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Scaling dficient code-based cryptosystems for
embedded platforms
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Abstract—We describe a family of highly dficient codes for and justifies the investigation on how advantageous they can
cryptographic purposes and dedicated algorithms for theirma- pe.
nipulation. Our proposal is especially tailored for highly con- particylarly interesting scenarios where such post-quant
strained platforms, and surpasses certain conventional ahpost- L . .
quantum proposals (like RSA and NTRU, respectively) accorihg schemes may h_ave a positive Impact are ereless_ Sensor
to most if not all efficiency metrics. networks [2], [35] and the so-called “Internet of Things,”
in which a wide range of devices are interconnected, from
the most powerful clustered servers to embedded systems
with extremely limited processing resources, storagedban
width occupation and power consumption, including micro-

|. INTRODUCTION controllers [25], [[43] and dedicated hardwalrel[27].

One of the leading families of post-quantum cryptographic
g UANTUM computers, should they become a technologj g postq ypograp
ba

Index Terms—Algorithms, Cryptography, Decoding, Error cor-
rection

. . . Kchemes is that of code-based cryptosystems [28], [34]. In
cal reality, W'". pose a th_reat to pubhlc-key Cryptosystemg, nirast with the form in which these systems were origynall
d on certain intractability assumptions, like thegate roposed, where key sizes were typically large, modern ap-
factorization problem, or “:P (ike RSA), and the disc_retgroaches,do foer far more spacefgcient paramet’ers, being
Ioganth_m_problem, or_DLP (ke Dﬁe-HeIIman or _DSA’_ In fairly practical on general-purpose platforms. On can thus
their elliptic curve version or otherwise). To face thisrsaso, ask whether such schemes are suitable for highly constraine
several cryptosystems have been proposed that appare fgfforms as well.
resist attacks mounted with the help of quantum comp t'Low-density parity-check (LDPC) codes and their quasi-
ers. The security of these so-called post-quantum cryptosxyclic variants (QC-LDPC) have been proposed for crypto-
tems [8] stems from quite distinct computational intradigb raphic applications[[3],7741, (151, (161, [[7], [[24], [[21], ({2

_assumptions. Such schemes are not _necessarily new — Rﬁough in a form still unsuitable for constrained plat-
mstance_, cryptos_)_/stems based on coding thgory (spetyfic orms. Recently, quasi-cyclic moderate-density parhgak
on the intractability of the syndrome decoding problem, %%C-MDPC) codes have been designed to provide strong
SDP) are.known for nea_rly as long as the very concept curity assurances for McEliece-style cryptosystemg. [30
asymmetric _cryptography_ltself, though they have only néige Such codes are arguably ideal for modern general-purpose
been attractlng renewed |ntere§t. _ ) _platforms, matching or surpassing the processiffigiency
However, being quantum-resistant is not the only intenesti ¢ ¢, nyentional cryptosystems. However, no assessment of
feature of many post-quantum proposz_alls_ — Some of thef, suitability for constrained platform has been made,
are equally remarkable because of their improvéitiency ,nq indeed the traditional bit-flipping and belief-proptéga
and S|mpI|_C|ty for certain types of applications relatiyel decoding methods, even though they are quite processing-
to conventional schemes. Thus, schemes based on the SBRient “appear at first glance unsuitable for an Internet-of-

entirely avoid the multiprecision integer arithmetic typily Things scenario due to their considerable storage reqein&sn
needed by IFP or DLP cryptosystems, and their computational

cost is usually a few orders of complexity smaller than those
systems, reaching(n) instead of O(n?) or O(n®) which A. Our Results
are commonplace in pre-quantum schemes. This indicate©ur contributions in this paper are twofold:

that post-quantum alternatives may have advantages even ip On the one hand, a family of linear error-correcting codes
situations where quantum attacks are not the main concern, (so-called CS-MDPC codes) that are highBigent for
cryptographic applications in terms of reduced per-key
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practical security levels. A careful selection of desigatfees C. LDPC codes

