
ar
X

iv
:1

21
2.

43
17

v1
  [

cs
.C

R
]  

18
 D

ec
 2

01
2

1

Scaling efficient code-based cryptosystems for
embedded platforms

Felipe P. Biasi, Paulo S. L. M. Barreto∗, Rafael Misoczki, Wilson V. Ruggiero

Abstract—We describe a family of highly efficient codes for
cryptographic purposes and dedicated algorithms for theirma-
nipulation. Our proposal is especially tailored for highly con-
strained platforms, and surpasses certain conventional and post-
quantum proposals (like RSA and NTRU, respectively) according
to most if not all efficiency metrics.

Index Terms—Algorithms, Cryptography, Decoding, Error cor-
rection

I. Introduction

QUANTUM computers, should they become a technologi-
cal reality, will pose a threat to public-key cryptosystems

based on certain intractability assumptions, like the integer
factorization problem, or IFP (like RSA), and the discrete
logarithm problem, or DLP (like Diffie-Hellman or DSA, in
their elliptic curve version or otherwise). To face this scenario,
several cryptosystems have been proposed that apparently
resist attacks mounted with the help of quantum comput-
ers. The security of these so-called post-quantum cryptosys-
tems [8] stems from quite distinct computational intractability
assumptions. Such schemes are not necessarily new — for
instance, cryptosystems based on coding theory (specifically,
on the intractability of the syndrome decoding problem, or
SDP) are known for nearly as long as the very concept of
asymmetric cryptography itself, though they have only recently
been attracting renewed interest.

However, being quantum-resistant is not the only interesting
feature of many post-quantum proposals — some of them
are equally remarkable because of their improved efficiency
and simplicity for certain types of applications relatively
to conventional schemes. Thus, schemes based on the SDP
entirely avoid the multiprecision integer arithmetic typically
needed by IFP or DLP cryptosystems, and their computational
cost is usually a few orders of complexity smaller than those
systems, reachingÕ(n) instead of Õ(n2) or Õ(n3) which
are commonplace in pre-quantum schemes. This indicates
that post-quantum alternatives may have advantages even in
situations where quantum attacks are not the main concern,
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and justifies the investigation on how advantageous they can
be.

Particularly interesting scenarios where such post-quantum
schemes may have a positive impact are wireless sensor
networks [2], [35] and the so-called “Internet of Things,”
in which a wide range of devices are interconnected, from
the most powerful clustered servers to embedded systems
with extremely limited processing resources, storage, band-
width occupation and power consumption, including micro-
controllers [25], [43] and dedicated hardware [27].

One of the leading families of post-quantum cryptographic
schemes is that of code-based cryptosystems [28], [34]. In
contrast with the form in which these systems were originally
proposed, where key sizes were typically large, modern ap-
proaches do offer far more space-efficient parameters, being
fairly practical on general-purpose platforms. On can thus
ask whether such schemes are suitable for highly constrained
platforms as well.

Low-density parity-check (LDPC) codes and their quasi-
cyclic variants (QC-LDPC) have been proposed for crypto-
graphic applications [3], [4], [5], [6], [7], [24], [31], [41]
although in a form still unsuitable for constrained plat-
forms. Recently, quasi-cyclic moderate-density parity-check
(QC-MDPC) codes have been designed to provide strong
security assurances for McEliece-style cryptosystems [30].
Such codes are arguably ideal for modern general-purpose
platforms, matching or surpassing the processing efficiency
of conventional cryptosystems. However, no assessment of
their suitability for constrained platform has been made,
and indeed the traditional bit-flipping and belief-propagation
decoding methods, even though they are quite processing-
efficient, appear at first glance unsuitable for an Internet-of-
Things scenario due to their considerable storage requirements.

A. Our Results

Our contributions in this paper are twofold:

• On the one hand, a family of linear error-correcting codes
(so-called CS-MDPC codes) that are highly efficient for
cryptographic applications in terms of reduced per-key
and per-message bandwidth occupation;

• On the other hand, an efficient decoder for that family of
codes that is especially tailored for (though not restricted
to) constrained platforms.

Specifically, we show how to obtain code-based cryptosystems
where the public keys and the space overhead incurred for
each cryptogram are comparable in size to, or even smaller
than, the corresponding values for the RSA cryptosystem at
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practical security levels. A careful selection of design features
for the key generation, encoding, and decoding algorithms lead
to very short processing times, and executable code size in
software or area occupation in hardware (and thus potentially
also energy consumption) tend to be considerably smaller than
what can be attained with RSA or elliptic curve cryptosystems.
Our proposed variant of the bit flipping decoding technique
needs onlyO(1) ancillary storage, in comparison withO(n)
(wheren in the code length) as in previous variants of that
technique.

