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Abstract
The success rate is the most common evaluation metric for measuring the performance of a particular side-channel attack
scenario. We improve on an analytic formula for the success rate.

Keywords Side-channel attacks · evaluation metric · success rate

1 Introduction

In [1], a general statistical model for side-channel attack
analysis is proposed. Based on this model, one can calculate
a success rate of an attack by numerical simulation. This suc-
cess rate is themost common evaluationmetric formeasuring
the performance of a particular attack scenario. In [5], it is
stated: “Closed-form expressions of success rate are desir-
able because they provide an explicit functional dependence
on relevant parameters such as number of measurements and
signal-to-noise ratio which help to understand the effective-
ness of a given attack and how one can mitigate its threat
by countermeasures. However, such closed-form expressions
involve high-dimensional complex statistical functions that
are hard to estimate”. In the following, we will derive an ana-
lytic formula for the success rate. Simulation experiments
confirm that this analytic formula is a good approximation
for the success rate for a wide class of leakage functions.

2 Leakagemodel

Weconsider the case of a side-channel attack against a typical
block cipher. We assume that this block cipher consists of
several rounds for encryption and decryption. In each round,
the block cipher uses computations of substitution boxes of
small size n (e.g., 6 bits for DES or n bits for AES), where
the key is mixed with intermediate values.
We further restrict ourselves to the simplest setting:
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– The attacker tries to find an n-bit subkey kc of the S-Box
computation in the first round of the block cipher. The
input of this S-Box computation is of the form pw ⊕ kc
with plaintext inputs pw.

– We have m measurements. m is a multiple of N = 2n ,
and all plaintext inputs pw of this S-Box are equally dis-
tributed over these m measurements.

– The side-channelmeasurement is a trace of a certain num-
ber of points. We assume that the key-dependent leakage
occurs in just one point of time which is known to the
attacker.

– The measurement in this point of time is the sum of a
deterministic signal and Gaussian noise. It can be written
in the form

b̃w = h̃(pw ⊕ kc) + τ̃w.

h̃ is a deterministic function that only depends on the
input pw ⊕ kc of the S-Box computation. h̃ is com-
pletely known to the attacker. τ̃w describes the noise of
the measurement. We assume that τ̃w are realizations of
m independent random variables T̃w; each one is nor-
mally distributed with known expectation and variance.
For ease of notation, we associate the sets {0, 1}n and
{0, 1, . . . , N −1} by the 2-adic representation of an inte-
ger. We further assume

E(T̃w) = 0, V (T̃w) = σ 2,

N−1∑

z=0

h̃(z) = 0,
N−1∑

z=0

h̃(z)2 = N δ̃2.

– We can calculate the mean value of all b̃w with the same
pw. In the representation of b̃w, this just reduces the vari-
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ance of T̃w. Additionally, by applying a constant factor
to each b̃w we can normalize the representation of b̃w. To
this end, we get a representation in the form

bw = h(w ⊕ kc) + τw,w = 0, . . . , N − 1

with

E(Tw)=0, V (Tw)=1,
N−1∑

z=0

h(z) = 0,
N−1∑

z=0

h(z)2=Nδ2.

If we start with the representation of b̃w, the normalized
representation bw has parameter δ with

δ2 = m

N

δ̃2

σ 2 .

As in [1], we now apply the maximum likelihood attack: We
compute the conditional probability density function of the
observations bw under each hypothesis k. We choose as the
correct key that k which maximizes the probability density
function. An easy calculation shows that we have to compare
the values

N−1∑

w=0

(bw − h(w ⊕ k))2.

This can further be reduced to the values

N−1∑

w=0

h(w ⊕ k)bw

since
∑N−1

w=0 h(w ⊕ k)2 does not depend on k. The success
rate as defined in [1] is the probability that

Pr(Xkc > Xk for all k �= kc)

where Xk is the random variable

Xk =
N−1∑

w=0

h(w ⊕ k)(h(w ⊕ kc) + Tw).

This success rate can certainly be computed by numerical
simulation of the Tw.

3 An approximation of the success rate

Let A be the N×N-matrix with entries h(w ⊕ k). The rows
of A are

ak = (h(k), . . . , h(w ⊕ k), . . . , h((N − 1) ⊕ k)).

Let T be the random vector (as column) of length N with
entries Tw. Let d = A · atkc with entries dk . We define the set
R of all vectors of length N with entries yk that fulfill

yk < ykc + Nδ2 − dk for all k �= kc.