for the key generation, encoding, and decoding algorittead | | ppc codes were invented by Robert Gallager [20] and are
to very short processmg.nm.es, and executable code Siz€jifkar codes obtained from sparse bipartite graphs. Seppos
software or area occupauon in hardware (and thus pot8ntighat « is a graph withn left nodes (called message nodes)
also energy consumption) tend to be considerably smakter thyq right nodes (called check nodes). The graph gives rise
what can be attained with RSA or elliptic curve cryptosystemyy 5 Jinear code of block length and dimension at least—r
Our proposed variant of the bit flipping decoding techniqug the following way: Then coordinates of the codewords are
needs onlyO(1) ancillary storage, in comparison with(n)  associated with the message nodes. The codewords are those
(wher_en in the code length) as in previous variants of thgfeciors €1....,Cn) such that for all check nodes the sum of
technique. the neighboring positions among the message nodes is zero.
o The graph representation is analogous to a matrix represen-
B. Organization of the Paper tation by looking at the adjacency matrix of the graph:Het
The remainder of this document is organized as followpe a binaryr x n-matrix in which the entryi(j) is 1 if and
We provide theoretical preliminaries in Sectioh II, indlugl only if the i-th check node is connected to thieh message
LDPC and MDPC codes, the hard decision decoding methafbde in the graph. Then the LDPC code defined by the graph
and code-based cryptosystems. We describe the new fand\he set of vectors = (C,...,Cn) such thatH - ¢™ = 0.
of codes and assess its security properties in SeCfibnnill. the matrix H is called aparity check matrixfor the code.
SectiorL IV we outline our proposed techniques to deploy €odgonversely, any binary x n matrix gives rise to a bipartite
based cryptosystems on embedded platforms, in particolargtaph betweem message and check nodes, and the code
efficient bit-flipping decoder that takes oni9(1) ancillary defined as the null space bf is precisely the code associated
storage instead of the usué&l(n) requirements. We illus- to this graph. Therefore, any linear code has a representati
trate some suggested parameters for typical securitysevgk a code associated to a bipartite graph (note that thif ggap
in Section[ and assess the overall results of our proposaht uniquely defined by the code). However, not every binary
experimentally in Section V1. We conclude in SectlonlVIl. Jinear code has a representation bgmarsebipartite graph.
If it does, then the code is called a low-density parity-¢hec
Il. PRELIMINARIES (LDPC) code.
A. General notation An important subclass of LDPC codes that feature encoding
Matrix and vector indices will be numbered from 0 throughadvantages over other codes of the same class is that of quasi
out this paper, unless otherwise stated. pdie a prime and cyclic low-density parity-check (QC-LDPC) codes [13], [40
let g = p™ for somem > 0. The finite field ofq elements is In general, an 1}, K-QC-LDPC code satisfies = nob and
written Fq. Given h € F,, we denote by cif{) the circulant k = kob (thus alsor = rob) for someb, no, ko (andro), and

matrix admits a parity-check matrix consisting of x ro blocks of
ho hy ... hy b x b sparse circulant submatrices. Of particular importance
cir(h) = hei ho oo hro is the case wherb = r (and hencag = 1 andky = ng — 1),
: . S since a systematic parity-check matrix for this code isrelti
he he ... ho defined by the first row of eachx r block. We say that the

parity-check matrix is ircirculant form
B. Error Correcting Codes

A (binary) linear p, K] error-correcting cod& is a subspace D. QC-MDPC codes

of F} of dimensionk. Such a code is specified by either a A cryptographically interesting subclass of the QC-LDPC

H kx _ k
generator matrllx Ge F such that¢’ = {uG € F; | u € F), family is that of quasi-cyclicmoderate-density parity-check
or else by aparity-check matrix He F;" such that¢” = {v e (QC-MDPC) codes[30]

F) | vH" = 0"} wherer = n—k.

We will be particularly interested imquasi-cyclic codes,
namely, codes that admit a parity-check matrix consistihg
Ny horizontally joined circulant square blocks of sizexr.
Thus:

QC-MDPC codes in this sense are an entirely distinct class
from a family of algebraic codes also known as ‘MDPC’ and
8esigned by Ouzan and Be’elly [36], despite the name clash.
The goal set forth in the latter approach is to obtain high-
. . . rate codes of short to moderate length whose duals contain

H = [cir(ho) | cir(hy) | --- | Cir(Pn,-1)]. known intermediate-weight words (and thus admit parity-
whereh; € F,, 0 < i < no. The representation advantages oftheck matrices of moderate density, hence the ‘MDPC’ name),
such codes are obvious, sineecan be compactly stored asbut still have a good error correction capability in compari
no sequences of bits each. with algebraic codes like BCH with similar length and rate.