B. Organization of the Paper

The remainder of this document is organized as follows.
We provide theoretical preliminaries in Section II, including
LDPC and MDPC codes, the hard decision decoding method,
and code-based cryptosystems. We describe the new family
of codes and assess its security properties in Section III. In
Section IV we outline our proposed techniques to deploy code-
based cryptosystems on embedded platforms, in particular an
efficient bit-flipping decoder that takes onlyO(1) ancillary
storage instead of the usualO(n) requirements. We illus-
trate some suggested parameters for typical security levels
in Section V and assess the overall results of our proposal
experimentally in Section VI. We conclude in Section VII.

II. Preliminaries

A. General notation

Matrix and vector indices will be numbered from 0 through-
out this paper, unless otherwise stated. Letp be a prime and
let q = pm for somem > 0. The finite field ofq elements is
written Fq. Given h ∈ Fr

2, we denote by cir(h) the circulant
matrix

cir(h) =
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B. Error Correcting Codes

A (binary) linear [n, k] error-correcting codeC is a subspace
of Fn

2 of dimensionk. Such a code is specified by either a
generator matrix G∈ Fk×n

2 such thatC = {uG ∈ Fn
2 | u ∈ F

k
2},

or else by aparity-check matrix H∈ Fr×n
2 such thatC = {v ∈

F
n
2 | vHT = 0r } wherer = n− k.
We will be particularly interested inquasi-cyclic codes,

namely, codes that admit a parity-check matrix consisting of
n0 horizontally joined circulant square blocks of sizer × r.
Thus:

H = [cir(h0) | cir(h1) | · · · | cir(hn0−1)],

wherehi ∈ F
r
2, 0 6 i < n0. The representation advantages of

such codes are obvious, sinceH can be compactly stored as
n0 sequences ofr bits each.

Thesyndrome decoding problem(SDP) consists of comput-
ing an error patterne ∈ Fn

2 given a parity-check matrixH ∈
F

r×n
2 for the underlying code, and a syndromes= eHT ∈ Fr

2. In
general the SDP is NP-hard, but sometimes the knowledge of
certain structural code properties makes this problem solvable
in polynomial time.

C. LDPC codes

LDPC codes were invented by Robert Gallager [20] and are
linear codes obtained from sparse bipartite graphs. Suppose
that G is a graph withn left nodes (called message nodes)
and r right nodes (called check nodes). The graph gives rise
to a linear code of block lengthn and dimension at leastn− r
in the following way: Then coordinates of the codewords are
associated with then message nodes. The codewords are those
vectors (c1, . . . , cn) such that for all check nodes the sum of
the neighboring positions among the message nodes is zero.

The graph representation is analogous to a matrix represen-
tation by looking at the adjacency matrix of the graph: letH
be a binaryr × n-matrix in which the entry (i, j) is 1 if and
only if the i-th check node is connected to thej-th message
node in the graph. Then the LDPC code defined by the graph
is the set of vectorsc = (c1, . . . , cn) such thatH · cT = 0.
The matrix H is called aparity check matrixfor the code.
Conversely, any binaryr × n matrix gives rise to a bipartite
graph betweenn message andr check nodes, and the code
defined as the null space ofH is precisely the code associated
to this graph. Therefore, any linear code has a representation
as a code associated to a bipartite graph (note that this graph is
not uniquely defined by the code). However, not every binary
linear code has a representation by asparsebipartite graph.
If it does, then the code is called a low-density parity-check
(LDPC) code.

An important subclass of LDPC codes that feature encoding
advantages over other codes of the same class is that of quasi-
cyclic low-density parity-check (QC-LDPC) codes [13], [40].
In general, an [n, k]-QC-LDPC code satisfiesn = n0b and
k = k0b (thus alsor = r0b) for someb, n0, k0 (and r0), and
admits a parity-check matrix consisting ofn0 × r0 blocks of
b × b sparse circulant submatrices. Of particular importance
is the case whereb = r (and hencer0 = 1 andk0 = n0 − 1),
since a systematic parity-check matrix for this code is entirely
defined by the first row of eachr × r block. We say that the
parity-check matrix is incirculant form.

D. QC-MDPC codes

A cryptographically interesting subclass of the QC-LDPC
family is that of quasi-cyclicmoderate-density parity-check
(QC-MDPC) codes [30].

QC-MDPC codes in this sense are an entirely distinct class
from a family of algebraic codes also known as ‘MDPC’ and
designed by Ouzan and Be’ery [36], despite the name clash.
The goal set forth in the latter approach is to obtain high-
rate codes of short to moderate length whose duals contain
known intermediate-weight words (and thus admit parity-
check matrices of moderate density, hence the ‘MDPC’ name),
but still have a good error correction capability in comparison
with algebraic codes like BCH with similar length and rate.
Examples from [36] indicate that typical densities are in the
range 17% to 28% of the code length. Thus they are indeed
intermediate between usual LDPC codes and general ones,
but the density is too high for conventional LDPC decoding
techniques, to the effect that those codes are not classical
Gallager codes in the sense that the density of their dual
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codes puts them beyond the capability of decoding techniques
like plain belief propagation and bit flipping, and especially
tailored decoders must thus be adopted.

