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Abstract
Negative word-of-mouth is a strong consumer and user response to dissatisfaction. Moral outrages can create an excessive 
collective aggressiveness against one single argument, one single word, or one action of a person resulting in hateful speech. 
In this work, we examine the change of vocabulary to explore the outbreak of online firestorms on Twitter. The sudden 
change of an emotional state can be captured in language. It reveals how people connect with each other to form outrage. 
We find that when users turn their outrage against somebody, the occurrence of self-referencing pronouns like ‘I’ and ‘me’ 
reduces significantly. Using data from Twitter, we derive such linguistic features together with features based on retweets 
and mention networks to use them as indicators for negative word-of-mouth dynamics in social media networks. Based on 
these features, we build three classification models that can predict the outbreak of a firestorm with high accuracy.

1 Introduction

As social media platforms with hundreds of millions of users 
interacting in real time on topics and events all over the 
world, social media networks are social sensors for online 
discussions and are known for quick and often emotional 
disputes (Chadwick 2017). Online firestorms can be defined 
as the sudden discharge of large quantities of messages 
containing negative word of mouth and complaint behavior 
against a person, company or group in social media networks 
(Pfeffer et al. 2014). The negative dynamics often start with 
a collective “against the others” (Strathern et al. 2020).

In social media, negative opinions about products or 
companies are formed by and propagated via thousands or 
millions of people within hours. Furthermore, massive nega-
tive online dynamics are not only limited to the business 
domain, but they also affect organizations and individuals in 

politics. Even though online firestorms are a new phenom-
enon, their dynamics are similar to the way in which rumors 
are circulated. In 1947, Gordon Allport and Leo Postman 
defined a rumor as a “proposition for belief, passed along 
from person to person, usually by word of mouth, without 
secure standards of evidence being presented” (Allport and 
Postman 1947).

When people are active on social media, they act in a 
socio-technical system that is mediated and driven by algo-
rithms. The goal of social media platforms is to keep users 
engaged and to maximize their time spent on the platform. 
Highly engaged users who spend a lot of time on platforms 
are the core of a social media business model that is based 
on selling more and better targeted ads. But the question 
is always which content will be interesting for a particular 
user? To answer this, recommendation systems are devel-
oped to increase the chance that a user will click on a sug-
gested link and read its content. These recommendation 
algorithms incorporate socio-demographic information, but 
also data of a user’s previous activity (Leskovec et al. 2014; 
Anderson 2006).

Furthermore, behavioral data of alters (friends) of a user 
are also used to suggest new content (Appel et al. 2020). 
Social scientists have studied the driving forces of social 
relationships for decades, i.e., why do people connect with 
each other. Homophily and transitivity are the most impor-
tant factors for network formation. Homophily means that 
your friends are similar to yourself (McPherson et al. 2001). 
They like similar things and are interested in similar topics. 
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Transitivity describes the fact that a person’s friends are 
often connected among each other (Heider 1946; Cartwright 
and Harary 1956). Combining these two aspects results in 
the fact that most people are embedded in personal networks 
with people that are similar to themselves and who are to a 
high degree connected among each other.

The above-described forces of how humans create net-
works combined with recommendation systems have prob-
lematic implications. Recommendation systems filter the 
content that is presented on social media and suggest new 
“friends” to us. As a result, filter bubbles (Pariser 2011) are 
formed around individuals on social media, i.e., they are 
connected to like-minded people and familiar content. The 
lack of diversity in access to people and content can easily 
lead to polarization (Dandekar et al. 2013). If we now add 
another key characteristic of social media, abbreviated com-
munication with little space for elaborate exchange, a perfect 
breeding ground for online firestorms emerges. Consider a 
couple of people disliking a statement or action of a politi-
cian, celebrity or any private individual and these people 
voicing their dislike aggressively on social media. Their 
online peers, who most likely have similar views (see above), 
will easily and quickly agree by sharing or retweeting the 
discontent. Within hours, these negative dynamics can reach 
tens of thousands of users (Newman et al. 2006). A major 
problem, however, is to capture first signals of online outrage 
at an early stage. Knowing about these signals would help to 
intervene in a proper way to avoid escalations and negative 
dynamics.

In previous work, Strathern et al. (2020) tackled the ques-
tion of anomaly detection in a network by exploring major 
features that indicate the outbreak of a firestorm; hence, the 
goal was to early detect change and extract linguistic fea-
tures. Detection of outrage (e.g., hate speech) is based on 
identification of predefined keywords, while the context in 
which certain topics and words are being used has to be 
almost disregarded. To name just one extreme example, hate 
groups have managed to escape keyword-based machine 
detection through clever combinations of words, misspell-
ings, satire and coded language (Udupa 2020). The focus of 
the analysis of Strathern et al. was on more complex lexical 
characteristics, which they applied as a basis for automated 
detection.

