Purohit et al. 2014) developed a set of 18 regular 
expressions to extract specific types of need-tweets indicat-
ing donation requests for different resources, and tweets 
representing the availability of resources to be donated. 
A recent study (Madichetty and Sridevi 2020b) utilized 
a majority voting-based ensemble method to specifically 
identify tweets related to the requirement and availability of 
medical resources during a disaster, in order to aid medical 
organizations and victims. In another recent study, (Purohit 
et al. 2020) developed a serviceability model and a system 
to identify and rank highly serviceable requests during a dis-
aster. The system also possesses a facility to re-rank service 
requests by semantic grouping to reduce redundancy and to 
assist the browsing of requests.

In our prior works (Basu et al. 2019, 2017a; Khosla et al. 
2017), we employed several supervised and unsupervised 
methodologies to address the problem. In the supervised 
approach, we experimented with several traditional and 
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neural network-based classifiers trained on microblogs 
posted during prior disaster events, that can be applied to 
microblogs posted during an unseen disaster event for iden-
tifying need-tweets and availability-tweets. We also used 
unsupervised pattern matching and information retrieval 
methodologies that can be directly employed on the micro-
blogs posted during an ongoing disaster event.

2.2 � Matching resource‑needs 
and resource‑availabilities

There have also been a few attempts to address the problem 
of matching need-tweets and availability-tweets. Purohit 
et al. (2014) developed methodologies to match need-tweets 
and availability-tweets by matching regular expressions 
and using TF-IDF vectors as features. (Bhoi et al. 2020) 
developed a deep learning-based hybrid model utilizing 
word-embeddings, CNN, and LSTM to identify multilin-
gual need-tweets and availability tweets. Subsequently, they 
proposed a methodology to map need-tweets with matching 
availability tweets by utilizing a two-word sliding window 
approach used to generate the combined embedding of two 
adjacent words. In our prior works (Dutt et al. 2019; Basu 
et al. 2018a), we developed methodologies to match need-
tweets and availability-tweets considering both resource 
similarity and geographical proximity between locations of 
need and availability.

However, in all of these prior works, each need-tweet and 
availability-tweet is treated individually. Thus, one need-
tweet can be matched to multiple availability tweets. In real-
ity, there will be many demands for the same resource (e.g. 
at different locations), and hence, the available resources 
need to be allocated intelligently to all those demands—this 
situation is not handled by the studies mentioned above. 
Importantly, prior matching algorithms do not ensure the 
allocation of resources in an optimal way.

2.3 � Optimizing resource allocation

Optimization techniques have been employed to solve a 
broad category of problems, ranging from rumor detection 
from twitter data using optimized shallow classifiers (Kumar 
et al. 2019) to speech emotion recognition using discrimi-
native dimension reduction technique  (Daneshfar and 
Kabudian 2020). But to our knowledge, there are only two 
prior works that attempted to optimize resource allocation 
specifically for a post-disaster scenario (Basu et al. 2018b; 
Schempp et al. 2019).

Basu et al. (2018b) proposed a model for utility-based 
resource allocation for post-disaster relief operations. Spe-
cifically, their model was based on data about a multi-day 
cloudburst in 2013 in the Uttarakhand state of India. They 
collected data of resource-needs and resource-availabilities 

at various shelter points/warehouses from the web-portal 
of the Uttarakhand Government and developed a resource 
allocation model based on these data. Note that, the data 
were collected in an offline manner, several months after 
the disaster occurred. As a result, the situation considered 
in this study is relatively static—the set of shelter points 
and warehouses remain fixed throughout, and demands/
availabilities of resources at these shelter points/ware-
houses are assumed to be known regularly at the end of 
each day. Thus, the framework in (Basu et al. 2018b) is 
difficult to apply for real-time resource allocation in the 
immediate aftermath of a disaster, where the need-loca-
tions and availability-locations can vary from day to day, 
and the allocation has to be carried out based on informa-
tion obtained from social media (which is the most com-
mon source of real-time information today). Utilizing the 
sporadic OSM data for resource allocation in real time 
during a disaster has several challenges, as will be illus-
trated in the next section.

These limitations were partially addressed in the more 
recent work by Schempp et al. (2019), who proposed a 
model to optimize disaster relief distribution using Global 
Particle Swarm Optimization and Mixed-Integer Linear 
Programming. This study (Schempp et al. 2019) considered 
both social media data and authoritative data (collected from 
ground surveys, cadastral surveys, census, etc.) to model the 
rescue demand requests. The model used rescue demand 
requests and location of demand from social media data as 
demand points. Also, additional simulated demand points 
were generated from the authoritative data. On the other 
hand, locations of the hospitals were extracted from author-
itative data and were used as the connector to simulated 
temporal stations or rescue centres perceived as distribution 
centres for first-aid and supplies in disaster situations. Thus, 
the framework in Schempp et al. (2019) does not support 
fully real-time allocation of resources, since resource-avail-
ability data are not extracted from real-time social media 
data. Another limitation of the framework in Schempp 
et al. (2019) is that no concept of utility/priority of various 
resources is considered (unlike in Basu et al. (2018b)).

Since the objective of the present study is resource alloca-
tion in a real-time setting, based on data collected dynami-
cally from OSM, we adapt the utility model and resource 
deployment model of Basu et al. (2018b) with significant 
modifications (that are detailed in later sections). Different 
from (Schempp et al. 2019), our framework considers both 
resource-needs and resource-availabilities to be extracted in 
real time from social media and also considers utility/prior-
ity of resources. The introductory concept of this study was 
introduced in our prior work (Basu et al. 2021). However, 
our prior work only introduced the idea of the framework 
proposed in the present manuscript and did not contain any 
of the detailed analyses reported in the manuscript.
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3 � Identifying need‑tuples 
and availability‑tuples from microblogs

As stated in Sect. 2, several methodologies have been devel-
oped for identifying ‘need-tweets’ and ‘availability-tweets’ 
that inform of resource-needs and resource-availabilities, 
respectively (Basu et al. 2017a, 2019; Khosla et al. 2017). 
We assume that such methods are first applied to identify 
need-tweets and availability-tweets from tweet streams. 
Subsequently, the specific resource-needs are extracted from 
need-tweets in the form of need-tuples each of which is of 
the form {Resource, Location, Quantity, Emergency score} 
(each field is explained below). Similarly, the resource-
availabilities are extracted from availability-tweets in the 
form of availability-tuples, each of which is of the form 
{Resource, Location, Quantity}. In this section, we describe 
the methodology to extract the tuples from need-tweets and 
availability-tweets.

3.1 � Parsing need‑tweets and availability‑tweets

In our prior work (Dutt et al. 2019), we developed a parser 
that operates on the text of need-tweets and availability-
tweets to extract five useful information—resource name, 
quantity, location, source, and contact. We briefly describe 
how the parser works.

Potential resource names are extracted by obtaining a 
dependency tree by employing dependency parsing on pre-
processed tweet text. After extracting potential resources 
from the text of a tweet, semantic similarity of the extracted 
words is verified with an exhaustive list of resources that 
are predominantly required in disaster situations. The 
aforementioned list of resources is compiled following the 
guidelines of the United Nations Office for the Coordina-
tion of Humanitarian Affairs (UNOCHA).2 As per the clas-
sification of UNOCHA, five broad classes of resources are 
commonly required in the aftermath of a disaster, namely 
Food, Shelter, Logistic, Health, and Cash. Table 1 shows 
examples of each class of resources. Such resource names 
are extracted by the parser developed in (Dutt et al. 2019). 
Likewise, numeric tokens such as a real number (say ‘500’) 

or a semantic representation of a real number (say ‘ton’) 
are identified as quantity if in the tweet text it is followed 
by at least one resource name. For identifying geographical 
locations, a combination of various Natural Language Pro-
cessing techniques are used, that include hashtag segmenta-
tion, POS (Parts-of-Speech) tagging, Regex matches, and 
dependency parsing of need-tweets and availability-tweets 
considering dependency distance (Dutt et al. 2019). Named 
Entity Recognition (NER) taggers are also used to identify 
named entities that conform to locations (specifically, enti-
ties for which GPE, LOC and FACILITY tags are reported 
by the NER tagger). Finally, the extracted potential loca-
tions are verified using Open Street Map gazetteer (details 
in (Dutt et al. 2019)). The gazetteer also returns the geo-spa-
tial coordinates of the locations, which have several utilities. 
For instance, the geo-spatial coordinates enable us to cal-
culate the distance between the locations where a resource 
is needed and where it is available. Again, the geo-spatial 
coordinates can help in location name disambiguation, e.g. 
by checking whether the coordinates are within a ‘bounding 
box’ around the region affected by the present disaster.