The syndrome decoding proble(BDP) consists of comput- Examples from[[36] indicate that typical densities are ia th
ing an error patterre € ) given a parity-check matrixi € range 17% to 28% of the code length. Thus they are indeed
;" for the underlying code, and a syndromie eH' € F,. In  intermediate between usual LDPC codes and general ones,
general the SDP is NP-hard, but sometimes the knowledgebot the density is too high for conventional LDPC decoding
certain structural code properties makes this problemabidv techniques, to the fiect that those codes are not classical
in polynomial time. Gallager codes in the sense that the density of their dual
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codes puts them beyond the capability of decoding techsique The bit-flipping algorithm is not the most powerful decod-
like plain belief propagation and bit flipping, and espdgial ing method for LDPC codes; indeed, the belief propagation
tailored decoders must thus be adopted. technique [[20], [[22] is known to exceed its error correc-
By contrast, QC-MDPC codes in the sense of Misoaki tion capability. However, belief-propagation decoderlne
al. are oriented toward cryptographic purposes, with derssitieomputing ever more refinegrobabilities that each bit of
close enough to LDPC codes as to enable decoding by Géile received wora contains an error, thus incurring floating
lager’s simpler (and arguably mor#ieient) belief propagation point arithmetic or suitable high-precision approximasand
and bit flipping methods, yet dense enough to prevent attacksnputationally expensive algorithms. In a scenario wiieee
based on the presence of too sparse words in the dual code fikenber of errors is fixed and known in advance, as is the case
the Stern attack [39] and variants, without loosing too mudf cryptographic applications, parameters can be desigoned
of the error correcting capability so as to keep informatset that the more powerful but also more complex and expensive
decoding attacks [9]/ [10] infeasible as well. Furthermace belief propagation methods are not necessary for decoding.
prevent structural attacks as proposed by Faugér. [18] We therefore focus on the problem of designing an opti-
and by Leander and Gauthiér [42], cryptographically-aeen mized variant of bit-flipping decoding for highly constrath
codes must remain as unstructured as possible except glatforms. Specifically, such methods still flar from the
the hidden trapdoor that enables private decoding and,en tfrawback of requiring a large amount of ancillary memory for
case of quasi-cyclic codes, external symmetries that ditow counters: if each column dfi has Hamming weightl,, step
efficient implementation. Finally, the very circulant symnyetrid requires [(Ig d,] + 1) bits to store the number of unsatisfied
might introduce weaknesses as pointed out by Sendriér [3g8#rity-checks for each of the bits of ¢, hencen(llgd,] + 1)
but these induce only a polynomial (specifically, linearnga  bits overall. Besides, step$ 2 did 3 involve a loop of lemgth
attack dficiency, and a small adjustment in parameters copeach, introducing processing ffieiency. We will show how
with it entirely. Typical densities in this case are in rafigé% to avoid these drawbacks in Section TV-C.
to 0.9% of the code length, one order of magnitude above
LDPC codes but well below the published MDPC range above, pmcEliece and Niederreiter encryption

and certainly within the realm of Gallager codes. Constouct Jhe McEliece encryption scheme was proposed by R.

IS algo as rar_1dom as possible, merely keeping the des"\ﬁcEliece [28] in 1978. In that scheme, the public key is a
density and circulant geometry, and code lengths are much

larger than typical MDPC values. generato_r matrix for a certgin code whose dgcoder is_ taken to
be the private key. An equivalent scheme using a paritydchec

matrix as public key was proposed by H. Niederreiter in 1986

E. Gallager's Hard Decision (Bit Flipping) Decoding Method[34]. We briefly review these schemes, which consist of three

We briefly recapitulate Gallager's hard decision decod@gorithms KeyGen, Encrypt, Decrypt) each.
ing algorithm, closely following the very concise and clear 1) McEliece:
description by H&man and Pless_[22]. This will provide « KeyGen: Select a binary-error correcting f, k]-code ¢
the basis for the féicient variant we propose for embedded  Wwith a decoding trapdoa® and ak x n generator matrix
platforms. G in systematic form. The public key i$5(t), and the
Assume that the codeword is encoded with a binary LDPC private key is the decoding trapdogt.
code® for transmission, and the vectoris received. In the  « Encrypt: To encrypt a plaintexin € F into a cryptogram
computation of the syndrome = cH', each received bit of ¢ € Fj, select a uniformly random error patteenc F}
c affects at mostl, components of that syndrome. If only ~ and weightt, and comput& < m-G +e.
the j-th bit of ¢ contains an error, then the correspondihg  + Decrypt: To decryptc € F3, apply the decoding trapdoor
componentss of s will equal 1, indicating the parity check 2 to correct the errors inc (thus finding the error pattern
equations that are not satisfied. Even if there are some other € € Fj of weightt), then extracm € Fs from the firstk

bits in error among those that contribute to computatios of columns ofc—-e.
one expects that several of tdg components of will equal 2) Niederreiter:
1. This is the basis of Ga”agermrd decision deCOdin@r . KeyGen: Select a binary_error Correcting rﬁ, k]_codng
bit-flipping, algorithm. with a decoding trapdoo and anr x n parity-check
1) ComputecH™ and determine the unsatisfied parity checks matrix H in systematic form, where = n—k. The public
(namely, the parity checks where the componentshf key is H,t), and the private key is the decoding trapdoor
equal 1). 9.
2) For each of the bits, compute the number of unsatisfied « Encrypt: To encrypt a plaintexim € Z/(?)Z into a
parity checks involving that bit. cryptogramc € F,, encodem into a vectore € F) of
3) Flip the bits ofc that are involved in the largest number  weight t via some conventional permutation unranking
of unsatisfied parity checks. method, and compute<« e- H".