Our research question is the following: On Twitter, 
there is constant fluctuation of content and tweets and the 
question arises if, in these fluctuations, we can detect early 
that a negative event starts solely based on linguistic fea-
tures. We assume that the start of a firestorm is a process, 
and because of a sudden change of emotions it can be 
early detected in sentiments and lexical items. With this 
work, we aim at answering the following question: Once 
we identify the linguistic changes as indicators of a fire-
storm, can we also predict a firestorm? In an abstract view 

on a firestorm as depicted in Fig. 1, the indicators show at 
time point 1), whereas the firestorm takes place starting 
during the phase marked by 2) in the figure. Hence, in this 
paper, we build upon and extend the work presented by 
Strathern et al. (2020).

Our choice of methods to answer our research ques-
tion regarding the prediction of the beginning of online 
firestorms is based on text statistics and social network 
analysis for longitudinal network data. We assume that 
anomalies in behavior can be detected by statistical analy-
sis applied to processes over time. Hence, in this work, 
we extract lexical and network-based properties, meas-
ure their occurrence for different tweet periods and use 
these features to predict the outbreak of a firestorm. For 
the scope of this work, we are mainly interested in textual 
data from tweets and in mention and retweet networks. 
We use quantitative linguistics to study lexical properties. 
For our linguistic analysis, we apply the Linguistic Inquiry 
Word Count Tool by Pennebaker et al. (2015). To contrast 
this linguistic perspective, we also investigate mention 
and retweet networks. Mentions and hashtags represent 
speech acts in linguistic pragmatics and are interesting in 
that they represent behavioral properties in addition to the 
lexical properties (Scott 2015). For predictive analysis, we 
define models based on linguistic features as well as mod-
els based on features derived from mention and retweet 
networks and compare them with each other.

Our contributions are:

• Extracting linguistic and sentimental features from tex-
tual data as indicators of firestorms.

• Defining a prediction model that accounts for linguistic 
features.

The remainder of the paper is organized as follows: Sect. 2 
highlights important related works. In Sect. 3, we introduce 
the dataset used for this analysis together with a few descrip-
tive statistics. What follows in Sects. 4 and 5 is a descrip-
tion of the linguistic and network-based features that our 

1

2

Fig. 1  Early detection of linguistic indicators (1) and prediction of 
firestorm (2)
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prediction is based upon. The prediction task is described in 
detail in Sect. 6. Section 7 concludes the paper.

2  Related work

While online firestorms are similar to rumors to some extent, 
e.g. they often rely on hearsay and uncertainty, online fire-
storms pose new challenges due to the speed and potential 
global reach of social media dynamics (Pfeffer et al. 2014). 
With respect to firestorms on social media, the analysis of 
social dynamics, their early detection and prediction often 
involves research from the field of sentiment analysis, net-
work analysis as well as change detection. There is work 
asking why do people join online firestorms (Delgado-Ball-
ester et al. 2021). Based on the concept of moral panics, the 
authors argue that participation behavior is driven by a moral 
compass and a desire for social recognition (Johnen et al. 
2018). Social norm theory refers to understanding online 
aggression in a social–political online setting, challenging 
the popular assumption that online anonymity is one of the 
principle factors that promote aggression (Rost et al. 2016).

2.1  Sentiment analysis

Approaches to the analysis of firestorms focusing on the 
mood of the users and their expressed sentiments unveil, for 
example, that in the context of online firestorms, non-anon-
ymous individuals are more aggressive compared to anony-
mous individuals (Rost et al. 2016). Online firestorms are 
used as a topic of news coverage by journalists and explore 
journalists’ contribution to attempts of online scandalization. 
By covering the outcry, journalists elevate it onto a main-
stream communication platform and support the process of 
scandalization. Based on a typology of online firestorms, the 
authors have found that the majority of cases address events 
of perceived discrimination and moral misconduct aiming 
at societal change (Stich et al. 2014). Online firestorms on 
social media have been studied to design an Online Fire-
storm Detector that includes an algorithm inspired by epide-
miological surveillance systems using real-world data from 
a firestorm (Drasch et al. 2015).

Sentiment analysis was applied to analyze the emotional 
shape of moral discussions in social networks (Brady 
et al. 2017). It has been argued that moral–emotional lan-
guage increased diffusion more strongly. Highlighting the 
importance of emotion in the social transmission of moral 
ideas, the authors demonstrate the utility of social network 
methods for studying morality. A different approach is to 
measure emotional contagion in social media and networks 
by evaluating the emotional valence of content the users 
are exposed to before posting their own tweets (Ferrara 
and Yang 2015). Modeling collective sentiment on Twitter 

gave helpful insights about the mathematical approach to 
sentiment dynamics (Charlton et al. 2016).

Arguing that rational and emotional styles of commu-
nication have strong influence on conversational dynam-
ics, sentiments were the basis to measure the frequency 
of cognitive and emotional language on Facebook. Bail 
et al. (2017).

Instead, the analysis of linguistic patterns was used to 
understand affective arousal and linguist output (Sharp and 
Hargrove 2004). Extracting the patterns of word choice in an 
online social platform reflecting on pronouns is one way to 
characterize how a community forms in response to adverse 
events such as a terrorist attack (Shaikh et al. 2017). Syn-
chronized verbal behavior can reveal important information 
about social dynamics. The effectiveness of using language 
to predict change in social psychological factors of inter-
est can be demonstrated nicely (Gonzales et al. 2010). In 
Lamba et al. (2015), the authors detected and described 21 
online firestorms discussing their impact on the network. 
To advance knowledge about firestorms and the spread of 
rumors, we use the extracted data as a starting point to fol-
low up on the research findings.