By contrast, QC-MDPC codes in the sense of Misoczkiet
al. are oriented toward cryptographic purposes, with densities
close enough to LDPC codes as to enable decoding by Gal-
lager’s simpler (and arguably more efficient) belief propagation
and bit flipping methods, yet dense enough to prevent attacks
based on the presence of too sparse words in the dual code like
the Stern attack [39] and variants, without loosing too much
of the error correcting capability so as to keep information-set
decoding attacks [9], [10] infeasible as well. Furthermore, to
prevent structural attacks as proposed by Faugèreet al. [18]
and by Leander and Gauthier [42], cryptographically-oriented
codes must remain as unstructured as possible except for
the hidden trapdoor that enables private decoding and, in the
case of quasi-cyclic codes, external symmetries that allowfor
efficient implementation. Finally, the very circulant symmetry
might introduce weaknesses as pointed out by Sendrier [38],
but these induce only a polynomial (specifically, linear) gain in
attack efficiency, and a small adjustment in parameters copes
with it entirely. Typical densities in this case are in range0.4%
to 0.9% of the code length, one order of magnitude above
LDPC codes but well below the published MDPC range above,
and certainly within the realm of Gallager codes. Construction
is also as random as possible, merely keeping the desired
density and circulant geometry, and code lengths are much
larger than typical MDPC values.

E. Gallager’s Hard Decision (Bit Flipping) Decoding Method

We briefly recapitulate Gallager’s hard decision decod-
ing algorithm, closely following the very concise and clear
description by Huffman and Pless [22]. This will provide
the basis for the efficient variant we propose for embedded
platforms.

Assume that the codeword is encoded with a binary LDPC
codeC for transmission, and the vectorc is received. In the
computation of the syndromes = cHT, each received bit of
c affects at mostdv components of that syndrome. If only
the j-th bit of c contains an error, then the correspondingdv

componentssi of s will equal 1, indicating the parity check
equations that are not satisfied. Even if there are some other
bits in error among those that contribute to computation ofsi ,
one expects that several of thedv components ofs will equal
1. This is the basis of Gallager’shard decision decoding, or
bit-flipping, algorithm.

1) ComputecHT and determine the unsatisfied parity checks
(namely, the parity checks where the components ofcHT

equal 1).
2) For each of then bits, compute the number of unsatisfied

parity checks involving that bit.
3) Flip the bits ofc that are involved in the largest number

of unsatisfied parity checks.
4) Repeat steps 1, 2, and 3 until eithercHT = 0, in which

casec has been successfully decoded, or until a certain
bound in the number of iterations is reached, in which
case decoding of the received vector has failed.

The bit-flipping algorithm is not the most powerful decod-
ing method for LDPC codes; indeed, the belief propagation
technique [20], [22] is known to exceed its error correc-
tion capability. However, belief-propagation decoders involve
computing ever more refinedprobabilities that each bit of
the received wordc contains an error, thus incurring floating
point arithmetic or suitable high-precision approximations and
computationally expensive algorithms. In a scenario wherethe
number of errors is fixed and known in advance, as is the case
of cryptographic applications, parameters can be designedso
that the more powerful but also more complex and expensive
belief propagation methods are not necessary for decoding.

We therefore focus on the problem of designing an opti-
mized variant of bit-flipping decoding for highly constrained
platforms. Specifically, such methods still suffer from the
drawback of requiring a large amount of ancillary memory for
counters: if each column ofH has Hamming weightdv, step
2 requires (⌊lg dv⌋ + 1) bits to store the number of unsatisfied
parity-checks for each of then bits of c, hencen(⌊lg dv⌋ + 1)
bits overall. Besides, steps 2 and 3 involve a loop of lengthn
each, introducing processing inefficiency. We will show how
to avoid these drawbacks in Section IV-C.

F. McEliece and Niederreiter encryption

The McEliece encryption scheme was proposed by R.
McEliece [28] in 1978. In that scheme, the public key is a
generator matrix for a certain code whose decoder is taken to
be the private key. An equivalent scheme using a parity-check
matrix as public key was proposed by H. Niederreiter in 1986
[34]. We briefly review these schemes, which consist of three
algorithms (KeyGen, Encrypt, Decrypt) each.

1) McEliece:

• KeyGen: Select a binaryt-error correcting [n, k]-codeC

with a decoding trapdoorD and ak× n generator matrix
G in systematic form. The public key is (G, t), and the
private key is the decoding trapdoorD .

• Encrypt: To encrypt a plaintextm ∈ Fk
2 into a cryptogram

c ∈ Fn
2, select a uniformly random error patterne ∈ Fn

2
and weightt, and computec← m ·G + e.