An easy calculation shows that the success rate can bewritten
as

Pr(Xkc > Xk for all k �= kc) = Pr(A · T ∈ R).

A is a symmetric matrix, and therefore there exists an
orthonormal basis of eigenvectors v0, . . . , vN−1 with cor-
responding eigenvalues λ0, . . . , λN−1 of A. T can be written
in the basis of eigenvectors in the form

T = X0v0 + · · · + XN−1vN−1

where the Xi are independent randomvariableswith standard
normal distribution. The distribution of A · T is the image of
the standard normal distribution under A. Each vector in the
distribution of T is stretched in the direction of the eigenvec-
tors of A with the corresponding eigenvalue as factor.

A · T = λ0X0v0 + · · · + λN−1XN−1vN−1.

We easily compute

E(||A · T ||2) = N 2δ2 = Nδ2E(||T ||2) = λ20 + · · · + λ2N−1.

For values like n = 6 or n = 8, N = 2n is a relatively large
number, so that the typical vector in the distribution of A · T
has square of norm N 2δ2. As a heuristic approximation for
the success rate, we just replace the distribution of A · T by
the normal distribution stretched by the constant factor 2n/2δ:

1st approx. formula: Pr(2n/2δ · T ∈ R).

In addition, we omit the influence of d and get

2nd approx. formula: Pr(T ∈ R̃)

where R̃ is the set of all vectors tk that fulfill

tk < tkc + 2n/2δ for all k �= kc.

The last probability can be in fact computed as a two-
dimensional integral

Pr(T ∈ R̃)

=
∫ ∞

−∞
1√
2π

exp(−1

2
a2)

[∫ a+2n/2δ

−∞
1√
2π

exp(−1

2
t2)dt

]N−1

da.
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Fig. 1 Second approximating formula. Success rate as function in δ for
n = 8

This expression only depends on δ, so that it can easily be
listed for different δ by numericalmethods. Figure 1 plots this
approximated success rate as computed byMAPLE software
for n = 8.

Remarks:

– If we start with the representation of b̃w, the success rate
as computed by the second approximating formula only
depends on

δ2 = m

N

δ̃2

σ 2 .

– The approximating formulas are only valid if the eigen-
values do not vary too much. As an extreme example,
we can consider the case that only one eigenvalue is
large, whereas the others can be neglected. Let λ0 > 0
be this large eigenvalue. Then, A · T is roughly dis-
tributed as λ0X0v0. Pr(A · T ∈ R) can be written as
a one-dimensional integral over the random variable X0.

– In our approach, we replaced the covariancematrix A2 by
a diagonalmatrix. In effect, we treated Xk as independent
random variables.

– Pr(T ∈ R̃) ≥ 1
N with equality for δ = 0. The probability

of 1
N for δ = 0 follows from the symmetry of the set R̃.

4 More on thematrix A

The properties of the matrix A are used in the context of
dyadic codes; see [2]. In [3], the matrix A is called dyadic
matrix. Due to the structure of A, we can compute the eigen-
vectors of A explicitly: There are N GF(2)-linear functions
L

L : GF(2)n −→ GF(2).

For every L , vL = [(−1)L(w)]w is a vector of length N. For
every k, we have

∑

w

h(k ⊕ w)(−1)L(w)

=
∑

y

h(y)(−1)L(y⊕k) = (−1)L(k)
∑

y

h(y)(−1)L(y).

Therefore,vL is an eigenvectorwith eigenvalue
∑

y h(y)(−1)
L(y). The rank of A is the number of nonzero eigenvalues.

5 Example: h depends on a single bit

Let S be the S-Box of the AES and G a fixed GF(2)-linear
function.We assume that the leakage function h only depends
on G ◦ S, i.e., after normalization

h(w ⊕ k) = δ(−1)G(S(w⊕k)).

The eigenvalues of A are now

∑

y

h(y)(−1)L(y) = δ
∑

y

(−1)G(S(y))(−1)L(y).

With other words: The set of eigenvalues is exactly theWalsh
spectrum of the Boolean functionG◦Smultiplied by δ. Each
eigenvalue is a measure how goodG◦S can be approximated
by a linear function L . S is the composition of the inversion
over F = GF(256) and an affine function. The Walsh spec-
trum of any function of the form G ◦ S is well known: It can
be expressed by the so-called Kloosterman sums; see [4].