2.2  Network analysis

Social media dynamics can be described with models and 
methods of social networks (Wasserman and Faust 1994; 
Newman 2010; Hennig et al. 2012). Approaches mainly 
evaluating network dynamics are, for example, proposed 
by Snijders et al. Here, network dynamics were modeled 
as network panel data (Snijders et al. 2010). The assump-
tion is that the observed data are discrete observations of a 
continuous-time Markov process on the space of all directed 
graphs on a given node set, in which changes in tie vari-
ables are independent conditional on the current graph. The 
model for tie changes is parametric and designed for applica-
tions to social network analysis, where the network dynam-
ics can be interpreted as being generated by choices made 
by the social actors represented by the nodes of the graph. 
This study demonstrated ways in which network structure 
reacts to users posting and sharing content. While exam-
ining the complete dynamics of the Twitter information 
network, the authors showed where users post and reshare 
information while creating and destroying connections. 
Dynamics of network structure can be characterized by 
steady rates of change, interrupted by sudden bursts (Myers 
et al. 2012). Network dynamics were modeled as a class 
of statistical models for longitudinal network data (Snijders 
2001). Dynamics of online firestorms were analyzed using 
an agent-based computer simulation (ABS) (Hauser et al. 
2017)—information diffusion and opinion adoption are trig-
gered by negative conflict messages.
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2.3  Classification in machine learning

In order to efficiently analyze big data, machine learning 
methods are used, with the goal of learning from experience 
in certain tasks. In particular, in supervised learning, the 
goal is to predict some output variable that is associated with 
each input item. This task is called classification when the 
output variable is a category. Many standard classification 
algorithms have been developed over the last decades, such 
as logistic regression, random forests, k nearest neighbors, 
support vector machines and many more (Friedman et al. 
2001; James et al. 2014).

Machine learning methods have been used widely for 
studying users’ behavior on social media (Ruths and Pfef-
fer 2014), predicting the behavior of techno-social systems 
(Vespignani 2009) and predicting consumer behavior with 
Web search (Goel et al. 2010). Moreover, such methods are 
also used in identifying relevant electronic word of mouth 
in social media (Vermeer et al. 2019; Strathern et al. 2021).

2.4  Mixed approaches

More recent approaches analyze online firestorms by analyz-
ing both content and structural information. A text-mining 
study on online firestorms evaluates negative eWOM that 
demonstrates distinct impacts of high- and low-arousal 
emotions, structural tie strength, and linguistic style match 
(between sender and brand community) on firestorm poten-
tial (Herhausen et al. 2019). Online Firestorms were studied 
to develop optimized forms of counteraction, which engage 
individuals to act as supporters and initiate the spread of 
positive word of mouth, helping to constrain the firestorm 
as much as possible (Mochalova and Nanopoulos 2014). 
By monitoring psychological and linguistic features in the 
tweets and network features, we combine methods from text 
analysis, social network analysis and change detection to 
early detect and predict the start of a firestorm.

3  Data

To address our research question, we examined 20 different 
firestorms. Some are directed against individuals and a sin-
gle statement; some are against companies, campaigns and 
marketing actions. They have all received widespread public 
attention in social media as well as mainstream media. As 
shown in Table 1, there are hashtags and also @mentions 
that name the target.

3.1  Dataset

We used the same set of firestorms as in Lamba et al. 
(2015), whose data source is an archive of the Twitter 

decahose, a random 10% sample of all tweets. This is a 
scaled up version of Twitter’s Sample API, which gives a 
stream of a random 1% sample of all tweets.

Mention and retweet networks based on these sam-
ples can be considered as random edge sampled networks 
(Wagner et al. 2017) since sampling and network construc-
tion is based on Tweets that constitute the links in the 
network. As found by Morstatter et al. (2013), the Sample 
API (unlike the Streaming API) indeed gives an accurate 
representation of the relative frequencies of hashtags over 
time. We assume that the decahose has this property as 
well, with the significant benefit that it gives us more sta-
tistical power to estimate the true size of smaller events.

The dataset consists of 20 firestorms with the high-
est volume of tweets as identified in Lamba et al. (2015). 
Table 1 shows those events along with the number of 
tweets, number of users, and the date of the first day of 
the event. The set of tweets of each firestorm covers the 
first week of the event. We also augmented this dataset via 
including additional tweets, of the same group of users, 
during the same week of the event (7 days) and the week 
before (8 days), such that the volume of tweets is balanced 
between the 2 weeks (about 50% each). The fraction of 
firestorm-related tweets is between 2 and 8% of the tweets 
of each event (Table 1)—it is important to realize at this 
point that even for users engaging in online firestorms, 