• Decrypt: To decryptc ∈ Fn
2, apply the decoding trapdoor

D to correct thet errors inc (thus finding the error pattern
e ∈ Fn

2 of weight t), then extractm ∈ Fk
2 from the firstk

columns ofc− e.
2) Niederreiter:

• KeyGen: Select a binaryt-error correcting [n, k]-codeC

with a decoding trapdoorD and anr × n parity-check
matrix H in systematic form, wherer = n−k. The public
key is (H, t), and the private key is the decoding trapdoor
D .

• Encrypt: To encrypt a plaintextm ∈ Z/
(

n
t

)

Z into a
cryptogramc ∈ Fr

2, encodem into a vectore ∈ Fn
2 of

weight t via some conventional permutation unranking
method, and computec← e · HT.

• Decrypt: To decryptc ∈ Fn
2, apply the decoding trapdoor

D to the syndromec (thus finding the corresponding
vectore ∈ Fn

2 of weight t), then decodem ∈ Z/
(

n
t

)

Z from
e via permutation ranking.
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Although the security of these two schemes is equivalent,
Niederreiter is the more efficient [11], being therefore the
method of choice for constrained platforms.

III. A n efficient family ofMDPC codes

The QC-MDPC codes [30] are arguably among the most
efficient settings for code-based cryptosystems. However, QC-
MDPC parameters for practical security levels, specifically
those corresponding to a cost between a legacy-level 280 and
a top-level 2256 steps to mount the best possible attacks, yield
key and ciphertext space overheads well above the correspond-
ing values achievable with the RSA cryptosystem, which is
perhaps the most widely deployed asymmetric cryptography
scheme today, and constitutes for that reason a practical upper
bound for the corresponding parameters in other cryptographic
schemes. Therefore one cannot claim that those codes are
generically suitable for constrained platforms.

It turns out we can do better than that with a proper subset
of QC-MDPC codes. To define it, we now introduce a class
of matrices that admit a space-efficient representation:

Definition 1. Given a ring R and an integer p, the set of
cyclosymmetricmatrices of order p overR is the set of∆p(R)
of square p× p matrices overR that are both circulant and
symmetric.

Cyclosymmetric matrices constitute a subring of the ring
Rp×p of p × p matrices overR, which can be seen by the
fact that the identity matrix is cyclosymmetric and that the
product of symmetric matrices is itself symmetric iff the fac-
tors commute, and indeed circulant matrices are commutative:
(AB)T = BTAT = BA= AB (all other properties are trivial). We
call this thecyclosymmetric ringof order p over R.

A cyclosymmetric ring can be itself defined over an-
other cyclosymmetric ring and so on recursively, yielding
a multilayered cyclosymmetric ring ultimately defined over
a non-cyclosymmetric ring. This ring tower is written as
∆p1(. . .∆pL (R0) for successively embedded rings of orders
p1, . . . , pL. Let lyr(R) denote the number of layers of a
multilayered cyclosymmetric ringR. We define the number of
layers of a non-cyclosymmetric ringR0 (e.g. a finite field) to
be lyr(R0) = 0, and then recursively lyr(∆p(R′)) = lyr(R′)+1.
Thus, lyr(∆p1(. . .∆pL (R0)) = L.

The interest in a cyclosymmetric ring resides in the fact
that elements of∆p(R) can be represented as a sequence of
⌊p/2⌋+1 elements fromR, asymptotically occupying only half
the space required by a merely circulant matrix of orderp over
R. To see this, just note that a circulantp× p matrix has the
form Ci j = c( j−i) mod p wherec is the first row of that matrix,
while a symmetric matrix satisfiesCi j = C ji , thus combining
both conditions yieldsc( j−i) mod p = c(i− j) mod p, which for i = 0
(since the first row alone defines the entire matrix) simplifies to
c j = c− j mod p, or c j = cp− j for j > 0. Therefore, the sequence
c1, . . . , cp−1 is a palindrome (andc0 is an arbitrary bit), and
only c0, . . . , c⌊p/2⌋+1 are independent.

The space efficiency becomes more noticeable for rings with
several layers: an element of∆p1(. . .∆pL (R0) is represented as
∏L

i=1(⌊pi/2⌋ + 1) elements ofR′, roughly a fraction 1/2L of

the size of a generic circulant matrix of order
∏L

i=1 pi over
R0.

Extending the analogy, we define the family ofcyclosym-
metric codes:

Definition 2. A cyclosymmetric (CS) codeover Fq is a
code which admits a block parity-check matrix whose blocks
correspond to elements of a (multiplayerd) cyclosymmetric
ring.