In our prior work  (Dutt et  al. 2019), we applied the 
dependency parser (described above) on tweets collected 
during three different disaster events, namely an earthquake 
in Nepal (for which we had 499 need-tweets and 1, 333 
availability-tweets), an earthquake in Italy (having 177 
need-tweets and 233 availability-tweets) and floods in the 
Indian city of Chennai (having 4, 516 need-tweets and 6, 583 
availability-tweets). We evaluated the performance of the 
parser using gold standard data sets annotated by human 
annotators. We observed that the parser performed reason-
ably well in extracting the resource, location, and quantity 
for all the disaster events. The F-Score value for extracting 
resource and location was higher than 0.8 and was 0.78 for 
the quantity extraction. Further details of the evaluation pro-
cess can be found in our prior work (Dutt et al. 2019).

In the present study, we applied our parser to extract 
need-tuples and availability-tuples from the need-tweets 
and availability-tweets, respectively, where each tuple con-
sisting of three fields—(i) resource name, (ii) quantity that 
is needed/available, and (iii) location where the resource is 
needed/available. Additionally, a fourth field is included in 
a need-tuple—an emergency score. The emergency score is 
assigned to each need-tuple corresponding to the urgency/

Table 1   Some examples of 
resources of the five classes, 
that are commonly required in a 
post-disaster scenario

Category Examples

Health Blood, anaesthetic, antibiotics, latrines, tissue paper, sanitary napkins, soap bars
Shelter Tents, rope, tarpaulins, sheets, blankets, clothes, shelter kit, jackets, boots, gloves, camp
Food Cereal, bottled water, canned food, utensils, fuel, dried fruits, biscuits, vegeTables,
Logistics Electricity, storage, doctors, army, power, helicopters, communication, volunteers,
Cash Funds, money, supplies, donations, stock

2  https://​vosocc.​unocha.​org/​getFi​le.​aspx?​file=​att36​103_​h4t800.​pdf.

https://vosocc.unocha.org/getFile.aspx?file=att36103_h4t800.pdf
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priority of the corresponding need. For instance, the needs 
of senior citizens, babies, and pregnant women can be given 
higher priority while allocating resources. In this work, for 
simplicity, we have considered only two levels of the emer-
gency score, i.e. Norm_Emergency_Score = 10 (normal 
priority) and Max_Emergency_Score = 20 (higher urgency 
or priority). However, the emergency score can be decided 
by the responding authorities as appropriate.

3.2 � Challenges in extracting need‑tuples 
and availability‑tuples

As stated above, we used an automatic parser (developed in 
our prior work (Dutt et al. 2019)) to identify resource names, 
quantity and location from the need-tweets and availability-
tweets. However, we also observed several challenges in 
such automatic extraction of need-tuples and availability-
tuples. We now describe these challenges; we also dem-
onstrate the challenges by giving some examples of tweets 
from which automatic extraction of critical information 
(resource, quantity, location, etc.) is challenging. The exam-
ples are taken from tweets posted during the severe floods in 
the Indian city of Chennai, in December 2015 (details of this 
data set can be found in our prior work (Dutt et al. 2019)).

Tweets are often written in an informal way and some-
times critical information such as resource, location, quan-
tity is mentioned indirectly. Moreover, people use diverse 
vocabulary for the same resource. The use of regional 
languages is prevalent; for instance, food is referred to as 
‘Langar’, ‘Chappati’, ‘Idly’, etc., depending on the region 
where the disaster has occurred. Also, there is lot of ambi-
guity in microblogs. For instance, consider the following 
two tweets—(i) “INS Airawat equipped with 5 Jamini boats, 
20 divers, lot to relief material, will reach Chennai today 
late eve or tomorrow morning”, and (ii) ‘#ChennaiFloods 
11 boats incl Landing Craft + 20 divers, Disaster & Medi-
cal relief bricks on Airavat rushed to Chennai to augment 
Relief”. It is difficult to understand whether both tweets refer 
to the same resource-availabilities.

Moreover, the units used to specify the quantity of 
resources needed/available are also diverse. To deal with 
such wide variations in the style of writing microblogs, sev-
eral assumptions have to be made, e.g. to unify the units of 
resource needs/availabilities. Some examples are given as 
follows:

•	 The quantity is mentioned in diverse units. For example, 
in the tweet “Two families struck with a 3month baby 
Kindly help No 7, kalaivanar strt, parvathy Nagar. mudi-
chur road Chennai”, the unit stated is ‘family’. However, 
we are considering the person count as a valid quan-
tity. Thus, we need to quantify such tweets by taking an 
assumption that the average family size is 5. Similarly, 

in the tweet “plz somebody come and save us abt 75 
houses submerged in paraniputhur chennai near mangadu 
no water food plz save us” , again we have to assume that 
one family of 5 persons on average resides in each house; 
thus, 75 houses mean person count is 375.

•	 In some tweets like “100 girls, 200 boys stranded in 
Lalaji Memorial Omega School, Kolapakkam, Chennai. 
water level > 6ft rising, urgent help reqd”, we need to 
sum the multiple quantities stated, to get the actual per-
son count.

•	 In tweets like “Please send boat to rescue 20 to 30 
employees of Madras Fertilizers Limited gate at Manali 
Chennai-68. Emergency rescue needed ...so plz help”, 
the person count is mentioned in a range. In such cases, 
we consider the maximum value as count.

•	 In the tweet “A train from Kerala is coming today with 
3 tons of food items but lack of volunteers to distribute 
the goods in Chennai”, ‘3 tons’ needs to be converted to 
person count (1200) by considering the fact that research 
shows that most humans eat between three to five pounds 
of food per day.

•	 A single tweet may indicate multiple resource-needs or 
availabilities; in such cases, a single tweet can result in 
multiple need-tuples or availability-tuples. For instance, 
consider the tweet “More than 300 people stranded at 
Greenways Rd MRTS Stn... Requires help/food/water/
bedsheets etc #chennairains”. Since this tweet informs 
about multiple resource-needs, multiple need-tuples are 
generated. Thus, we have observed several challenges 
associated with the automatic extraction of tuples from 
microblogs (tweets) for resource allocation. Hence, we 
employ a semi-automatic approach to construct the final 
need-tuples and availability-tuples from the tweets, 
where a human looks over the tuples identified automat-
ically by the parser (described earlier in this section), 
and correct the tuples if necessary. Tables 2 and 3 give 
examples of need-tweets and availability-tweets, and the 
corresponding need-tuples and availability-tuples, identi-
fied by this methodology from the corresponding tweets.

The next section presents our model for resource allocation 
based on the need-tuples and availability-tuples extracted 
from microblog streams.

4 � Frameworks for resource allocation

As stated earlier, our objective is to develop a framework 
for real-time resource allocation in a post-disaster situa-
tion. Hence, we are using microblogs as the information 
source for the present work, since microblogs are known 
to be important sources of real-time information. However, 
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this decision of using microblogs brings in some chal-
lenges, as follows. Information of the need/availability of a 
particular resource at a particular location may be available 
only intermittently on social media, e.g. at the gap of sev-
eral days (and not regularly on a daily basis, as assumed in 
the prior work (Basu et al. 2018b)). Also, we have noticed 
that resource-needs often come up at new locations, for 
instance, due to aftershocks of an earthquake, or a new 
area getting flooded. Similarly, resources may also become 
available at new locations dynamically, which can then 
be used to satisfy needs at nearby locations. Hence, when 
dealing with information streams collected dynamically 
from social media, it is not practical to assume a fixed set 
of shelter-points and warehouses, as done in (Basu et al. 
2018b). Hence, we adapt the model in (Basu et al. 2018b) 
for our situation. This section describes our proposed post-
disaster resource allocation framework in detail.