Table 1  Firestorm events sorted by number of tweets

Firestorm hashtag/mention Tweets Users First day

#whyimvotingukip 39,969 32,382 2014-05-21
#muslimrage 15,721 11,952 2012-09-17
#CancelColbert 13,277 10,353 2014-03-28
#myNYPD 12,762 10,362 2014-04-23
@TheOnion 9959 8803 2013-02-25
@KLM 8716 8050 2014-06-29
#qantas 8649 5405 2011-10-29
@David_Cameron 7096 6447 2014-03-06
suey_park 6919 3854 2014-03-28
@celebboutique 6679 6189 2012-07-20
@GaelGarciaB 6646 6234 2014-06-29
#NotIntendedtobeaFactualStat. 6261 4389 2011-04-13
#AskJPM 4321 3418 2013-11-14
@SpaghettiOs 2890 2704 2013-12-07
#McDStories 2374 1993 2012-01-24
#AskBG 2221 1933 2013-10-17
#QantasLuxury 2098 1658 2011-11-22
#VogueArticles 1894 1819 2014-09-14
@fafsa 1828 1693 2014-06-25
@UKinUSA 142 140 2014-08-27
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this activity is a minor part of their overall activity on the 
platform.

Thus, for each of the 20 firestorms, we have three types of 
tweets: (1) tweets related to the firestorm, (2) tweets posted 
1 week before the firestorm and (3) tweets posted during the 
firestorm (same week) but not related to it. Let us denote 
these three sets of tweets T1 , T2 and T3 , respectively.

For each event, we also extracted tweets metadata includ-
ing timestamp, hashtags, mentions and retweet information 
(user and tweet ID).1

4  Linguistic features

Negative word-of-mouth sometimes contains strong emo-
tional expressions and even highly aggressive words against 
a person or a company. Hence, the start of a firestorm might 
be indicated by a sudden change of vocabulary and emo-
tions. Do people become emotionally thrilled and can we 
find changes in tweets? Can we capture a change of perspec-
tive in the text against a target? Emotionality is reflected in 
words, the first analysis is based on the smallest structural 
unit in language: words (Bybee and Hopper 2001).

4.1  Extraction of features

To extract linguistic features and sentiment scores we use the 
Linguistic Inquiry Word Count classification scheme, short 
LIWCTool (Pennebaker et al. 2015). In this way, first tex-
tual differences and similarities can be quantified by simple 
word frequency distribution (Baayen 1993). Furthermore, to 
understand emotions in tweets we use the sentiment analysis 
provided by the LIWCTool. Essentially, sentiment analysis 
is the automatic determination of the valence or polarity of 
a text part, i.e., the classification of whether a text part has 
a positive, negative or neutral valence. Basically, automatic 
methods of sentiment analysis work either lexicon based 
or on the basis of machine learning. Lexicon-based meth-
ods use extensive lexicons in which individual words are 
assigned positive or negative numerical values to determine 
the valence of a text section (usually at the sentence level) 
of a text part (mostly on sentence level) (Tausczik and Pen-
nebaker 2009).

LIWC contains a dictionary with about 90 output vari-
ables, so each tweet is matched with about 90 different cat-
egories. The classification scheme is based on psychologi-
cal and linguistic research. Particularly, we were interested 
in sentiments to see if users show ways of aggressiveness 

during firestorms compared to non-firestorm periods. Fur-
thermore, we would like to know which lexical items differ 
in different phases. We extracted 90 lexical features for each 
tweet of each of the 20 firestorms. We used variables that 
give standard linguistic dimensions (percentage of words 
in the text that are pronouns, articles, auxiliary verbs) and 
informal language markers (percentage of words that refer 
to the category assents, fillers, swear words, netspeak). To 
discover sentiments, we also used the variables affective 
processes, cognitive processes, perceptual processes. The 
categories provide a sentiment score of positivity and nega-
tivity to every single tweet. We also considered the category 
posemo and negemo to see if a tweet is considered positive 
or negative. We also constructed our own category ‘emo’ 
by calculating the difference between positive and negative 
sentiments in tweets. Thus, weights of this category can 
be negative and should describe the overall sentiment of 
a tweet.

These categories each contain several subcategories that 
can be subsumed under the category names. The category of 
personal pronouns, for example, contains several subcatego-
ries referring to personal pronouns in numerous forms. One 
of these subcategories ‘I,’ for example, includes—besides 
the pronoun ‘I’—‘me,’ ‘mine,’ ‘my,’ and special netspeak 
forms such as ‘idk’ (which means “I don’t know”).

Netspeak is a written and oral language, an internet chat, 
which has developed mainly from the technical circum-
stances: the keyboard and the screen. The combination of 
technology and language makes it possible to write the way 
you speak (Crystal 2002).

Finally, for each individual subcategory, we obtain the 
mean value of the respective LIWC values for the firestorm 
tweets and the non-firestorm tweets. Comparing these values 
gives first insights about lexical differences and similarities.