K (a) =
∑

y∈Fx

(−1)tr(y
−1+ay)

where tr(y) denotes the trace of y over F . Any GF(2)-linear
function L : F −→ GF(2) can be written as L(y) = tr(ly)
for exactly one l ∈ F . Therefore, we find c ∈ F such that

G(S(y)) ⊕ L(y) = tr(cy−1 ⊕ ly) for all y ∈ Fx

or

G(S(y)) ⊕ L(y) = tr(cy−1 ⊕ ly) ⊕ 1 for all y ∈ Fx .

Note that for c �= 0

∑

y∈Fx

(−1)tr(cy
−1+ly) = K (c · l).

The distribution of the Kloosterman sums can be described
by values of certain class numbers (see [4, Prop. 9.1]), which
can be interpreted in terms of the Walsh spectrum.
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6 Example: h depends on the Hamming
weight of the input

In this example, h does not depend on the output of the sub-
stitution box, but on the Hamming weight of the input. After
normalization, we can write

h(w ⊕ k) = δg(w ⊕ k) with g(z)

= 1√
n
((−1)z1 + · · · + (−1)zn ), z = (z1, . . . , zn).

In this case, A has exactly n eigenvectors with eigenvalues
�= 0 and these are given by the n linear projections

v j = 1

2n/2 [(−1)z j ]z=(z1,...,zn).

The eigenvalues of these n eigenvectors are equal to δ N√
n
.

Since we have only a few eigenvalues �= 0, we cannot expect
that the second approximating formula is a good approxima-
tion in this case.
However, we can derive an exact formula for the success rate:
Since h is a linear function, we have

N−1∑

w=0

h(w ⊕ k)bw = δ√
n

n∑

j=1

(−1)k j

(
N−1∑

w=0

(−1)w j bw.

)

The sums in brackets do not depend on k, so that

max
k

N−1∑

w=0

h(w ⊕ k)bw = δ√
n

n∑

j=1

|
N−1∑

w=0

(−1)w j bw | .

The maximum likelihood attack is therefore successful
exactly in the event that

(−1)kc, j

(
N−1∑

w=0

(−1)w j bw

)
≥ 0 for all j = 1, . . . , n.

With other words: The success rate is the probability that the
random variable Y j fulfills

Y j = (−1)kc, j

⎛

⎝
N−1∑

w=0

(−1)w j (h(w ⊕ kc) + Tw)

⎞

⎠ ≥ 0 for all j = 1, . . . , n.

Y j is normally distributed with an expectation value δN√
n
and

variance N . Since the covariance between Y j and Y j̃ is 0 for

j �= j̃ , the success rate is given by the formula

Pr(Y j ≥ 0, j=1, . . . , n)=
[∫ ∞

− δ2n/2√
n

1√
2π

exp(−1

2
t2)dt

]n

.

Table 1 Comparison of success rates, n = 8

δ = 0.1 δ = 0.2 δ = 0.3

2nd approx. formula 0.13 0.64 0.97

h = δ(−1) f 0.12 0.62 0.96

h = δg ◦ P 0.12 0.62 0.96

Hamming weight formula 0.07 0.33 0.69

h = δg 0.07 0.33 0.69

Table 2 Comparison of success rates, n = 6

δ = 0.2 δ = 0.3 δ = 0.4

2nd approx. formula 0.25 0.53 0.79

h = δ(−1) f 0.24 0.50 0.75

h = δg ◦ P 0.24 0.50 0.75

Hamming weight formula 0.17 0.34 0.55

h = δg 0.17 0.34 0.55

Table 3 Success rates in the case of masking (m = 10 · N 2, input
dependency, n = 8)

σ = 37.6 σ = 26.6 σ = 21.6
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.07 0.33 0.70

Hamming weight formula 0.07 0.33 0.69

7 Simulation results

We computed the success rate for different n, h and δ by
numerical simulation of the Tw. Table 1 compares the success
rates for n = 8, andTable 2 the same for n = 6. In both tables,
f is chosen as a random function GF(2)n −→ GF(2), but
uniformly distributed. P is chosen as a random permutation
on GF(2)n . g is the function from paragraph 6. We repeated
the simulation 1000 times with different f and P , so that a
mean is given in both tables.

We note that the second approximating formula and the
Hamming weight formula from paragraph 6 give different
values for identical δ, but both formulas match the numerical
values very well. In all experiments, the numerical values in
each of the 1000 repetitionswere very close to themean given
in the tables. For n = 8 (Table 1), the empirical standard
deviation was less than 0.004. For n = 6 (Table 2), the
empirical standard deviation was less than 0.02.