4.1 � Proposed resource allocation framework 
utilizing microblogs

We assume the following working of our proposed frame-
work, that is illustrated in Fig. 1. On a certain day in the 
aftermath of a disaster event (say, day t), need-tweets and 
availability-tweets are identified from the stream of tweets 
posted on the said day, e.g. by using the methodologies 
developed in as (Basu et al. 2017a, 2019; Khosla et al. 
2017). Then, the need-tweets and availability-tweets are 
parsed to obtain the need-tuples and availability-tuples 
as described in Sect. 3. These need-tuples and availabil-
ity-tuples are fed into the resource allocation framework 
(which is the primary focus on this present paper). The 
resource allocation framework also takes some other 
inputs, such as the unfulfilled needs and residual availabil-
ities from the previous day (day t − 1 ), a deployment time 

Table 2   Examples of need-tweets and corresponding need-tuples {Resource, Location, Quantity, Emergency score}

Emergency score is higher (20) in those cases where children/senior citizens/pregnant women need help

Need-tweet Extracted need-tuples

Need food/blankets for 50 people stranded in Chinmaya Vidyalaya, 
Virugambakkam

{Food, ‘Chinmaya Vidyalaya, Virugambakkam’, 50, 10} {Blankets, 
‘Chinmaya Vidyalaya, Virugambakkam’, 50, 10}

Food + aid needed. 200 ppl stuck at factory in No.6 GST Road, 
Guduvanchery, Chennai

{Food, ‘6 GST Road, Guduvanchery, Chennai’, 200, 10}

700 people are struggling without food in Nandambakkam Canton-
ment kalyana Mandapam

{Food, ‘Nandambakkam Cantonment kalyana Mandapam’, 700, 10}

70 people stuck on rooftop c-9,TVK Industrial estate,Guindy,Chennai 
32 Pls help

{Logistics, ‘rooftop c–9, TVK Industrial state,Guindy, Chennai 32’, 70, 
10}

plz somebody come and save us abt 75 houses submerged in paranipu-
thur chennai near mangadu no water food plz save us

{Food, ‘paraniputhur chennai near mangadu’, 375, 10}

Pls arrange rescuing 6 mths pregnant and 2 elderly from Jaffarkhanpet 
[mobile no]

{Logistics, Jaffarkhanpet, 3, 20}

Hey chennai memes a family is stuck near that kasi thestre they have a 
1 1/2 year old kid!

{Logistics, kasi thestre, 5, 20}

Table 3   Examples of availability-tweets and corresponding availability-tuples {Resource, Location, Quantity}

Availability-tweet Extracted availability-tuples

Cheer NGO can provide shelter,food for 50 ppl Address is No.21/C, Taylors 
Road, Kilpauk

{Food, ‘No.21/C, Taylors Road, Kilpauk’, 50}, {Shelter, 
‘No.21/C, Taylors Road, Kilpauk’, 50}

food for 300 ppl, Saritha, Besant Nagar - [mobile no] Ayyapn [mobile no] for 
grocery n food

{Food, ‘Saritha, Besant Nagar’, 300}

Gopal ([mobile no] can accomodate 5 ppl in Thiruvanmiyur {Shelter, Thiruvanmiyur, 5}
Anybody need accomdation in Chennai Central. can accommodate 15 ppl 

and provide food and shelter
{Food, Chennai Central, 15 }, {Shelter, Chennai Central,15}

Have a school 2 accmdate 75-100 in Nungambakkam.food at Chetpet 2 
closely around 1000ppl +

{Food, Nungambakkam, 1000 }, {Shelter, Nungambakkam, 100}

20 divers, 11 boats rushed to Chennai for relief operations on board INS 
AIRAVAT!

{Divers, Chennai Port, 20} {Boats, Chennai Port, 11}
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matrix that states the time needed to transport resources 
between various locations, and so on.

Additionally, the resource allocation framework considers 
the utility of various resource-needs, based on the deploy-
ment history (that is assumed to be stored in a database). 
Intuitively, the utility represents the priority with which a 
resource is needed at a particular need-location. If the said 
location has been receiving a regular supply of the resource 
in the prior days, the utility of this need would be low; con-
versely, if the said location has not received the resource 
for several days, the utility of this need will be high. The 
concept of utility of resource-needs, and other details such 
as the deployment time matrix will be explained in the latter 
parts of this section.

Based on all these information, the resource allocation 
framework will suggest some resource deployments for day 
t (the resource allocation and deployment matrices—to be 
explained later). We assume that these deployments are car-
ried out on the same day. The deployments are also stored in 
the deployment history database for future use.

On the next day (day t + 1 ), the newly emerging needs and 
availabilities are parsed from the tweets posted on the said 
day. The unfulfilled needs and residual availabilities from 

day t are added to the newly emerging needs and availabili-
ties (that come up on day t + 1 ) and again fed to the resource 
allocation module for suggesting resource deployments on 
day t + 1 . In this way, the process will continue.

The rest of this section describes the framework for 
optimal allocation of resources in detail. All the symbols 
used to describe the model are listed in Table 4. We start by 
summarizing the model developed in (Basu et al. 2018b) in 
Sect. 4.2 and then describe our modifications to the model 
in Sect. 4.3.

4.2 �  Overview of the model by Basu et al. (2018b)

In this section, we give an overview of the model in (Basu 
et al. 2018b).

4.2.1 � Utility of resources

Motivated by the notion of utility defined in classical Eco-
nomics (McConnell et al. 2014), the utility urp of a resource 
r at a location p at a specific point of time is defined as its 
priority to satisfy the requirement at that location. Note that, 
demand and utility of a resource are different in that the 

Fig. 1   An illustration of the functioning of our proposed framework for optimized real-time resource allocation in a post-disaster scenario
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demand is the quantity of the resource needed, whereas the 
utility is the exigency of the demand. In accordance with the 
classical theory of utility (McConnell et al. 2014), the utility 
urp of a resource is expressed as a function of its effective 
allocation xrp as

where f() is some suitable utility function. Intuitively, the 
present utility of a resource (at a certain location) depends 
on how much of the resource has already been allocated at 
this location, and how recently. Hence, utility is a function 
of allocation.

Now, to derive a general mathematical expression for util-
ity functions, prior works used curve fitting techniques on 
some conventional utility data sets (utility-clams 2016; util-
ity-marginal 2016; McConnell et al. 2014; Gershuny 2009; 
Kuo and Liao 2007), to identify the following rule that fits 
best as a utility function:

where the values of parameters a, b, c, d are experimentally 
obtained for a given situation. Specifically, for the context 
of resources in a post-disaster scenario, Basu et al. (Basu 
et al. 2018b) used the least square method for curve fitting 
on data of a particular disaster event (floods in the Utta-
rakhand state of India) to estimate the following values: 
a = 0.1086, b = −4.122, c = 39.97 , and d = −0.0115 . We 
assume the same value for these parameters in this work.

Thus, following the classical theory of Economics, Eq. 2 
describes utility of a resource r at a specific location p as 
a function of only its prior effective allocation xrp (at the 
said location). However, since in a post-disaster scenario, 

(1)urp = f (xrp)

(2)urp = f (xrp) = ax3
rp
+ bx2

rp
+ cxrp + d

resources are allocated to different locations at non-uniform 
time intervals, the effective allocation xrp varies with time, 
i.e. xrp is a function of time t. Thus, the utility of a resource 
( urp ) is considered as function of both the allocation and 
time, as described in Eq. 3.

Since it has been observed that, in a post-disaster scenario, 
resources are allocated at different locations at non-uniform 
time points t1, t2,… , thus Basu et al. (2018b) employed 
Lagrange’s Interpolation formula to find the dependence of 
the effective allocation ( xrp ) on t as represented by Eq. 4.

where xirp is the number of units of resource r that was allo-
cated to location p on day i, and nr is the number of days 
of prior allocation of resource r (to the said location), prior 
to the present day. Hence, combining Eqs. 2 and 4, Basu 
et al. proposed a model to calculate utility of a resource at 
a particular location p at time-instance t, considering prior 
allocation of the same resource at the same location.