4.2  Comparing firestorm and non‑firestorm tweets

In order to explore how the linguistic and sentiment features 
of tweets change during firestorms, we perform compari-
sons between firestorm tweets and non-firestorm tweets with 
regard to the individual LIWC subcategories. The firestorm 
tweets ( T1 ) were compared with tweets from the same user 
accounts from the week immediately before the firestorm 
( T2 ) and the same week of the firestorm ( T3 ). We used t-tests 
to compare the mean value of the respective LIWC values 
for the firestorm tweets and the non-firestorm tweets, where 
the level of statistical significance of those tests is expressed 
using p-values (we used p < 0.01).

Figure 2a depicts the comparisons between firestorm 
tweets and non-firestorm tweets with regard to the individual 
subcategories. Every subcategory was examined separately 
for all 20 firestorms.

1 Comparing with (Lamba et  al. 2015), we have excluded ‘Ask-
Thicke’ firestorm, because it has a gap of 24  h between T

2
 and T

1
 ; 

hence, we added ‘suey_park’ firestorm instead.
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The blue (turquoise) cells represent the firestorms in 
which terms from the respective category occurred more 
frequently during the firestorms. The red (brick) cells rep-
resent the firestorms in which the same words occurred less 
frequently during the firestorms. The light gray cells repre-
sent the firestorms in which there is no significant difference 
between firestorm tweets and non-firestorm tweets.

The results of comparison are aggregated in the table in 
Fig. 2b, which shows, for each feature, the number of fire-
storms according to the three cases of comparison: lower, 
higher and same (no significant difference).

Results For category ‘I’ this means that in five firestorms 
people used words of this category significantly more often, 

while in 15 firestorms these words were used significantly 
less. Similar results are observed for category ‘she/he’ In 
addition to the category ‘I’, the categories ‘posemo’ and 
‘negemo’ should also be highlighted. Words representing 
positive emotions like ‘love,’ ‘nice,’ ‘sweet’—the ‘posemo’ 
category—are used significantly less in almost all firestorms: 
positive emotions were less present in 16 out of 20 fire-
storms. For the category ‘negemo,’ which contains words 
representing negative emotions, this effect is reversed for 
all tweets—words in this category are used significantly 
more often during most of the firestorms (14 out of 20). 
There are 18 firestorms in which the ‘emo’ values were sig-
nificantly lower during a firestorm. At the same time, there 

Fig. 2  Comparison between 
firestorm-related tweets (T1) 
and non-firestorm tweets (T2 
and T3) w.r.t various linguistic 
features using T-tests with p 
value < 0.01
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were only two firestorms where the differences in the values 
of ‘emo’ were not significant. Another remarkable category 
is ‘assent,’ which contains words like ‘agree,’ ‘OK,’ ‘yes.’ 
In this category, the effect is also reversed—words in this 
category are used significantly more often during almost all 
firestorms (17 out of 20). Interpretation. We can state that 
during firestorms, the I vanishes and users talk significantly 
less about themselves compared to non-firestorm periods. 
Simultaneously, the positivity in firestorms tweets vanishes 
and negativity rises.

5  Mention and retweet networks

Besides linguistic features and sentiments expressed in 
tweets, online firestorms have also impact on the struc-
ture of user’s social networks, such as mention and retweet 
networks.

To get insight on the evolution of each firestorm over 
time, we first split the time-line of each of the firestorm data-
sets into buckets of one hour and assign tweets to buckets 
based on their timestamp. The result of this splitting is a 
series of about 360 time slices (since the studied time-span 
of an event is 15 days). This allows us to perform analysis 
at fine granularity.

First, at each time slice, we extract several basic features 
of the corresponding hourly buckets of tweets, including:

• Number of tweets Nt

• Number of mention tweets Nmt

• Number of mentions Nm

• Ratio of mention tweets to all tweets Nmt∕Nt.
• Mention per tweet ratio: Nm∕Nt.

Moreover, at each time point we construct mention networks, 
and retweet networks taking into account all the tweets dur-
ing the last 12 h. This way, we obtain a moving window of 
tweets: with a window size of 12 slices at steps of 1 h. The 
mention network of each moving window contains an edge 
( user1 , user2 ) if a tweet (among tweets under consideration) 
posted by user1 contains a mention to user2 . The retweet 
network of each moving window contains an edge ( user1 , 
user2 ) if a tweet (among tweets under consideration) posted 
by user1 is a retweet of another (original) tweet posted by 
user2.

For each event, the mention networks constructed at dif-
ferent time points are directed, unweighted networks. We 
performed several types of social network analysis and 
extracted a set of metrics, including:

• Number of nodes N and edges E,
• Average out-degree (which equals avg. in-degree).
• Maximum out-degree and maximum in-degree.
• Relative size of the largest connected component.

Each of the aforementioned features leads to a time-series 
when taken over the entire time-span of the event. For exam-
ple, Fig. 3 depicts some of those time-series for the features 
of the mention and retweet networks of #myNYPD fire-
storm, showing how those features evolve over time. While 
network metrics are affected by sampled datasets, we still 
believe that these metrics are meaningful since the sampling 
process was consistent over all firestorms.