In other words, a cyclosymmetric [n, n− r]-code admits an
r×n parity-check matrixH with r = r0p, n = n0p, consisting of
r0×n0 cyclosymmetric blocks of sizep× p over some smaller
ring. The natural advantage of these codes is the compact
representation of such parity-check matrices. A particularly
efficient case occurs whenr0 = 1, that is, H is a simple
sequence ofn0 cyclosymmetric blocks of sizer × r: if H is in
systematic form,r = p1 · · · pL, andR = ∆p1(. . .∆pL (Fq) . . . ),
then H occupies only (n0 − 1)

∏L
i=1(⌊pi/2⌋ + 1) lgq bits.

In cryptographic applications, the natural choice is to adopt
binary codes, i.e.q = 2, and in particular MDPC codes, due
to the simplicity of the decoding algorithm and the greatly
reduced parameters that these codes allow for every desired
security level. A cyclosymmetric MDPC code is, therefore, a
CS-MDPC code. Moreover, in the same cryptographic context
we not only propose the use CS-MDPC codes, but also to
restrict error patternsto the same form as the concatenation
of first rows of cyclosymmetric matrices, so that these pat-
terns stand themselves for sequences of cyclosymmetric ring
elements, as long as this does not affect the security level.

A disadvantage of a too large number of layers is that, on
average, each ‘1’-bit among the

∏L
i=1(⌊pi/2⌋+ 1) independent

bits of each block ofH represents about 2L ‘1’-bits in the full
r × r block, rapidly increasing the parity-check matrix density
and therefore limiting the error correction capability of bit-
flipping and related decoders. However, small values ofL (one
or two, in some cases possibly even three) yield potentially
interesting parameters for cryptographic applications.

A. Security considerations

An immediate observation on the structure of cyclosymmet-
ric codes is that one can optimize the Stern attack [9], [17],
[39] and its variants by taking advantage of the form of each
row of the parity-check matrix when performing linear algebra
operations. Indeed, Stern tries to retrieve a row of low density
from the dual code; since the first row consists of one element
followed by a palindrome, and the remaining rows are rotated
versions thereof, one can in principle reduce in half the overall
effort incurred by row manipulations. However, this apparent
improvement may turn out to be ineffective: linear algebra
operations quickly destroy the palindrome structure within the
rows, thwarting the optimization.

Leon’s attack [26] and related ones do not seem to benefit
at all either, because they already ignore part of each row
involved in linear algebra operations. Interestingly, a brute
force attack would be faster than Leon’s against cyclosym-
metric codes because it would need to test only

(

p/2
w/2

)

rather

than
(

p
w

)

elements, yet for any practical choice of parameters
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that number remains far above the cost of Stern’s or similar
attacks. For example, parameters for which the cost of the best
known variants of Stern is about 280 with block sizep = 4800
and private code densityw = 45, the cost of brute force would
be
(

p/2
w/2

)

≈ 2177.
Similar observation apply to information-set decoding at-

tacks [9], [10]: at most, one would expect an improvement by
a factor of 2L in the attack cost forL-level CS-MDPC codes
(recall that, in practice,L 6 2).

There seems to be no essential restriction to the value of
p, although a prudent choice would seem to be to take prime
p to avoid the possibility of attacking smaller subcodes. No
structural attacks along the lines of Faugèreet al. [18] or
Leander and Gauthier [42] seems to apply, since the CS-
MDPC trapdoor is of a statistical rather than algebraic nature.

Apart from this, CS-MDPC codes appear to inherit most
if not all of the security properties of the superclass of QC-
MDPC codes, as indicated in Section II-D. One consequence
of all these considerations is that, to the best of our knowledge,
the best attacks against CS-MDPC codes are precisely the best
attacks againstgenericQC-MDPC codes.

IV. Scaling the implementation to embedded platforms

A. General operation

We use a representation of sparse matrices with a plain arith-
metic: both matrix-matrix and matrix-vector products coalesce
into (vector-vector) cyclic convolution, for which efficient
algorithms like Karatsuba [23] and FFT are known. However,
simple ‘textbook’ multiplication algorithms, slightly modified
so as to operate on circulant matrices represented by their first
row alone, are not only more compact, but at least as fast (and
often faster) than more advanced counterparts because of the
sparsity of the arguments. Indeed, the operations that actually
occur in the Niederreiter cryptosystem always involve at least
one sparse operand:
• inversion of a secret, sparse circulant matrixH yielding a

public, dense matrixK: this is achieved with a carefully
tuned extended Euclidean algorithm (see Section IV-B).

• Computation of the public syndrome of a sparse error
vector. This syndrome is the product of the public, dense
parity-check matrixK by the sparse vectore.

• Computation of the private, decodable syndromesT = HeT

corresponding to a given public syndromecT = KeT. This
is the productHn0−1cT of the sparse secret matrixHn0−1

by the given dense syndromecT, sinceK = H−1
n0−1H and

henceHn0−1cT = Hn0−1KeT = HeT = sT.
• Additionally, our strategy recovers the decodable syn-

drome s from a modified but nonzero syndrome ˆs af-
ter a failed decoding attempt. Such an attempt yields
an incorrect error vector ˆe of weight not exceeding
HDDMARGIN(t) satisfying the relationsT = ŝT + HeT.
Thus, recoverings involves the productHeT of a sparse
matrix by a sparse vector.