4) Repeat steps] L] 2, ahdl 3 until eitteH™ = 0, in which « Decrypt: To decryptc € F, apply the decoding trapdoor
casec has been successfully decoded, or until a certain 2 to the syndromec (thus finding the corresponding
bound in the number of iterations is reached, in which  vectore € F) of weightt), then decoden € Z/(?)Z from
case decoding of the received vector has failed. e via permutation ranking.



Although the security of these two schemes is equivaletihe size of a generic circulant matrix of ordE[iL=1 pi over
Niederreiter is the morefigcient [11], being therefore the %.
method of choice for constrained platforms. Extending the analogy, we define the family @fclosym-
metric codes

1. AN ErFICIENT FAMILY OF MDPC copEs Definition 2. A cyclosymmetric (CS) codever Fq is a

The QC-MDPC codes [30] are arguably among the mospde which admits a block parity-check matrix whose blocks
efficient settings for code-based cryptosystems. However, Qg&ITespond to elements of a (multiplayerd) cyclosymmetric

MDPC parameters for practical security levels, specificall'"9:

those corresponding to a cost between a legacy-l€¥ed@d  |n other words, a cyclosymmetrian - r]-code admits an
a top-level 2°° steps to mount the best possible attacks, yieldn parity-check matri with r = rop, n = nop, consisting of
key and ciphertext space overheads well above the corrdspop x n,, cyclosymmetric blocks of sizpx p over some smaller
ing values achievable with the RSA cryptosystem, which igng. The natural advantage of these codes is the compact
perhaps the most widely deployed asymmetric cryptograpfgpresentation of such parity-check matrices. A partityla
scheme today, and constitutes for that reason a practip@rupefficient case occurs whery = 1, that is,H is a simple
bound for the corresponding parameters in other cryptddcapsequence ofiy cyclosymmetric blocks of sizexr: if H is in
schemes. Therefore one cannot claim that those codes §f&tematic formy = pr---py, andZ = Ap (... Ap (Fg) ...),
generically suitable for constrained platforms. thenH occupies only ifp — 1) l—liLzl(LDi/ZJ +1)lgq bits.
It turns out we can do better than that with a proper Subsetm Cryptographic app"cationsy the natural choice is tOFHdO
of QC-MDPC codes. To define it, we now introduce a clas&nary codes, i.eq = 2, and in particular MDPC codes, due
of matrices that admit a spacéieient representation: to the simplicity of the decoding algorithm and the greatly
the set ofeduced parameters that these codes allow for every desired
security level. A cyclosymmetric MDPC code is, therefore, a
CS-MDPC code. Moreover, in the same cryptographic context
we not only propose the use CS-MDPC codes, but also to
restricterror patternsto the same form as the concatenation
Cyclosymmetric matrices constitute a subring of the ringf first rows of cyclosymmetric matrices, so that these pat-
PP of px p matrices overZ, which can be seen by theterns stand themselves for sequences of cyclosymmetdc rin
fact that the identity matrix is cyclosymmetric and that thelements, as long as this does nfieat the security level.
product of symmetric matrices is itself symmetrftthe fac- A disadvantage of a too large number of layers is that, on
tors commute, and indeed circulant matrices are commetatigverage, each ‘1’-bit among ﬂﬂil':l(Lpi/ZJ +1) independent
(AB)" = B'A" = BA = AB (all other properties are trivial). We bits of each block oH represents about-21'-bits in the full
call this thecyclosymmetric ringof order p over %. r xr block, rapidly increasing the parity-check matrix density
A cyclosymmetric ring can be itself defined over anand therefore limiting the error correction capability df-b
other cyclosymmetric ring and so on recursively, yieldingipping and related decoders. However, small values @fne
a multilayered cyclosymmetric ring ultimately defined overor two, in some cases possibly even three) yield potentially
a non-cyclosymmetric ring. This ring tower is written asnteresting parameters for cryptographic applications.
Ap, (... Ap (Zo) for successively embedded rings of orders
P15 PL- Let lyr(%) den_ote_ the numb_er of layers of a, Security considerations
multilayered cyclosymmetric ringZ. We define the number of
layers of a non-cyclosymmetric ring, (e.g. a finite field) to  An immediate observation on the structure of cyclosymmet-
be lyr(Zo) = 0, and then recursively lyA,(%)) = lyr(#’)+1. "c codes_ is tha}t one can optimize the Stern attack [9], [17],
Thus, Iyrp, (. .. Ap, (%0)) = L. [39] and its variants by takmg advantage of_ the.form of each
The interest in a cyclosymmetric ring resides in the faé@Ww of the parity-check matrix when performing linear algeb
that elements of\,(#) can be represented as a sequence gperations. Indeed, S_tern tnes_to retrieve a row of low igns
| p/2]+1 elements fronvz, asymptotically occupying only half from the dual coo!e; since the first row C(.)n13|sts of one element
the space required by a merely circulant matrix of ofdewer foIIO\_/ved by a pallndrome,_and.th(_e remaining rows are rotated
Z. To see this, just note that a circulamk p matrix has the Versions thereof, one can in pnnqple reduce in hal_f thealle
form Cij = ¢(j_iy moap Wherec is the first row of that matrix, _effort incurred by row manlpulatlon_s. quevgr, this apparent
while a symmetric matrix satisfieS;; = Cj, thus combining improvement may turn out to be_ iffective: linear algel_ara
both conditions yields;j i modp = Ci_j) modp» Which fori = 0 operations q_wckly dest_roy thg palindrome structure witthie
(since the first row alone defines the entire matrix) simpifee FoWs, thwarting the optimization. _
Cj = C_jmodp, O Cj = Cp_ for j > 0. Therefore, the sequence Leon’s attack([26] and related ones do not seem to benefit