For the present study, we have adapted this model to cal-
culate utility of a resource at a particular location. Our modi-
fication will be described later in Sect. 4.3.1.

4.2.2 � Integer Programming Models for Optimal Resource 
Allocation

Basu et al. (2018b) formulated a strategy to optimize resource 
allocation using integer programming. They formulated two 

(3)urp(t) = f (xrp) = f (g(t))

(4)xrp(t) =

nr∑
i=1

nr∏
j=1,j≠i

(t − tj)

(ti − tj)
xirp

Table 4   Description of the symbols used in our model

Symbol Description

P Number of need-locations, i.e. distinct location references present in need-tweets on a particular day
Q Number of availability-locations/warehouses, i.e. number of distinct locations present in availability-tweets on a particular day
R Number of resources considered (e.g. Food, Shelter, Logistic, Health, Cash, as prescribed by UNOCHA)
drp(t) Number of units of resource r needed at need-location p, as reported on day t
Drp(t) Cumulative number units of resource r needed at need-location p, as on day t
urp Utility of resource r at location p
arq(t) Number of available units of resource r at availability-location/warehouse q, as reported on day t
Arq(t) Cumulative number of available units of resource r at availability-location q, as on day t
Ar(t) Total number of units of resource r available as on day t ( =

∑Q

q=1
Arq(t))

trpq Time required to deploy each unit of resource r to need-location p from warehouse q
cr Capacity of each consignment of resource r, i.e. the maximum number of units of r that can be shipped in a single consignment
xrp(t) Effective number of units of resource r allocated to need-location p till day t
xtrp Number of units of resource r allocated to need-location p on day t
ytrpq Number of units of resource r allocated to need-location p from warehouse q on day t
nr Total number of days of prior allocation for resource r (prior to the present day)
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strategies—one for minimization of overall resource defi-
cit, and the other for minimization of resource deployment 
time—for deciding the resource allocation xrp on day t, for 
all resource r and need-location p. We briefly describe these 
two strategies. 

(1)	 Model for minimizing overall resource deficit The 
objective of this model is to minimize the overall 
resource deficit which is formulated as a weighted ratio 
of unfulfilled demand and the actual demand, with util-
ity as the weight. The objective function of the optimi-
zation is follows: 

 where the symbols are as explained in Table 4, and 
urp(t) is computed as described above. The solution 
of this optimization problem gives the values of xtrp , 
i.e. how much of resource r is to be allocated to need-
location p on day t. The xtrp values for all resources 
and locations are arranged in the form of a matrix that 
is known as the resource allocation matrix for day t—
each row of this matrix represents a location, and each 
column represents a resource.

(2)	 Model for Minimizing Total Resource Deployment Time 
The previous model determines the optimal amount xrp 
of resource r that should be allocated to need-location p 
on day t, for every r and every p. This model goes fur-
ther to determine from which warehouse/availability-
location(s) this amount of r would be transmitted to 
p, so that the total resource deployment time is mini-
mized. Let ytrpq be the number of units of resources r 
that is to be deployed/transported to need-location p 
from the availability-location q, on day t. Also, let trpq 
be the time required to deploy each unit of resource 
r to need-location p from availability-location q. The 
trpq values need to be provided as input to the model. 
Then the total resource deployment time is minimized 
as follows: 

(5)

Minimize

P∑
p=1

R∑
r=1

urp(t)(drp(t) − xtrp)

drp(t)

subject to

P∑
p=1

xtrp < Ar(t), r = 1,… ,R, p = 1,… ,P

xtrp ≤ drp(t), r = 1,… ,R, p = 1,… ,P

xtrp ≥ 0, r = 1,… ,R, p = 1,… ,P

 Here, cr is the number of units of resource r that can 
be transported at a time (i.e. in a single consignment) 
from availability-location q to need-location p. The rest 
of the symbols are as explained in Table 4. The solu-
tion to this optimization problem gives the values of 
ytrpq which says what amount of a resource needs to 
be transported on day t, and from which availability-
location to which need-location.

4.3 � Adapting the model in Basu et al. (2018b) 
for real‑time resource allocation

In this section, we describe how we adapt the model (Basu 
et al. 2018b) for real-time resource allocation, where micro-
blogging streams are used for extracting resource-needs and 
resource-availabilities. This adaptation of the model is nec-
essary to account for the uncertainty and incompleteness of 
information available from social media.

4.3.1 � Computing utility of resources from incomplete 
allocation information

Similar to (Basu et al. 2018b), we also consider the utility 
urp(t) of resource r at location p on day t to be a function 
of the prior allocation xrp of the resource at the said loca-
tion. The prior work (Basu et al. 2018b) used allocation data 
obtained from a Government portal, which was collected 
over several months after the actual disaster event. These 
data were organized and complete and contained allocation 
data for each day during a n-day period after the disaster 
event. Hence, it was feasible to apply Eq. 4 which needs 
allocation data of a particular resource at a particular loca-
tion for at least two distinct days ( ti and tj in Eq. 4).

In contrast, when microblog streams are used as the infor-
mation source (as in the present work), it is often seen that 
allocation data are very sparse and incomplete, and new 
need-locations / resources (with no prior allocation) come up 
dynamically. Thus, Eq. 4 needs to be adapted to this dynamic 
environment. To this end, we employ three distinct equations 
for computing utility of resources urp—Eqs. 7, 8, and 9). On 
a day when the demand drp for the resource r is reported for 

(6)

Minimize

R∑
r=1

P∑
p=1

Q∑
q=1

trpq ∗

⌈
ytrpq

cr

⌉

subject to

Q∑
q=1

ytrpq = xtrp, r = 1,… ,R, p = 1,… ,P

P∑
p=1

ytrpq ≤ Arq(t), r = 1,… ,R, p = 1,… ,P
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the first time at location p, utility ( urp ) is calculated using 
Eq. 7:

On a day on which the demand of the resource r at location 
p is reported for the second time, utility is calculated using 
Eq. 8.

Finally, if the demand of r at p has been reported on two 
or more days prior to day t, utility is calculated using Eq. 9 
(which is what is used by Basu et al. (2018b)).

Additionally, as stated earlier, we also consider an emer-
gency score depending on the criticality of resource being 
considered. For instance, if the resource being considered is 
needed by children/pregnant women/senior citizens, then the 
emergency score is higher than otherwise.

4.3.2 � Handling unfulfilled needs and surplus availabilities

On each day t, we use the integer programming-based opti-
mization framework (Eqs. 5 and 6) for deciding the optimal 
amount of resources to be allocated to specific need-loca-
tions, and for deciding the availability-location/warehouse 
from which the resources should be allocated. However, it 
needs to be noted that the availability of a resource on day 
t may be insufficient to fulfill all demands of the resource 
on that day; thus, the unfulfilled demands should be car-
ried over to the next day t + 1 . Similarly, a resource may 
be available in surplus quantity on day t, and the surplus 
amount (after fulfilling the demands as on day t) should be 
carried over to the next day t + 1 in order to potentially fulfill 
future demands for the resource. These considerations are 
not included in the model developed by Basu et al. (2018b). 
Hence, we include the following modifications in the exist-
ing model.

(7)urp(t) = d + Emergency_score

(8)

urp(t) = a

(
nr∑
i=1

(t − tj)xirp

)3

+ b

(
nr∑
i=1

(t − tj)xirp

)2

+ c

(
nr∑
i=1

(t − tj)xirp

)
+ d + Emergency_score

(9)

urp(t) = a

(
nr∑
i=1

nr∏
j=1,j≠i

(t − tj)

(ti − tj)
xirp

)3

+ b

(
nr∑
i=1

nr∏
j=1,j≠i

(t − tj)

(ti − tj)
xirp

)2

+ c

(
nr∑
i=1

nr∏
j=1,j≠i

(t − tj)

(ti − tj)
xirp

)

+ d + Emergency_score

Let drp(t) be the number of units of resource r that is 
reported to be freshly needed at need-location p on day t. 
In other words, these resource-needs are extracted from 
the need-tweets posted on day t. We denote Drp(t) to be the 
cumulative need of r at p on day t, taking into account the 
unfulfilled need on the previous day (if any) and fresh needs 
reported on day t (if any). Thus, we can compute the cumula-
tive demand on day t + 1 as

where xtrp is the quantity of resource r allocated to location 
p on day t (as computed using Eq. 5).