Interestingly, the McEliece cryptosystem does involve a prod-
uct of a dense public generator matrix and a dense ran-
dom vector in semantically secure constructions like Fujisaki-
Okamoto [19]. This is further reason to adopt the Niederreiter
cryptosystem on constrained platforms.

B. Space-efficient convolutional inverse

The extended Euclidean algorithm yields a time-efficient
method to compute the inverse of a circulant matrixH = cir(h).
The technique consists of mapping the arrayh (with compo-
nentsh j , 0 6 j < r) to a polynomialh(x) =

∑

06 j<r h j x j ∈

F2[x], computing the modular inverseh(x)−1 (mod xr − 1),
and mappingh(x)−1 back to an array denotedh−1 such that
H−1 = cir(h−1).

An apparently less widely known property of the extended
Euclidean algorithm is that it admits a space-efficient imple-
mentation as well. In its most usual form, when computing
h−1 modm the algorithm keeps track of four polynomials
f , g, b, c ∈ F2[x] (plus two additional polynomialsu, v ∈ F[x]
that are usually only implicit) related by the constraintsf =
bh+umandg = ch+vm. This suggests a naive implementation
requiring up to 4r bits of storage for those four polynomials.
However, polynomialsf and c can actually coexist on the
same storage area, and similarly for polynomialsg and b, as
long asr +2 bits are available for each of these pairs (totaling
2r + 4 bits) because, at any step of the algorithm execution, it
holds that deg(f ) + deg(c) 6 r and deg(g) + deg(b) 6 r. One
can easily prove this by Floyd-Hoare logic.

C. A space-efficient decoder

The technique of bit-flipping decoding has received a sub-
stantial amount of attention in the literature since Gallager’s
discovery of LDPC codes [12], [16], [20], [21], [29], [32],
[33], [44], [45], [46], [47], [48]. However, these are mostly
concerned with improving the error correction capability rather
than reducing computational resource requirements. Even
techniques designed for VLSI like the soft bit-flipping (SBF)
technique [14], [15], which might be potential candidates for
implementation on the small processors typical of an Internet
of Things scenario, turn out to take far more ancillary storage
(namely, still O(n) for a code of lengthn) than is typically
available on those processors.

It turns out that one can entirely avoid the need for the large
storage requirements of a bit-flipping decoder. For crypto-
graphic applications, where the number of introduced errors is
fixed and known beforehand, the error correction capabilityis
not the central concern, as long as the desired security level can
be attained while fitting the available resources. The variant
we propose targets precisely this need. We now describe that
variant, together with a rationale for each decision. The full
method is summarized as Algorithm 1.

• On-the-fly counter update:The usual bit-flipping strategy
requires two passes over the word variables at each step
of the decoding process, namely, a first pass to determine
the number of parity errors each variable is involved
in (thus keeping an array of counters, one for each
variable), and a second pass to tentatively correct the
most suspicious variables, which are taken to be those
whose parity error count is above a certain threshold.
While the second pass could in principle be avoided by
adopting a carefully designed data structure singling out
the positions that do actually exceed the threshold, not
only would maintaining such a structure be considerably
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expensive, but the approach is not effective for the better
part of the decoding process since a large fraction of the
variables is expected (and experimentally observed) to be
deemed suspicious, to the effect that this whole approach
turns out to be easily outperformed by plain counters in
both storage requirements and processing time.
We avoid the second pass, the complicated data structure,
and even the need to keep an array of counters by count-
ing on-the-fly the number of parity errors each variables
is involved in, then deciding immediately whether it has
to be tentatively corrected, and modifying the syndrome
accordingly.
A consequence of this is that the relation between the
actual parity-error counts evaluated on-the-fly and the
bit flipping threshold value is likely to change at each
such correction, and the decisions that will be taken for
variables not yet reached may differ from what they would
be if the counters were computed separately. In fact, the
parity error threshold becomes known only approximately
(unless one took the effort to update it by checking all
variables again each time one of them is corrected),
but this turns up not to be detrimental to a successful
correction of all errors; on the contrary, this is empir-
ically observed toenhancethe chance of a successful
decoding for practical parameters. This can be explained
by considering that the number of false positives and false
negatives in the error detection heuristic for bits not yet
processed is reduced whenever one real error is corrected:
in other words, there is a better signal-to-noise ratio in
the bit reliability estimation that would be missed if all
counters were computed before any actual correction is
attempted.