Ci....,Cp1 is @ palindrome (andy is an arbitrary bit), and at all either, because they already ignore part of each row
only Co,. .., Cpj2j+1 are independent. involved in linear algebra operations. Interestingly, ater
The space ficiency becomes more noticeable for rings witfPrce attack would be faster than Leon’s against cyclosym-
several layers: an element af, (... Ay, (%) is represented as Metric codes because it would need to test c((ﬂﬁ) rather
1‘[};1(Lpi/2j +1) elements of#’, roughly a fraction 12- of than (v’;) elements, yet for any practical choice of parameters

Definition 1. Given a ringZ# and an integer p,
cyclosymmetrianatrices of order p ove# is the set oA,(%)
of square px p matrices overZ that are both circulant and
symmetric.
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that number remains far above the cost of Stern’s or similBr Space-§cient convolutional inverse
attacks. For example, parameters for which the cost of the be The extended Euclidean algorithm yields a tinfeegent
known.varlants of Ster_n is about®with block sizep = 4800 ethod to compute the inverse of a circulant maittix cir(h).
andpp/)2r|vatel<7:7ode density = 45, the cost of brute force would The technique consists of mapping the arhagwith compo-
be (\_N/Z ~ 27 _ _ _ _ nentshj, 0 < j < r) to a polynomialh(x) = Yo hjx €
Similar observation apply to information-set decoding aﬁgz[x] computing the modular inversk(x)"* (modx — 1)
tacks [9], [10]: at most, one would expect an improvement by, 4 mappingh(x)~ back to an array denotea® such that
a factor of 2 in the attack cost fot-level CS-MDPC codes -1 _ cir(h™b).

(recall that, in practicel. < 2). An apparently less widely known property of the extended

There seems to be no _essential restriction to the Valu?éﬁclidean algorithm is that it admits a spadBeient imple-
p, although a prudent choice would seem to be to take prifigsntation as well. In its most usual form, when computing
p to avoid the possibility of aFtackmg smallgr subcodes. NQ-1 modm the algorithm keeps track of four polynomials
structural attacks alpng the lines of Faugerteal_. [18] or ¢ g.b,c € F5[X] (plus two additional polynomials, v € F[x]
Leander and Gauthiei [42] seems to apply, since the Gz are usually only implicit) related by the constraiffits-
MDPC trapdoor_ls of a statistical rather than alge_bralc_lrmtu bh+umandg = ch+vm This suggests a naive implementation
Apart from this, CS-MDPC codes appear to inherit moghiring up to 4 bits of storage for those four polynomials.

if not all of the se_curity pro.pertieslof the superclass of Qq:|owever, polynomialsf and ¢ can actually coexist on the
MDPC codes, as indicated in Section JI-D. One consequenchine storage area, and similarly for polynomglandb, as

of all these considerations is that, to the best of our kndgae long asr + 2 bits are available for each of these pairs (totaling

the best attacks against CS-MDPC codes are precisely the B2S 4 hits) hecause, at any step of the algorithm execution, it
attacks againsgenericQC-MDPC codes. holds that degf) + deg) < r and degg) + degb) < r. One