Similarly, let arq(t) be the number of units of resource r 
that is reported to be freshly available at availability-location 
q on day t, as extracted from the availability-tweets posted 
on day t. We denote Arq(t) to be the cumulative availability 
of r at q on day t, taking into account the surplus availability 
on the previous day (if any) and fresh availability reported 
on day t (if any). Thus, we have

where ytrpq is the quantity of resource r that was allocated to 
need-location p from availability-location q on day t, as com-
puted by Eq. 6. Thus, the sum in Eq. 11 is meant to compute 
the total amount of r that was allocated from location q to 
all need-locations on day t.

4.3.3 � Handling new locations and resources

In a disaster scenario, the situation can change dynamically 
in practice. For instance, new demands and availabilities of 
resources can evolve (Basu et al. 2017b). For instance, con-
sider that after an earthquake, the need of food and shelter 
is prevalent on day t − 1 at several locations. On day t, there 
can be an aftershock of the earthquake affecting new loca-
tions, which also subsequently need such resources. Again, 
various external agencies start sending relief materials to 
the disaster-struck region, and hence various resources can 
become available at new locations. Thus, new availability-
locations (warehouses) can come into picture. In fact, the 
set of resources needed/available also changes with time, as 
observed in our prior study (Basu et al. 2017b). The model 
by Basu et al. (2018b) does not consider such changes in the 
set of need-locations/availability-locations/resources. Hence, 
we have modified the model to consider these practical dyna-
micity of a disaster situation.

In our modified model, the values of P (number of need-
locations), Q (number of availability-locations) and R 

(10)Drp(t + 1) = Drp(t) − xtrp + drp(t + 1)

(11)Arq(t + 1) = Arq(t) −

P∑
p=1

ytrpq + arq(t + 1)
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(number of resource classes) can actually be different on 
different days.3 New need-locations may be introduced on a 
certain day (day t), e.g. due to new areas being flooded, or 
due to aftershocks of an earthquake affecting new locations. 
For such a new need-locations p′ , the utility of resource r 
will be calculated from Eq. 7, i.e. considering xrp� (t − 1) = 0 . 
The cumulative demand matrix will be updated with the 
entries of the demand tuples from previously encountered 
locations as well as the new location ( p′ ) and the utility 
matrix will be updated accordingly. Note that, the dimen-
sions of the cumulative demand matrix, resource allocation 
matrix, etc., may increase as new locations are encountered 
(or if new types of resource are introduced).

Summary of section We first gave a high-level descrip-
tion of our proposed resource allocation framework utiliz-
ing information posted on microblogging sites (in Sect. 4.1). 
Figure 1 gives an illustrative overview of our proposed 
resource allocation framework. Then, we described the 
model developed in (Basu et al. 2018b) in Sect. 4.2. This 
model assumed complete data regarding daily resource 
needs and availabilities at a fixed set of locations, which 
can only be available several months after a disaster event, 
and not in real time. Since our objective is real-time resource 
allocation, we need to rely on uncertain and incomplete data 
available on social media. Hence, we modify the model to 
adapt to our needs, and we describe our modifications to the 
model in Sect. 4.3.

Next, we proceed to perform experiments to evaluate the 
proposed model and to compare it with that of some baseline 
resource allocation models.

5 � Experiments and analysis

We now demonstrate the working of our resource allocation 
model over a working example. We also compare our model 
with some baseline models that have been designed for a 
similar setting, using the same working example.

5.1 � A working example

To illustrate the experimental results, we consider a small 
example derived from some of the tweets posted during the 
severe floods in December 2015 in the Indian city of Chen-
nai (the same disaster event from which examples in Sect. 3 
were given). We consider two sets of tweets 

(1)	 Need-tweets and availability-tweets posted on 02 
December, 2015, which we consider as Day 1; the 
tweets are shown in Table 5, and

(2)	   Need-tweets and availability-tweets posted on 03 
December, 2015, which we consider as Day 2; these 
tweets are shown in Table 6. From these tweets, we get 
the need and availability of two resources ‘Food’ and 
‘Shelter’ (which we refer to as R1 and R2) in four need-
locations (which we refer to as P1, P2, P3, and P4) and 
two warehouses/availability-locations (which we refer 
to as Q1 and Q2), over two days.

Table 5   Mapping of location and resources from tweets posted during the Chennai floods on 2 December, 2015 (which we consider Day 1)

We get the information of two resources (R1, R2), four need-locations (P1, P2, P3, P4), and two availability-locations (Q1 and Q2). The quanti-
ties are in the unit of persons. Note that, in the last need-tweet, a ‘house’ is assumed to comprise of 5 persons on average

Location Resource, Quantity

Need-Tweet (extract)
More than 300 people stranded at Greenways Rd MRTS Stn... Requires help food 

water bedsheets etc #chennairains
Greenways Rd (P1) Food (R1): 300, Shelter (R2): 300

Need food/blankets for 50 people stranded in Chinmaya Vidyalaya, Virugambak-
kam #chennairains #chennaifloods #chennairainshelp

Virugambakkam (P2) Food (R1): 50, Shelter (R2): 50

700 people are struggling without food in Nandambakkam Cantonment kalyana 
Mandapam #chennairains #Chennai #chennaifloods

Nandambakkam (P3) Food (R1): 700

plz somebody come and save us abt 75 houses submerged in paraniputhur chennai 
near mangadu no water food plz save us

Magadu (P4) Food(R1): 375

Availability-Tweet (extract)
Cheer NGO can provide shelter food for 50 ppl Address is No.21/C, Taylors Road, 

Kilpauk, Chennai - 10. [mobile no.]
Kilpauk (Q1) Food (R1): 50, Shelter (R2): 50

Have a school 2 accmdate 75-100 in Nungambakkam. food at Chetpet 2 closely 
around 1000 ppl [mobile no.] #chennairains #Chennai

Nungambakkam (Q2) Food (R1): 1000, Shelter (R2): 100

3  Technically, we should have made these quantities functions of 
time, i.e. P(t), Q(t), R(t) should have been used to denote the respec-
tive quantities on day t. But we misuse the notations for simplicity.
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Now, from the need-tweets in Table 5, we construct the 
need matrix for Day 1, that gives the number of units of the 
resources R1 and R2 that are needed in the four need-loca-
tions (P1, P2, P3, P4) on Day 1. This need-matrix for Day 1 
is shown in Table 7. Similarly, from the availability-tweets 
shown in Table 5, we construct the availability matrix for 
Day 1 as shown in Table 8—this matrix gives the number 
of units of the resources R1 and R2 that are available in the 
two availability-locations (Q1, Q2) on Day 1.

Likewise, we construct the need matrix for Day 2 as 
shown in Table 9, from the need-tweets posted on Day 2 
(shown in Table 6). We also construct the availability matrix 
for Day 2 as shown in Table 10, from the availability-tweets 
shown in Table 6. Note that, the need matrix and availability 
matrix for a certain day, respectively, represent the set of 

need-tuples and availability-tuples extracted from the need-
tweets and availability-tweets that are posted on the said day.

Also, let us assume that the locations Q1 and Q2 are such 
that Q1 is close to P1 and P2 (but far away from P3 and P4), 
while Q2 is close to P3 and P4 (but far away from P1 and 

Table 6   Mapping of location and resources from tweets posted during the Chennai floods on 3 December, 2015 (which we consider Day 2)

We get the information of two resources (R1, R2), four need-locations (P1, P2, P3, P4), and two availability-locations (Q1 and Q2). The quanti-
ties are in the unit of persons

Location Resource, Quantity

Need-Tweet (extract)
Greenways Road, RK Puram Road #Chennai- patients, doctors staff stranded - no 

food. Over 100ppl stranded #ChennaiRescue
Greenways Road (P1) Food (R1): 100

1000 ppl stranded @ Virugambakkam require food and shelter-[mobile no.]-veri-
fied #ChennaiFloods

Virugambakkam (P2) Food(R1): 1000, Shelter(R2): 1000

Need bedding and clothing for 180 people near Nandambakkam Panchayat Water 
Tank. Any help guidance?