• Onset threshold estimation:As we pointed out, bit flip-
ping works not only with the exact value of the parity-
error threshold, but also with a reasonable estimate
thereof. This holds equally well at the onset of the
process, so that not even the initial parity-error threshold
θ0 needs to be exact.
Analytically deriving a reasonable initial value, however,
proves to be rather difficult, but it is easy to bypass
this problem by adopting an experimental estimate. This
is done by generating a number (say, of order 103) of
codes uniformly at random, then performing for each one
a number (say, of order 103 as well) of decodings of
uniformly generated error patterns of suitable weight, and
finally tallying the initial maximum count of parity errors
influenced by each variable. The empirical estimate of
the initial parity-error thresholdθ0 is then taken to be the
average of those maximum counts. The standard deviation
is observed to be fairly small, so this approximation,
which lies around a fraction 0.7–0.8dv according to the
values ofr, t, anddv itself, leads to a surprisingly stable
decoding behavior.

• Threshold fine tuning:The actual parity-error threshold
for bit-flipping does not need to be the very maximum
current parity-error count among all variables. A faster
variant is achieved by setting the threshold somewhere,
sayδ parity errors, below that maximum. Experimentally,

a fine-tunedδ can improve decoding speed by an order
of magnitude, so this variant is worthwhile.
However, not only the decoding speed, but also the
likeliness of decoding failure increases with growingδ,
imposing a cutoff at a certain optimal point. As in the case
of the initial threshold estimate, deriving an analytical
value for the optimumδ is a difficult and elusive task.
We therefore adopt an empirical estimate obtained from
simulations here as well.

• Decoding failure handling:Because a largeδ makes
a decoding failure more likely, the decoder must be
prepared to decrease the actualδ and restart the process.
Fortunately, rewinding the process to recover the original
is easy to do in-place, as the difference between the
original syndrome and the current one is the syndrome
of the partial error pattern constructed by the decoder up
to the failure detection.
Decoding failure is usually detected when a maximum
number of decoding attempts is exceeded. Early detection
is possible, however, by following the evolution of the
weight of error pattern being reconstructed. Although
that weight can temporarily surpass the final weight of
t errors, in a successful decoding the provisional weight
is very unlikely to be too large. A simple and sensible
upper limit obtained from simulations is 3t/2 errors (i.e.
allow the decoding process to accumulate spurious errors
up to 50% above thet limit before deciding for failure
and decreasingδ), since no successful decoding has been
observed to reach as high as this margin before the
process begins to reduce it and converge to zero errors.

• Simple supporting algorithms:Sophisticated algorithms
with a good asymptotic behavior turn out to be an unnec-
essary hindrance in the context of decoding at practical
cryptographically-oriented parameters.
Thus, for instance, even though convolution-style algo-
rithms may seem ideal to handle products of circulant
matrices, in practice one of the factors is usually so sparse
that the much simpler approach of just adding together
a few rows or columns of the other factor as indicated
by the other factor yields a faster outcome (and smaller
executable code).
Likewise, representing the error pattern being recon-
structede as an unsorted list of error coordinates yields
the most compact representation ofe and is very efficient
for cryptographic applications because of the relatively
small target weight ofe, even though this incurs sequen-
tial searches and updates.

Taking all this into account, we describe in Algorithm 1 an
efficient variant of the hard-decision decoding method tailored
for platforms with highly constrained data and code storage
and processing power.

V. Suggested parameters

For the sake of illustration, sample CS-MDPC parameters
for typical security levels are listed on Tables I and II.

Although key sizes still fall short of reaching typical val-
ues for pre-quantum elliptic curve cryptosystems, CS-MDPC
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Algorithm 1 Efficient hard-decision decoder for constrained
platforms
Input: H ∈ Fr×n

2 (with n = n0r), a systematic quasi-cyclic low-
density parity-check matrix with constant column weight
dv, represented as an array ofn0 lists of thedv coordinates
of the nonzero components in each cyclic block ofH.

Input: s ∈ Fr
2, a bit array representing the received syndrome.

Input: δ, a threshold margin.
Input: θ0, an estimate of the largest number of unsatisfied

parity checks among then variables (bits) of the codeword
with errors.

Input: iterBound, a limit on the number of iterations for suc-
cessful decoding (the heuristic default isiterBound= t),

Output: e ∈ Fn
2, a sparse vector of weight wt(e) 6 t repre-

sented as a list of coordinates of its nonzero components
(but able to hold the coordinates of HDDMARGIN(t) > t
such coordinates), or∅ upon failure.