IV. SCALING THE IMPLEMENTATION TO EMBEDDED PLATFORMS can easily prove this by Floyd-Hoare logic.

A. General operation

We use a representation of sparse matrices with a plain arith A SPacezicient decoder

metic: both matrix-matrix and matrix-vector products esale ~ The technique of bit-flipping decoding has received a sub-
into (vector-vector) cyclic convolution, for whichfficient stantial amount of attention in the literature since Galla
algorithms like Karatsuba [23] and FFT are known. Howevedjscovery of LDPC codes [12][ [16][ [20]|_[21]._[29]. [B2],
simple ‘textbook’ multiplication algorithms, slightly nagfied [33], [44], [45], [4€], [47], [48]. However, these are magstl
S0 as to operate on circulant matrices represented by trstir fconcerned with improving the error correction capabilégher
row alone, are not only more compact, but at least as fast (¢hdn reducing computational resource requirements. Even
often faster) than more advanced counterparts because oftéichniques designed for VLSI like the soft bit-flipping (SBF
sparsity of the arguments. Indeed, the operations thaalitu technique([14],[[15], which might be potential candidates f
occur in the Niederreiter cryptosystem always involve aste implementation on the small processors typical of an Irgern
one sparse operand: of Things scenario, turn out to take far more ancillary sjera

. inversion of a secret, sparse circulant matiwielding a (namely, still O(n) for a code of lengtm) than is typically
public, dense matriX: this is achieved with a carefully available on those processors.
tuned extended Euclidean algorithm (see Sedfion]IV-B). It turns out that one can entirely avoid the need for the large

. Computation of the public syndrome of a sparse errtorage requirements of a bit-flipping decoder. For crypto-
vector. This syndrome is the product of the public, deng#Faphic applications, where the number of introduced srr
parity-check matrix by the sparse vectax fixed and known beforehand, the error correction capabgity

. Computation of the private, decodable syndrasne He'  notthe central concern, as long as the desired securitydave
corresponding to a given public syndromie= Ke'. This be attained while fitting the available resources. The waria
is the productHn,_1C" of the sparse secret matrbt,,; We propose targets precisely this need. We now describe that
by the given dense syndroneg, sinceK = HEO{lH and Vvariant, together with a rationale for each decision. ThHe fu
henceHp,_1C" = Hp,_1Ke" = He = §. method is summarized as Algoritim 1.

. Additionally, our strategy recovers the decodable syn-. On-the-fly counter updat&he usual bit-flipping strategy
drome s from a modified but nonzero syndroneaf- requires two passes over the word variables at each step
ter a failed decoding attempt. Such an attempt yields of the decoding process, namely, a first pass to determine
an incorrect error vectoe of weight not exceeding the number of parity errors each variable is involved
HDDMARGIN(t) satisfying the relatiors” = § + He'. in (thus keeping an array of counters, one for each
Thus, recoverings involves the producHe' of a sparse variable), and a second pass to tentatively correct the
matrix by a sparse vector. most suspicious variables, which are taken to be those

Interestingly, the McEliece cryptosystem does involve edpr

uct of a dense public generator matrix and a dense ran-

dom vector in semantically secure constructions like Rigjis
Okamoto[[19]. This is further reason to adopt the Niedegreit
cryptosystem on constrained platforms.

whose parity error count is above a certain threshold.
While the second pass could in principle be avoided by
adopting a carefully designed data structure singling out
the positions that do actually exceed the threshold, not
only would maintaining such a structure be considerably



expensive, but the approach is ndieetive for the better
part of the decoding process since a large fraction of the
variables is expected (and experimentally observed) to be
deemed suspicious, to th&ect that this whole approach
turns out to be easily outperformed by plain counters in
both storage requirements and processing time.

We avoid the second pass, the complicated data structure,
and even the need to keep an array of counters by count-
ing on-the-fly the number of parity errors each variables
is involved in, then deciding immediately whether it has «
to be tentatively corrected, and modifying the syndrome
accordingly.

A consequence of this is that the relation between the
actual parity-error counts evaluated on-the-fly and the
bit flipping threshold value is likely to change at each
such correction, and the decisions that will be taken for
variables not yet reached mayfer from what they would

be if the counters were computed separately. In fact, the
parity error threshold becomes known only approximately
(unless one took theffert to update it by checking all
variables again each time one of them is corrected),
but this turns up not to be detrimental to a successful
correction of all errors; on the contrary, this is empir-
ically observed toenhancethe chance of a successful
decoding for practical parameters. This can be explained
by considering that the number of false positives and false
negatives in the error detection heuristic for bits not yet

processed is reduced whenever one real error is corrected:

in other words, there is a better signal-to-noise ratio in
the bit reliability estimation that would be missed if all
counters were computed before any actual correction ise
attempted.

Onset threshold estimatiorAs we pointed out, bit flip-
ping works not only with the exact value of the parity-
error threshold, but also with a reasonable estimate
thereof. This holds equally well at the onset of the
process, so that not even the initial parity-error threghol
6o needs to be exact.