Nandambakkam (P3) Shelter(R2): 180

Help ASAP 75 ppl stuck in , Mangadu Rd, Kovur, Rajappa Nagar No food and 
water ,complete power shutdown in building.

Mangadu(P4) Food(R1): 75

Availability-Tweet (extract)
#Chennai Food Availability For 1500 People and shelter for 50!! Kilpauk:[mobile 

no]
Kilpauk(Q1) Food(R1): 1500, Shelter(R2): 50

#PrayForChennai Foods Ready For 50 ppl and 900 sleeping bags are available in 
Chennai Nungambakkam Contact - [mobile no]

Nungambakkam (Q2) Food (R1): 50, Shelter (R2): 900

Table 7   Example need matrix 
for Day 1—gives the number 
of units of the resources (R1, 
R2) that are needed in the four 
need locations (P1, P2, P3, P4) 
on Day 1

The entries are derived from the 
need-tweets in Table 5

R1 R2

P1 300 300
P2 50 50
P3 700 0
P4 375 0

Table 8   Example availability 
matrix for Day 1—gives the 
number of units of the resources 
(R1, R2) that are available in 
the two availability locations 
(Q1, Q2) on Day 1 The entries are derived from the 

availability-tweets in Table 5

R1 R2

Q1 50 50
Q2 1000 100

Table 9   Example need matrix 
for Day 2—gives the number 
of units of the resources (R1, 
R2) that are needed in the four 
need locations (P1, P2, P3, P4) 
on Day 2

The entries are derived from the 
need-tweets in Table 6

R1 R2

P1 100 0
P2 1000 1000
P3 0 180
P4 75 0

Table 10   Example availability 
matrix for Day 2—gives the 
number of units of the resources 
(R1, R2) that are available in 
the two availability locations 
(Q1, Q2) on Day 2 The entries are derived from the 

availability-tweets in Table 6

R1 R2

Q1 1500 50
Q2 50 900

Table 11   Example deployment 
time matrix (assumed the same 
for both for Day 1 and Day 2)

Shown are the time needed to 
deploy one unit of resource 
from an availability-location 
(Q1 or Q2) to a need-location 
(P1 or P2 or P3 or P4)

P1 P2 P3 P4

Q1 18 21 41 40
Q2 27 24 33 39



	 Social Network Analysis and Mining (2022) 12:15

1 3

15  Page 14 of 20

P2). Table 11 shows the deployment time matrix, that gives 
the time required to transport one unit of resource from one 
location to the other locations.

We make some simplifying assumptions—we assume 
that the deployment times remain constant over both Day 
1 and Day 2. Also, we assume that each unit of a resource 
is transported individually as a consignment, i.e. cr = 1 for 
both resources R1 and R2.

5.2 � Baseline approaches for resource allocation

The setting used by Basu et al. (2018b) is completely differ-
ent from our setting, since they used historical government 
reports collected several months after a disaster event (dis-
aster-uttarakhand 2013); hence, as simulation environment, 
they considered a fixed set of need-locations and availa-
bility-locations (warehouses). However, the present model 
considers the practical scenario of dynamically changing 
need-locations and availability-locations; hence, it would 
not be fair to compare the performance of the model used 
by Basu et al. (2018b).

To compare the performance of our methodology, we 
consider the following two baselines in a similar setting: 

(1)	 Baseline 1: Simple baseline this is a naive methodology 
that considers an availability-tweet to match a need-
tweet if both are referring to the same resource. Thus, 
this baseline does not consider locations.

(2)	 Baseline 2: Baseline based on location proximity here 
we consider the methodology of our prior work (Dutt 
et al. 2019) for matching need-tweets and availability-
tweets by considering resource-similarity, as well as 
geographical-proximity of the locations of resource 
need and availability. To compute the geographical-
proximity score, the geographical coordinates of 
the need-location and availability-location (that are 
extracted from the need-tweet and availability-tweet, 
respectively) are considered, and the distance between 
the two locations is obtained using Google Maps. This 
distance is normalized using a bounding box around the 
region where the disaster has occurred (e.g. a bound-
ing box around Nepal for the Nepal earthquake, or a 
bounding box around the Indian city of Chennai for the 
2015 Chennai floods). Tweets are ranked according to 
a linear combination of the resource-similarity score 
and the geographical-proximity score (see (Dutt et al. 
2019) for details). As reported in (Dutt et al. 2019), a 
need-tweet and an availability-tweet are considered as 
matched if (i) they mention about the need and avail-
ability of the same resource, and (ii) the road-distance 
between the need-location and the availability-location 
is less than a certain threshold. Note that, according to 
both these baselines, each need-tweet/availability-tweet 

is considered in isolation. Hence, a particular availabil-
ity-tweet can be matched to multiple need-tweets. In 
contrast, the model proposed in the present work con-
siders all needs and availabilities together and attempts 
to optimize resource allocations accordingly. Thus, the 
comparison of these baselines with the model proposed 
in this present work is meant to highlight the need for 
considering the optimization framework described ear-
lier.

5.3 � Evaluation metric

We will next compare the performance of various resource 
allocation models on the working example. To this end, we 
consider the following performance metrics.

5.3.1 � Shelter‑specific resource deficit (SRD)

We consider the SRD(t) metric introduced by Kondaveti and 
Ganz (2009) to evaluate the rate at which resource deficits 
are minimized at each need-location (with respect to time). 
For a particular need-location p, the metric is defined as 
follows:

Here, t is the time at which SRD is measured and trpq is the 
time taken to deploy resource r from availability-location q 
to need-location p. The function frpq(t > trpq) is a step func-
tion that takes the value 1 if t > trpq and 0 otherwise. Note 
that, since time is an important factor in resource allocation, 
this metric distinguishes between the following two cases:

Case 1 If the time trpq taken to deploy a particular 
resource r from availability-location q to need-location p is 
greater than the time t (when SRD is being measured), then 
deployment of that resource r at p is not considered effective. 
Hence, the step function frpq(t > trpq) = 0 . In this scenario, 
according to Eq. 12, resource deficit of r at p reaches its 
maximum. In the extreme case, if this situation occurs for all 
R resources, then the SRD at p is maximum, i.e. SRDp(t) = 1.

Case 2 If the time trpq taken to deploy resource r from q to 
p is less than the time t (when SRD is being measured), then 
the step function frpq(t > trpq) = 1 . In this case, from Eq. 12, 
it is evident that SRD at p depends on both number of units 
of resource r allocated to p from q on day t ( ytrpq ), as well as 
the utility of that resource at p ( urp(t)).

Note that, this metric considers all resources r for a par-
ticular need-location p and at time t; hence, the expression 
includes summation over all R number of resources as well 

(12)

SRDp(t) =
1∑R

r=1
urp(t)

×

R�
r=1

⎛⎜⎜⎝
urp(t) ×

⎛⎜⎜⎝
1 −

∑Q

q=1
ytrpq × frpq(t > trpq)

drp(t)

⎞⎟⎟⎠

⎞⎟⎟⎠



Social Network Analysis and Mining (2022) 12:15	

1 3

Page 15 of 20  15

as summation over all Q availability-locations. Thus, this 
metric determines the rate at which resource deficits are 
minimized at each individual need-location p.

5.3.2 � Average resource deficit (ARD)

This metric measures the rate at which overall resource defi-
cit is minimized across all need-locations. ARD(t) is defined 
as follows:

where P is the total number of need-locations on day t.

5.4 � Applying the resource allocation 
methodologies to the working example

We now apply the three resource allocation models (the two 
baseline methods and the proposed model) to the working 
example described in Sect. 5.1.