Results One can clearly observe the oscillating behavior 
of those features. This oscillation is due to the alternation 
of tweeting activity between daytime and night. More inter-
esting observation is the manifest change of behavior that 
occurs near the middle of the time span, which evidently 

Fig. 3  Evolution of network 
features over time (#myNYPD 
firestorm). Highlighted area 
indicates the start of the fire-
storm (first 24 h)
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signals the beginning of the firestorm event. This apparent 
change can be observed in most of the features for the event 
at hand. However, not all the features are useful to detect the 
trigger of the firestorm in all events. In particular, we find 
the maximum in-degree feature is one of the best features to 
detect this change. This feature can clearly detect the start 
of the firestorm (in all events). The maximum in-degree in 
mention networks means the highest number of mentions 
received by a particular user.

Interpretation Thus, the ability of this feature to detect a 
firestorm can be interpreted by considering that, generally 
speaking, a firestorm occurs when one user is being men-
tioned unusually high. This result is intuitive since Tweets 
related to a certain Firestorm normally mention the victim’s 
Twitter account.

Monitoring this feature in real-time would be certainly 
handy at detecting firestorms as early as possible, by signal-
ing abnormal changes (increase) in this feature. However, 
the change of focus to a particular user can be the result of 
different (including positive) events.

From a network perspective, an online firestorm occurs 
when one user is mentioned unusually high, focusing on a 
Twitter handle or a hashtag. The maximum in-degree in @
mention networks is significantly deviating from comparable 
time periods.

6  Predicting the start of a firestorm

In the previous section we identified slight changes in lexi-
cal and sentimental cues as indicators of a firestorm. From a 
network perspective, we identified the maximum in-degree 
to be a very good indicator for a firestorm to occur. Based 
on these findings we want to test and compare our extracted 
features for a classification task in order to build models for 
predicting the start of a firestorm.

6.1  Prediction models (predictor variables)

As mentioned earlier, we split the time-line of each firestorm 
into buckets of one hour and assign tweets to buckets based 
on their timestamp.

Thus, for each time slice, the corresponding bucket of 
tweets is described by several features. Mainly, we distin-
guish between different types of features; each type of them 
defines a prediction model:

• Baseline model includes the basic features, such as 
number of tweets Nt , number of mentions Nm , etc. (see 
Sect. 5).

• Mention-network model includes network features, such 
as, number of nodes and edges, density, reciprocity, aver-
age and max in-degree and out-degree, etc., extracted 
from mention networks.

• Retweet-network model includes the same set of network 
features extracted from retweet networks.

• Linguistic model extends the basic model by including 
linguistic features, i.e., the mean values of extracted 
LIWC features (over the hourly bucket of tweets). In 
particular, we are interested in the following features: 
pronouns: namely: ‘i,’ ‘we,’ ‘you,’ ‘shehe,’ and ‘they’; 
emotions: ‘posemo,’ ‘negemo’ and ‘emo’; and ‘netspeak’ 
and ‘assent.’

By doing so, we create separate time series for each of the 
features mentioned above.

6.2  Target variable

As shown in Fig. 4, the time span of the two sets of tweets 
T2 and T1 is 8 and 7 days, respectively, with an overlap of 1 
day between the two periods. We consider the first day of 
the firestorm as its start. Hence, we create a target variable 
whose value is 0 for the time points t occurring entirely 
before the firestorm (the first 7 days of T2 ) and 1 for the 
time points t occurring during the first day of the firestorm. 
The rest of the firestorm days are omitted. Hence, we obtain 
about 7 × 24 = 168 time points2 where target = 0 (negative 
instances), as well as 24 points where target = 1 (positive 
instances).

Fig. 4  Timeline of a firestorm tweets before firestorm (T2)
firestorm tweets (T1) firestorm

start 

observation period

target = 0 target = 1

2 This number slightly varies from one firestorm to another.
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Our objective is thus to predict the value of this target 
variable using the aforementioned sets of predictors. Hence, 
the prediction turns into a binary classification task, where 
we want to classify whether a time point t belongs to the 
period of firestorm start (target = 1) or not (belongs to the 
period before the firestorm: target = 0), using different types 
of features of the tweets. This classification task needs to be 
performed for each firestorm separately and independently 
from other firestorms.

6.3  Comparing features between before and the 
start of the firestorm

Before we dive deeper into the details of the classification 
task, it is interesting at this point to look at how different 
predictor features correlate with our target variable (which 
indicates the firestorm start). This would help us get insight 
on the ability of those features to predict that target vari-
able. For this purpose, we calculate the Pearson correlation 
of each feature with the target variable (its numeric value 0 
or 1). Table 2 shows the correlation values for the case of 
#myNYPD firestorm.

We can observe that basic features—in particular, number 
of tweets Nt , number of mention tweets Nmt and number of 
mentions Nm—have a relatively strong positive correlation 
with the target variable.

This effect of strong positive correlation can be also 
observed for most of network features, such as number of 
nodes N and edges E, relative size of largest (weakly) con-
nected component lwcc, avg. and max. in-degree. In contrast, 
density has a strong negative correlation, which means that 
this feature is lower at the start of the firestorm compared 
to before the firestorm. On the other hand, reciprocity has 
rather a weak correlation with the target variable; this corre-
lation is positive for mention networks (+0.34) and negative 
for retweet networks (-0.38). Finally, max dout , the maximum 
out-degree, has no correlation at all.