Analytically deriving a reasonable initial value, however
proves to be rather flicult, but it is easy to bypass
this problem by adopting an experimental estimate. This
is done by generating a number (say, of ordef) 16f
codes uniformly at random, then performing for each one
a number (say, of order $0as well) of decodings of
uniformly generated error patterns of suitable weight, and
finally tallying the initial maximum count of parity errors
influenced by each variable. The empirical estimate of
the initial parity-error thresholéy is then taken to be the

a fine-tuneds can improve decoding speed by an order
of magnitude, so this variant is worthwhile.

However, not only the decoding speed, but also the
likeliness of decoding failure increases with growisig
imposing a cutff at a certain optimal point. As in the case
of the initial threshold estimate, deriving an analytical
value for the optimuny is a dificult and elusive task.
We therefore adopt an empirical estimate obtained from
simulations here as well.

Decoding failure handling:Because a larg& makes

a decoding failure more likely, the decoder must be
prepared to decrease the actand restart the process.
Fortunately, rewinding the process to recover the original
is easy to do in-place, as theflfdrence between the
original syndrome and the current one is the syndrome
of the partial error pattern constructed by the decoder up
to the failure detection.

Decoding failure is usually detected when a maximum
number of decoding attempts is exceeded. Early detection
is possible, however, by following the evolution of the
weight of error pattern being reconstructed. Although
that weight can temporarily surpass the final weight of
t errors, in a successful decoding the provisional weight
is very unlikely to be too large. A simple and sensible
upper limit obtained from simulations i4/2 errors (i.e.
allow the decoding process to accumulate spurious errors
up to 50% above the¢ limit before deciding for failure
and decreasing), since no successful decoding has been
observed to reach as high as this margin before the
process begins to reduce it and converge to zero errors.
Simple supporting algorithmsSophisticated algorithms
with a good asymptotic behavior turn out to be an unnec-
essary hindrance in the context of decoding at practical
cryptographically-oriented parameters.

Thus, for instance, even though convolution-style algo-
rithms may seem ideal to handle products of circulant
matrices, in practice one of the factors is usually so sparse
that the much simpler approach of just adding together
a few rows or columns of the other factor as indicated
by the other factor yields a faster outcome (and smaller
executable code).

Likewise, representing the error pattern being recon-
structede as an unsorted list of error coordinates yields
the most compact representationesdnd is very ficient

for cryptographic applications because of the relatively
small target weight o&, even though this incurs sequen-
tial searches and updates.

Taking all this into account, we describe in Algorithiin 1 an

average of those maximum counts. The standard deviatigficient variant of the hard-decision decoding method tailore

is observed to be fairly small, so this approximatiorfor platforms with highly constrained data and code storage
which lies around a fraction 0.7-0d8 according to the and processing power.

values ofr, t, andd, itself, leads to a surprisingly stable
decoding behavior.
Threshold fine tuningThe actual parity-error threshold

V. SUGGESTED PARAMETERS

for bit-flipping does not need to be the very maximum For the sake of illustration, sample CS-MDPC parameters
current parity-error count among all variables. A fastdor typical security levels are listed on Tablés | and 1.
variant is achieved by setting the threshold somewhere Although key sizes still fall short of reaching typical val-
sayd parity errors, below that maximum. Experimentallyues for pre-quantum elliptic curve cryptosystems, CS-MDPC
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Algorithm 1 (Continued)

Algorithm 1 Efficient hard-decision decoder for constrained4:  if (wt(s) # 0 or ew> t) and ¢ > O then
platforms 35: 6 < 6 — 1 » threshold margin was too high
InpuT: H € FX™ (with n = nr), a systematic quasi-cyclic low- 36 for g < 0 to ew—1 do > revert syndrome to
density parity-check matrix with constant column weight  Original form:
dy, represented as an arraymgflists of thed, coordinates 37 j <€l .
38: L < H[Lj/r]]

of the nonzero components in each cyclic blockbf

IneuT: S € F,, a bit array representing the received syndromé? for z<0to d,—-1do
Ineut: 6, a threshold margin. 40: i — (j +L[Z) modr
INpUT: 6o, an estimate of the largest number of unsatisfietf di] « -]

parity checks among thevariables (bits) of the codeword 42 end for

with errors. 43: end for
InpuT: iterBound a limit on the number of iterations for suc- 225 endr(ieftry « true

cessful decoding (the heuristic defaultiisrBound=t),

Ourrut: € € FY, a sparse vector of weight v@(< t repre- ;
z ; ; . if wt(s) = 0and ew< t then
sented as a list of coordinates of its nonzero componerft§ = S

(but able to hold the coordinates of HDDMARGIHiNE t
such coordinates), av upon failure.