5.4.1 � Applying the simple baseline

According to our simple baseline (that does not consider 
locations), all warehouses (availability-locations) are effec-
tively considered together, as if there was a single ware-
house. Thus, the allocation would effectively start from a 
particular availability-location/warehouse (say, Q1) and 
continue as long as there is any resource remaining in the 
said warehouse. When the resource present in the said ware-
house is exhausted, the allocation will start from the next 
warehouse (say, Q2), and so on.

For day 1, we consider the resource-needs reported in 
Table 7 and the resource-availabilities reported in Table 8. 
Following the simple baseline, Table 12 shows the allocation 
matrix that gives the number of units of each resource (R1 

(13)ARD(t) =

∑P

p=1
SRDp(t)

P

and R2) that are to be allocated to each need-location (P1, 
P2, P3, P4) on day 1. The deployment matrices for R1 and 
R2 are represented by Tables 13 and 14, respectively; these 
tables show the number of units of a resource that are to be 
allocated to each need-location (P1, P2, P3, P4) from each 
availability-location (Q1, Q2) on day 1. After the alloca-
tion is done for Day 1, Table 15 illustrates the unfulfilled 
demand matrix.

Accordingly, the SRD(t) values for each need-location are 
calculated, and also the Average Resource Deficit ARD(t) 
value is calculated using Eqs. 12 and 13, respectively. These 
values (for day 1) are reported later in Table 24, for compari-
son with those for the other methodologies.

For day 2, the need matrix is generated by combining 
the fresh demands encountered on day 2 (Table 9) with the 
unfulfilled demands from day 1 (Table 15). Similarly, the 
availability matrix for day 2 is generated by combining the 
fresh availabilities reported on day 2 (Table 10) with the 
residual availabilities at the end of day 1 (if any). Then, 
the allocation matrix and deployment matrices for day 2 are 
computed by solving the optimization problem described 
earlier. For brevity, we have not shown the allocation and 
deployment matrices for day 2. The values of our evalua-
tion metrics—SRD(t) and ARD(t)—for day 2 are reported 
later in Table 25, for comparison with those for the other 
methodologies.

5.4.2 � Applying the baseline based on location proximity

This baseline, based on our prior work (Dutt et al. 2019), 
considers both resource similarity and geographical prox-
imity of the location of need and availability, to match the 
need-tweets and availability-tweets.

Thus, for day 1 (considering the needs shown in Table 7 
and availabilities in Table 8), the allocation matrix follow-
ing this baseline is shown in Table 16. The corresponding 
deployment matrices for resources R1 and R2 are reported 

Table 12   Allocation matrix 
for day 1, following Simple 
Baseline—shows the number of 
units of each resource (R1 and 
R2) that are allocated to each 
need-location (P1, P2, P3, P4)

R1 R2

P1 300 150
P2 50 0
P3 700 0
P4 0 0

Table 13   Deployment matrix 
for resource R1 for day 1, 
following Simple Baseline—
shows the number of units of 
resource R1 that are allocated 
to each need-location (P1, P2, 
P3, P4) from each availability-
location (Q1, Q2)

Q1 Q2

P1 50 250
P2 0 50
P3 0 700
P4 0 0

Table 14   Deployment matrix 
for R2 for day 1, following 
Simple Baseline

Q1 Q2

P1 50 100
P2 0 0
P3 0 0
P4 0 0

Table 15   Unfulfilled need 
matrix for day 1, following 
Simple Baseline—shows the 
demand (number of units) of 
each resource that remains 
unfilfilled at each need-location 
(P1, P2, P3, P4), after the 
allocation is done for Day 1

R1 R2

P1 0 150
P2 0 50
P3 0 0
P4 375 0
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in Table 17 and Table 18. Finally, Table 19 shows the unful-
filled needs at each location (shelter) at the end of day 1.

The process continues on day 2 as explained in 
Sect. 5.4.1. The total need matrix for day 2 is generated by 
combining the unfulfilled needs of day 1 and the fresh needs 
reported on day 2. The total availability matrix for day 2 is 
generated by combining the residual availabilities of day 1 
and the fresh availabilities reported on day 2. The allocation 
for day 2 is done considering the total need matrix and the 
total availability matrix. We are not stating the details of 
day 2 for brevity.

5.4.3 � Applying the proposed methodology

In our proposed model, resources are allocated in an opti-
mized way considering both demand and utility of a resource 
at a specific need-location. To solve the integer program-
ming model for optimal resource allocation, the LINGO 
optimization tool is used to generate the allocation and 

deployment matrices (for each day).4 The allocation matrix 
for day 1, following the proposed methodology, is shown in 
Table 20. Tables 21 and 22, respectively, show the deploy-
ment plan for the resources R1 and R2 for day 1. Table 23 
shows the unfulfilled resource needs at each need-location 
at the end of day 1.

The model was applied for day 2 as well, in a similar set-
ting as described for the two baseline methods. We are not 
reporting the details of day 2 for brevity.

5.5 � Comparing the three resource allocation 
models

We now compare the performance of the three resource allo-
cation models (the Simple Baseline, the Baseline based on 

Table 16   Allocation matrix for 
day 1, following Baseline based 
on location proximity—shows 
the number of units of each 
resource (R1 and R2) that are 
allocated to each need-location 
(P1, P2, P3, P4)

R1 R2

P1 50 50
P2 0 0
P3 700 0
P4 300 0

Table 17   Deployment matrix 
for R1 for day 1, following 
Baseline based on location 
proximity—shows the number 
of units of resource R1 that are 
allocated to each need-location 
(P1, P2, P3, P4) from each 
availability-location (Q1, Q2)

Q1 Q2

P1 50 0
P2 0 0
P3 0 700
P4 0 300

Table 18   Deployment matrix 
for R2 for day 1, following 
Baseline based on location 
proximity

Q1 Q2

P1 50 0
P2 0 0
P3 0 0
P4 0 0

Table 19   Unfulfilled need 
matrix for day 1, following 
Baseline based on location 
proximity—shows the demand 
(number of units) of each 
resource that remains unfulfilled 
at each need-location (P1, P2, 
P3, P4), after the allocation is 
done for Day 1

R1 R2

P1 250 250
P2 50 50
P3 0 0
P4 75 0

Table 20   Allocation Matrix 
for Day 1, following proposed 
methodology—shows the 
number of units of each 
resource (R1 and R2) that are 
allocated to each need-location 
(P1, P2, P3, P4)

R1 R2

P1 300 100
P2 50 50
P3 325 0
P4 375 0

Table 21   Deployment Matrix 
for R1 for Day 1, following 
proposed methodology—shows 
the number of units of resource 
R1 that are allocated to each 
need-location (P1, P2, P3, P4) 
from each availability-location 
(Q1, Q2)

Q1 Q2

P1 0 300
P2 0 50
P3 0 325
P4 50 325

Table 22   Deployment Matrix 
for R2 for Day 1, following 
proposed methodology

Q1 Q2

P1 0 100
P2 50 0
P3 0 0
P4 0 0

Table 23   Unfulfilled need 
matrix for day 1, following 
proposed optimization model—
shows the demand (number 
of units) of each resource that 
remains unfulfilled at each 
need-location (P1, P2, P3, P4), 
after the allocation is done for 
Day 1

R1 R2

P1 0 200
P2 0 0
P3 375 0
P4 0 0

4  LINGO: https://​www.​lindo.​com/​index.​php/​produ​cts/​lingo-​and-​
optim​izati​on-​model​ing.

https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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location proximity, and the proposed methodology) on the 
working example.

5.5.1 � Reducing resource‑deficits

We use the SRD and ARD metrics that were explained in 
Sect. 5.3. For a particular model, these metrics are computed 
using Eqs. 12 and 13 at the end of day 1, considering the 
resource-allocations on day1 (according to the said model), 
and again at the end of day 2, considering the resource-
allocations prescribed by the said model for day 2. The SRD 
and ARD values at the end of day 1 ( t = 1 ) are reported for 
all three models in Table 24. Similarly, the metrics for day 2 
( t = 2 ) are computed and reported in Table 25.