Regarding linguistic features, most of those features have 
weak correlation (positive or negative), or no correlation 
with the target variable. The highest correlations are for ‘net-
speak’ (0.56) and ‘they’ (0.35).

6.4  Design of the classification task

6.4.1  Split into training and test sets

As in any supervised machine learning task, data instances 
need to be split into training and test subsets: the first is 
used to train the classifier while the other is used to test it, 
i.e., to evaluate its performance. Typically, such splitting 
of the dataset is performed in a random fashion, with, for 
example, 75% of instances for training and the remaining 
25% for testing. Moreover, in order to make a more reliable 
evaluation, a cross validation approach is typically used, 
such as the k-folds method. In k-folds cross-validation, the 
dataset is split into k consecutive folds, and each fold is 
then used once as a validation while the k − 1 remaining 
folds form the training set. This method generally results 
in a less biased model compared to other methods, because 
it ensures that every observation from the original dataset 
has the chance of appearing in the training and test set.

However, in our firestorm dataset(s), positive and nega-
tive classes are highly unbalanced, with a 1:7 ratio, i.e., 
for each positive instance there are 7 negative instances. 
To tackle this unbalanced issue, we use stratified k-folds, 
which is a variation in k-folds cross-validation that returns 
stratified folds, that is, the folds are made by preserving 
the percentage of samples for each class.

In this study, we opt to use k = 4 , and the dataset is 
split hence into 4 stratified folds. Thus, when the data-
set contains 24 positive samples, and 168 negative ones, 
then each fold will contain 24∕4 = 6 positive samples, and 
about 168∕4 = 42 negative ones. The training is also per-
formed 4 times, each time one of the folds is used as a test 
set while the remaining 3 folds are used as a training set. 

Table 2  Pearson correlation of 
basic features, network features 
and linguistic features with the 
target variable (#myNYPD 
firestorm)

Basic features Network features Linguistic features

Mention Retweet

N
t

0.70 N 0.76 0.83 i −0.16
N
mn

0.71 E 0.80 0.86 we 0.12
N
m

0.67 density −0.61 −0.68 you −0.15
N
mt
∕N

t
0.40 recip. 0.34 −0.38 she/he −0.06

N
m
∕N

t
0.21 lwcc 0.82 0.85 they 0.35

avg d
in

0.82 0.87 posemo 0.01
max d

in
0.96 0.96 negemo 0.27

max d
out

−0.00 0.11 emo −0.23
netspeak 0.56
assent 0.19
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This means that, each time, the 24 positive instances will 
be distributed such that 6 instances will be in the test set 
and 18 instances in the training set. This approach avoids 
the undesired situations where the training is performed 
with very few or with too many positive instances. The 
overall evaluation score is calculated as the average over 
the 4 training times.

6.4.2  Feature scaling

In our case, different features have their values on very dif-
ferent scales. For instance, regarding network features, the 
number of nodes N and edges E are usually > 103 , while 
density is < 10−3 and reciprocity is < 10−2 . Thus, in order 
to improve the prediction accuracy, we need to avoid some 
low-scale features being overwhelmed by other high-scale 
ones; therefore, we use feature scaling in order to put the 
features roughly on the same scale.

We use the standard scaling approach, where each fea-
ture is standardized by centering and scaling to unit vari-
ance. The standard score of a sample x is calculated as: 
z = (x − �(x))∕�(x) where � is the mean of the samples, and 
� is the standard deviation of the samples.

Centering and scaling happen independently on each fea-
ture by computing the relevant statistics on the samples in 
the training set. Mean and standard deviation are then stored 
to be used on later data using transform. Standardization of a 
dataset is a common requirement for many machine learning 
algorithms, as they might behave badly if the individual fea-
tures do not roughly look like standard normally distributed 
data (e.g., Gaussian with 0 mean and unit variance).

6.4.3  Algorithm

As a classification algorithm, we used the logistic regres-
sion algorithm. Logistic regression is a well-known and 
widely used classification algorithm which extends linear 
regression. Instead of fitting a straight line or hyperplane, 
the logistic regression model uses the logistic function to 
squeeze the output of a linear equation between 0 and 1. 
The logistic function is defined as: �(x) = 1∕(1 + exp(−x))

6.4.4  Evaluation

As an evaluation measure, we used Accuracy, which is 
simply the fraction of correctly classified instances (to all 
instances). For each firestorm, the prediction accuracy is 
calculated as the average of the accuracy over the 4 folds.

6.5  Results

We applied the logistic regression algorithm to each fire-
storm using different prediction models: basic model, 

mention network model and linguistic model. Table 3 shows 
the overall accuracy for each firestorm, with respect to each 
prediction model. We can see that the prediction accuracy is 
pretty high in general where the accuracy is within the range 
of 87% to 100%.

For the basic model, the accuracy ranges between 87% (for 
‘ukinusa’) and 100% (for ‘david_cameron’), with an average 
of 94%. For the linguistic model, the accuracy ranges between 
about 87% (e.g., ‘ukinusa’) and 99.5% (@David_Cameron), 
with an average of 95%.