Remark: compute mod remainders via iterated subtraction.
1: retry← false
2: repeat
3: ew← 0 ⊲ initialize e to no errors
4: iter ← 0
5: θ← θ0 ⊲ initial estimate
6: repeat
⊲ Change the bits of the codeword with errors that are

involved in the largest number of unsatisfied parity checks:
7: newmax← 0 ⊲ new estimate forθ
8: for j ← 0 to n− 1 do
9: L← H[⌊ j/r⌋]

10: unsat← 0
11: for z← 0 to dv − 1 do
12: if s[( j + L[z]) mod r] = 1 then
13: unsat← unsat+ 1
14: end if
15: end for
16: newmax← max{unsat, newmax}
17: if unsat> θ − δ then ⊲ try to correct:
18: if ∃q ∈ [0..ew− 1] such that e[q] = j then
19: ew← ew− 1, e[q] ← e[ew]
20: else if ew< HDDMARGIN(t) then
21: e[ew] ← j, ew← ew+ 1
22: else⊲ too many spurious errors introduced
23: break ⊲ to line 31
24: end if
25: for z← 0 to dv − 1 do ⊲ update syndrome:
26: i ← ( j + L[z]) mod r
27: s[i] ← ¬s[i]
28: end for
29: end if
30: end for
31: θ ← newmax
⊲ Iterate until the syndrome is zero (or until a bound on the

number of iterations is reached)
32: iter ← iter + 1
33: until wt(s) = 0 or iter = iterBound

Algorithm 1 (Continued)
34: if (wt(s) , 0 or ew> t) and δ > 0 then
35: δ← δ − 1 ⊲ threshold margin was too high
36: for q ← 0 to ew− 1 do ⊲ revert syndrome to

original form:
37: j ← e[q]
38: L← H[⌊ j/r⌋]
39: for z← 0 to dv − 1 do
40: i ← ( j + L[z]) mod r
41: s[i] ← ¬s[i]
42: end for
43: end for
44: retry← true
45: end if
46: until not retry
47: if wt(s) = 0 and ew6 t then
48: return e, ew
49: else
50: return ∅
51: end if

TABLE I
CS-MDPCparameters for Niederreiter encryption (1 layer; n0 = 2)

r |pk| (bits) dv t θ0 δ sec
4801 2401 45 84 37 9 280

7839 3919 65 117 48 4 2112

9863 4931 71 134 55 5 2128

20487 10243 105 198 75 8 2192

32771 16386 137 264 105 10 2256

Niederreiter encryption keys become competitive with pre-
quantum RSA and post-quantum, size-optimal NTRU for
non-legacy security levels, namely, 2112 onward. We also
compare the key sizes with the previous smallest code-based
parameters, namely, those attainable with QC-MDPC codes.
This can be shown on Table III. Besides, as we will see in
Section VI, the result is still competitive with elliptic curve
implementations on constrained platforms according to other
relevant metrics.

VI. Experimental results

We assessed the effectiveness of the techniques described
herein according to the metrics of ROM and RAM us-
age by implementing the Niederreiter cryptosystem with the
proposed parameters and decoder on the PIC24FJ32GA002-
I/SP (32MHz) platform in the C programming language. No
assembly language optimization has been attempted.

Mapping from raw plaintext (bit sequences) and error
patterns is most efficiently achieved (in processing speed,
data storage and executable code size requirements) with the
Sendrier technique [37]. It was natural to adopt the same
technique choosing CS-MDPC codes uniformly at random.

The observed program size (i.e. the ROM requirements for
the deployed system) with the compiler employed is about
5.8 KiB. Storage (RAM) requirements are about 2.2 KiB
overall, including the space needed for indices, counters and
runtime bookkeeping (return addresses, stack management).
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TABLE II
CS-MDPCparameters for Niederreiter encryption (2 layers; n0 = 2)

r |pk| (bits) dv t θ0 δ sec
61×79= 4819 31×40= 1240 45 84 37 9 280

47×167= 7849 24×84= 2016 65 117 48 4 2112

71×139= 9869 36×70= 2520 71 134 55 5 2128

103×199= 20497 52×100= 5200 105 198 75 8 2192

73×449= 32777 37×225= 8325 137 264 105 10 2256

TABLE III
Public key and cryptogram size comparison (sizes in bits)

CS-MDPC RSA NTRU QC-MDPC sec
2016 2048 4411 7836 2112

2520 3072 4939 9856 2128

5200 7680 7447 20480 2192

8325 15360 11957 32768 2256

By contrast, a plain implementation of the bit flipping tech-
nique would take at least 7.2 KiB for the counters alone, far
above the 3.8 KiB RAM available on a PIC24FJ32GA002
microcontroller. For simplicity, we limited the experiments to
1-layer CS-MDPC codes at the 80-bit security level.

In comparison, elliptic curve ElGamal encryption at the
same security level on the ATMega128L platform using the
state-of-the-art RELIC library [1] demands over 31 KiB ROM
and 2.1 KiB RAM.

VII. Conclusion

We described how to scale code-based cryptosystems to
platforms with very constrained storage and processing re-
sources. Central to our proposal is the adoption of quasi-
cyclic LDPC codes coupled with a storage-efficient algorithm
for key pair generation, a carefully tailored variant of hard-
decision decoding, and fine-tuned parameters. The efficiency
of the result is competitive with traditional cryptosystems like
those based on elliptic curves.
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