It is evident that the proposed methodology enables 
deployment of resources in such a way that resource deficit 
at each need-location is minimized, and the deficit gradually 
decreases with time. For the present experiment, by employ-
ing our proposed methodology, ARD value is 0.22 on day 
1, which further reduces on day 2 to 0.05. Note that, ARD 
(Average Resource Deficit) values are lowest for the pro-
posed methodology, as compared to those for the baselines, 
for both the days, as shown in Tables 24 and 25.

Figure 2 shows a visualization of the gradual decrease in 
ARD values at the end of Day 1 and Day 2 for the baseline 
methodologies and the proposed framework. From Fig. 2, it 
is evident that the proposed framework outperforms other 
baseline methodologies in terms of diminishing ARD val-
ues. It is also evident that the rate of decrease of ARD at 
the end of Day 1 and Day 2 is substantially higher for the 
proposed framework, than for the baselines.

5.5.2 � Fairness of resource allocation

Apart from quickly bringing down resource-deficits, there 
is another important requirement for post-disaster resource 
allocation—the allocation of resources should be fair 
among various locations. Audits of resource allocation are 
often carried out after major disaster events, to ascertain 
if resources were fairly distributed among various disaster-
affected locations. For instance, Paul et al. (2017) assessed 
whether emergency aid was uniformly distributed in dif-
ferent locations after the 2015 Nepal earthquake. Fairness 
issues have also been debated in the context of allocation of 
medical resources during the COVID-19 pandemic (Ema-
nuel et al. 2020). Thus, while comparing different resource 
allocation models, it is important to consider how fair the 
allocation of resources is.

We now study how fair the three resource allocation mod-
els are in distributing resources among the different need-
locations. To this end, we compare the resource allocation 
matrices of the three models for day 1—Table 12 for the 
Simple Baseline, Table 16 for the Baseline based on location 

proximity, and Table 20 for the proposed method. Our pro-
posed model enables the distribution of resources in a fair 
way among the different need-locations. For instance, on day 
1, R1 resource was needed in all four need-locations P1, P2, 
P3, P4 (see Table 7). The proposed model has allocated at 
least some amount of R1 to all the four need-locations (see 
Table 20). However, the Simple baseline methodology allo-
cated R1 to P1, P2, P3 locations, but no allocation was made 
to P4 (Table 12). Thus, location P4 suffers from starvation 
problem. Likewise, while using the baseline scheme based 
on location proximity, allocation has been suggested for P1, 
P3, P4 and no allocation is suggested for P2 (Table 16), and 
thus P2 suffers from starvation.

Thus, it is evident that our proposed model can lead to 
resource allocation that is more fair. Since the baseline 
approaches consider each resource request in isolation, they 
may result in a situation where resources are allocated to 
only a subset of need-locations and other need-locations 
face starvation. In contrast, our proposed model considers 
the resource requests from all need-locations together, as a 
temporal sequence, and attempts to distribute the resources 
more evenly across all need-locations. Thus, it is much less 
likely that some particular need-location faces starvation of 
resources.

5.5.3 � Cost of achieving fairness in allocation

It is well known that a methodology that strives to achieve 
fairness has to pay some associated ‘cost’. For instance, a 

Table 24   Comparing the three resource allocation models, at the end 
of day 1—showing the SRD(t = 1) value at each need-location (P1, 
P2, P3, P4), and the average across need-locations ( ARD(t = 1))

SRD(P1) SRD(P2) SRD(P3) SRD(P4) ARD

Simple Baseline 0.25 0.50 0.00 1.00 0.44
Baseline based on 

location proxim-
ity

0.83 1.00 0.00 0.20 0.51

Proposed method-
ology

0.33 0.00 0.53 0.00 0.22

Table 25   Comparing the three resource allocation models, at the end 
of day 2—showing the SRD(t = 2) value at each need-location (P1, 
P2, P3, P4), and the average across need-locations ( ARD(t = 2))

SRD(P1) SRD(P2) SRD(P3) SRD(P4) ARD

Simple Baseline 0.00 0.12 1.00 0.00 0.28
Baseline based on 

location proxim-
ity

0.40 0.50 0.00 0.00 0.22

Proposed method-
ology

0.00 0.21 0.00 0.00 0.05
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classifier that attempts to classify fairly often has to pay 
the cost of slightly reduced accuracy, compared to a clas-
sifier that optimizes only accuracy (Zafar et al. 2017). We 
now analyse the cost of achieving fairness in resource allo-
cation, in terms of the time needed to deploy resources.

To this end, we define a new metric, called the Aver-
age Deployment Time (ADT) per unit of resource for a 
resource allocation model. This metric measures the aver-
age number of time units needed to deploy one unit of 
a resource following a specific methodology, averaged 
across all resources and over all days that are considered. 
For a particular resource deployment model, the metric 
considers the total time needed to deploy all the resources 
to all the need-locations from all warehouses. Then, ADT 
is computed by dividing the total time by the total number 
of unit of resources deployed. Thus, ADT for a particular 
model can be computed as

where the symbols are as described in Table 4 and N is the 
total number of days over which resource allocation takes 
place ( N = 2 for our working example).

We compute ADT for the two baseline and the proposed 
models. For this computation, we utilize the deployment 
time matrix of the working example (Table 11) and the 
deployment matrices of the three methodologies. The com-
puted ADT values are reported in Table 26.

From Table  26, it is evident that the Simple Base-
line performs the best in terms of having low Average 

(14)ADT =

∑N

t=1

∑R

r=1

∑P

p=1

∑Q

q=1
trpq ∗ ytrpq

∑N

t=1

∑R

r=1

∑P

p=1

∑Q

q=1
ytrpq

Deployment Time per unit resource. However, our pro-
posed methodology performs reasonably well in terms of 
ADT, and the deployment time is only slightly higher than 
that of the Simple Baseline. Thus, we can conclude that 
our proposed methodology achieves significant fairness 
with the reasonable cost of slightly increased deployment 
time of resources.

6 � Conclusion

In this paper, we propose a model for optimized resource 
allocation in a post-disaster scenario, utilizing information 
posted on social media (specifically, tweets).

To the best of our knowledge, this is the first attempt to 
develop an optimized resource allocation framework utiliz-
ing social media data, which enables our framework to be 
used in real time. Specifically, we considered the informa-
tion about resource-needs and resource-availabilities to be 
extracted from microblogging sites (which are possibly the 
most popular sources of real-time crowdsourced information 
today), and the model is adaptable to the imprecise informa-
tion obtained from such sites. The evaluation using a work-
ing example derived from tweets posted during a real-life 

Fig. 2   Average Resource Deficit values (averaged across all need-locations) at the end of Day 1 and Day 2. ARD is assumed to start at 1.0 for all 
cases (before deployment has started)

Table 26   Measuring the 
cost of achieving fairness in 
resource allocation—Average 
Deployment Time per unit 
of resource, for the three 
methodologies

Method ADT

Simple Baseline 29.62
Baseline based on loca-

tion Proximity
33.27

Proposed methodology 30.82
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disaster event (described in Sect. 5) shows that the proposed 
model outperforms the baselines in terms of bringing down 
resource-deficits (SRD values) at various need-locations. It 
is also evident that the rate of decrease in resource-deficits 
across need-locations (ARD values) is much higher for the 
proposed framework, than for the baseline methodologies. 
Additionally, the proposed model enables resource alloca-
tion that is efficient as well as more likely to be fair (i.e. 
resources are more uniformly distributed across all need-
locations) than what baseline methods achieve.

There are several potential ways to improve the model in 
future. We used microblogging sites as the source of infor-
mation since they provide real-time information, which is 
critical during a disaster. However, there are often concerns 
about false/exaggerated information on social media. Check-
ing the correctness of resource-needs/resource-availabilites 
is out of the scope of the present work, but has to be included 
in order to deploy the model in practice. For instance, 
resource-needs and resource-availabilities can be input to 
the model only after proper verification. Also, though we 
have shown that the proposed model usually leads to more 
fair allocation than the baselines, the model can be improved 
in future by including provable guarantees of fairness in the 
allocation. It can also be noted that such a resource allo-
cation model should be used in supervision of domain 
experts who, for instance, can decide the priority of various 
resource-needs by taking various local factors into account.
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