Finally, the two network models, mention and retweet, show 
very similar results in general. The accuracy ranges between 
about 90% (klm) and 100% (myNYPD), with an average of 
97%. Overall we can see that all the prediction models are able 
to predict the start of the firestorm with very high accuracy.

Interpretation Network models are slightly more accu-
rate than the linguistic model, which is in turn slightly more 
accurate than the basic model. It is logical that in times of 
firestorms there are a lot of mentions, hashtags and retweets, 
i.e., explicit network properties. Even more important and 
interesting is the result that we can measure early changes 
already in the language and that these properties are much 
more important for the early detection of changes. The fact 
that we make a comparison here should illustrate how well 
our model works alongside other more explicit models.

Table 3  Accuracy of prediction models

Basic Linguistic Mention Retweet

askbg 0.926 0.916 0.958 0.953
askjpm 0.953 0.953 0.995 0.995
cancelcolbert 0.948 0.953 0.990 0.984
celebboutique 0.915 0.945 0.937 0.963
david_cameron 1.000 0.995 0.995 0.995
fafsa 0.932 0.943 0.989 0.989
gaelgarciab 0.906 0.885 0.956 0.956
klm 0.891 0.902 0.907 0.907
mcdstories 0.943 0.938 0.923 0.961
muslimrage 0.956 0.990 0.980 0.969
mynypd 0.958 0.984 1.000 0.995
notintendedto. 0.990 0.984 0.989 0.989
qantas 0.922 0.922 0.939 0.956
qantasluxury 0.932 0.943 0.972 0.972
spaghettios 0.944 0.964 0.989 0.989
suey_park 0.943 0.948 0.990 0.995
theonion 0.974 0.974 0.989 0.989
ukinusa 0.870 0.875 0.995 0.995
voguearticles 0.951 0.967 0.971 0.977
whyimvotingukip 0.943 0.969 0.956 0.950
avg. 0.940 0.948 0.971 0.974
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7  Conclusion

Our goal was to predict the outbreak of a firestorm using 
linguistic and network-based features. Therefore, we exam-
ined the vocabulary of tweets from a diverse set of firestorms 
and compared it to non-firestorm tweets posted by the same 
users. Additionally, we measured features describing the 
mention and retweet networks also comparing firestorm 
with non-firestorm tweets. We used the features in a logistic 
regression model to predict the outbreak of firestorms. The 
identified linguistic and sentimental changes were good indi-
cators for the outbreak of a firestorm.

Observing linguistic features, we found that during fire-
storms users talk significantly less about themselves com-
pared to non-firestorm periods which manifested in sig-
nificantly fewer occurrences of self-referencing pronouns 
like ‘I,’ ‘me’ and the like. Simultaneously, the positivity in 
firestorm tweets vanishes and negativity rises. Especially 
the change in the use of personal pronouns served as a 
good indicator for the outbreak of online firestorms. This 
change of subject to a different object of discussion could be 
observed in an increased mentioning of a user or a hashtag 
who/that was the target of a firestorm, hence the perspec-
tive changes. Users start pointing at others. This expressed 
itself in a maximum in-degree in mention networks that 
significantly deviated from comparable time periods giving 
evidence for the pragmatic action from a network perspec-
tive. However, we are aware of the fact that we have only 
measured cases in which the in-degree change happens in 
the context of something negative.

Our models were able to predict the outbreak of a fire-
storm accurately. We were able to classify the outbreak of a 
firestorm with high accuracy (above 87% ) in all scenarios. It 
showed, however, that classification models using features 
derived from the mention and retweet networks performed 
slightly better than models based on linguistic features.

Overall, verbal interaction is a social process and linguis-
tic phenomena are analyzable both within the context of lan-
guage itself and in the broader context of social behavior 
(Gumperz 1968). From a linguistic perspective, the results 
give an idea of how people interact with one another. For 
this purpose, it was important to understand both the net-
work and the speech acts. Changes in the linguistic and 
sentimental characteristics of the tweets thus proved to 
be early indicators of change in the parts of social media 
networks studied. Besides the fact that users changed their 
perspective, we could also observe that positivity in words 
vanished and negativity increased.

Future work could consider clustering firestorms accord-
ing to their dynamics, i.e., can firestorms be differentiated 
in the way users ally against a target? This is of interest 
insofar as we know that negative PR can also mean profit for 

a company and that this is seen as less bad. Another path-
way worth following would be to leverage contextualized 
word embeddings (Peters et al. 2018) to identify especially 
harmful words that demand early attention. Generally, the 
question of what motivates people to ally against a target is 
of great scientific and social interest.

Our results give insights about how negative word-of-
mouth dynamics on social media evolve and how people 
speak when forming an outrage collectively. Our work con-
tributed to the task of predicting outbreaks of firestorms. 
Knowing where a firestorm is likely to occur can help, for 
example, platform moderators to know where an interven-
tion in a calming manner will be required. Ultimately, this 
can save individuals from being harassed and insulted in 
online social networks.
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