46: until not retry

48: return e ew
49: else

Remark: compute mod remainders via iterated subtraction. 5% réturn o

1:
2:
3:

4
5:
6
>
7:

8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:

retry « false
repeat
ew « 0 » initialize e to no errors
iter < 0O
6 <« 6g > initial estimate
repeat

Change the bits of the codeword with errors that are
involved in the largest number of unsatisfied parity checks: 20487 10243 105 198 75

newmax— 0 > new estimate fop
for j«<~O0ton-1do
L < H[Lj/r]]
unsat— 0
for z<0Otod,—1do
if 9(j+L[Z) modr] =1then
unsat« unsat+ 1
end if
end for
newmax— maxunsat newmax
if unsat> 6 — 6 then » try to correct:
if Aq € [0..ew— 1] such that e[q] = j then
ew«— ew—1, €q] < eew
else if ew< HDDMARGIN(t) then
gew « j, ewe—ew+1

51: end if

TABLE |
CS-MDPCPARAMETERS FOR NIEDERREITER ENCRYPTION (1 LAYER; Ng = 2)

r |pK (bits) dy t 6o 6 sec
4801 2401 45 84 37 9 9
7839 3919 65 117 48 4 1#¥
9863 4931 71 134 55 5 128
8 ¥
32771 16386 137 264 105 10 2%

Niederreiter encryption keys become competitive with pre-
guantum RSA and post-quantum, size-optimal NTRU for
non-legacy security levels, namely!'2 onward. We also
compare the key sizes with the previous smallest code-based
parameters, namely, those attainable with QC-MDPC codes.
This can be shown on Table]lll. Besides, as we will see in
Section[V], the result is still competitive with elliptic oee
implementations on constrained platforms according temth
relevant metrics.

VI. EXPERIMENTAL RESULTS

else» too many spurious errors introduced Ve assessed thefectiveness of the techniques described

break » to line[31
end if
for z« Oto d, — 1 do» update syndrome:
i < (j+L[Z) modr
di] « =]
end for
end if
end for
6 < newmax

herein according to the metrics of ROM and RAM us-
age by implementing the Niederreiter cryptosystem with the
proposed parameters and decoder on the PIC24FJ32GA002-
I/SP (32MHz) platform in the C programming language. No
assembly language optimization has been attempted.
Mapping from raw plaintext (bit sequences) and error
patterns is most feciently achieved (in processing speed,
data storage and executable code size requirements) wveith th
Sendrier technique_[37]. It was natural to adopt the same

> Iterate until the syndrome is zero (or until a bound on t&chnique choosing CS-MDPC codes uniformly at random.

32:
33:

number of iterations is reached)
iter « iter + 1
until wt(s) = 0 or iter = iterBound

The observed program size (i.e. the ROM requirements for
the deployed system) with the compiler employed is about
5.8 KiB. Storage (RAM) requirements are about 2.2 KiB
overall, including the space needed for indices, countads a
runtime bookkeeping (return addresses, stack management)



TABLE I
CS-MDPCPARAMETERS FOR NIEDERREITER ENCRYPTION (2 LAYERS; N = 2)

El

r [pK (bits) dy t o 5  sec

61x79 = 4819 3%40=1240 45 84 37 9 ¥
47x167=7849  2484=2016 65 117 48 4 22

71x139= 9869 36<70=2520 71 134 55 5 B8

103x199= 20497 5%100=5200 105 198 75 8 ¥2

73x449= 32777 3k%225=8325 137 264 105 10 %6
TABLE IlI [11]

PUBLIC KEY AND CRYPTOGRAM SIZE COMPARISON (SIZES IN BITS)

CS-MDPC RSA NTRU QC-MDPC  sec
2016 2048 4411 7836 182 (12]
2520 3072 4939 9856 128
5200 7680 7447 20480 1@ [13]
8325 15360 11957 32768 %%

[14]
By contrast, a plain implementation of the bit flipping tech-
nigue would take at least 7.2 KiB for the counters alone, far
above the 3.8 KiB RAM available on a PIC24FJ32GA00R5]
microcontroller. For simplicity, we limited the experintsrto
1-layer CS-MDPC codes at the 80-bit security level.

In comparison, elliptic curve ElGamal encryption at théié]
same security level on the ATMegal28L platform using the
state-of-the-art RELIC library [1] demands over 31 KiB ROM;7
and 2.1 KiB RAM.

VII. CoNcLUSION [18]

We described how to scale code-based cryptosystems to
platforms with very constrained storage and processing fgg
sources. Central to our proposal is the adoption of quasi-
cyclic LDPC codes coupled with a storagéaent algorithm
for key pair generation, a carefully tailored variant of dvar g
decision decoding, and fine-tuned parameters. Theiency
of the result is competitive with traditional cryptosystelike
those based on elliptic curves.
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