8 Success rate in the case of masking

Similar to [5], we can apply the second approximating for-
mula to the case of masking. For a concrete example, we
adapt our leakage model in the following way:
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Table 4 Success rates in the case of masking, (m = N 2, input
dependency),n = 8

σ = 21.1 σ = 14.8 σ = 11.9
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.07 0.33 0.71

Hamming weight formula 0.07 0.33 0.69

Table 5 Success rates in the case of masking, (m = 10 · N 2, output
dependency), n = 8

σ = 37.6 σ = 26.6 σ = 21.6
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.13 0.62 0.96

2nd approx. formula 0.13 0.64 0.97

Table 6 Success rates in the case of masking, (m = N 2, output
dependency),n = 8

σ = 21.1 σ = 14.8 σ = 11.9
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.12 0.62 0.96

2nd approx. formula 0.13 0.64 0.97

– We have m measurements. m is a multiple of N , and all
plaintext inputs pw of this S-Box are equally distributed
over these m measurements.

– There are exactly two points of time when meaningful
leakages occur. Both points of time are known to the
attacker. One leakage is mask-dependent; the other one is
key-dependent, but on the input of anS-Box computation.

– The measurements can be written in the form

b̃′
w = μ(pw ⊕ kc ⊕ mw) + τ̃ ′

w

b̃′′
w = μ(mw) + τ̃ ′′

w.

μ is a centralized form of the Hamming weight, i.e.,

μ(z) = (−1)z1 + · · · + (−1)zn .

τ̃ ′
w and τ̃ ′′

w describe the noise of the measurement. We
assume that τ̃ ′

w and τ̃ ′′
w are realizations of 2m independent

random variables T̃ ′
w, T̃

′′
w ; each one is normally dis-

tributedwith expectation 0 andvarianceσ 2.mw describes
the mask. mw are the realizations of m independent uni-
formly distributed random variables Mw on GF(N ).

We set

cν = N

m

∑

w,pw=ν

b̃′
wb̃

′′
w.

The sum is taken over m
N realizations of independent random

variable. For any fixed mask mw, we compute

E((μ(pw ⊕ kc ⊕ mw) + T̃ ′
w)(μ(mw) + T̃ ′′

w))

= μ(pw ⊕ kc ⊕ mw)μ(mw)

and

V ((μ(pw ⊕ kc ⊕ mw) + T̃ ′
w)(μ(mw) + T̃ ′′

w))

= E((μ(pw ⊕ kc ⊕ mw) + T̃ ′
w)2(μ(mw) + T̃ ′′

w)2)

−μ(pw ⊕ kc ⊕ mw)2μ(mw)2

= σ 2(μ(pw ⊕ kc ⊕ mw)2 + μ(mw)2) + σ 4.

If m
N is not too small, we approximate cν as realizations of

N independent normally distributed random variables, each
with expectation

N

m

∑

w,pw=ν

μ(pw ⊕ kc ⊕ mw)μ(mw)

= N

m

∑

w,pw=ν

μ(ν ⊕ kc ⊕ mw)μ(mw)

and variance

(
N

m

)2 ∑

w,pw=ν

(
σ 2(μ(ν ⊕ kc ⊕ mw)2 + μ(mw)2) + σ 4

)
.

Again if m
N is not too small, we approximate these sums

by the expectation over the random variables Mw. An easy
calculation shows

N

m

∑

w,pw=ν

μ(pw ⊕ kc ⊕ mw)μ(mw) ≈ μ(ν ⊕ kc)

and

(
N

m

)2 ∑

w,pw=ν

(
σ 2(μ(ν ⊕ kc ⊕ mw)2 + μ(mw)2) + σ 4

)

≈ N

m
(2nσ 2 + σ 4).

Since
∑

z μ(z)2 = n · N , we can apply the leakage model of
paragraph 2 with

δ2 = nm

N (2nσ 2 + σ 4)
.

Given the measurements b̃′
w, b̃′′

w, we directly compare the
values

∑

ν

μ(ν ⊕ k)cν
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for different k and decide for the k with the largest value. For
large m, we can expect that the success rate of this ad hoc
attack only depends on δ2 = nm

N (2nσ 2+σ 4)
.

Table 3 gives the success rates of this attack computed
by numerical simulation and n = 8. We compare these suc-
cess rates with the values for the example from paragraph 6
(h = δg). Since the numerical simulations are rather slow,we
repeated the simulation only for a few instances. However,
in all instances the values matched very well.

Table 4 gives similar data, but for m = N 2.
Remark:

The leakage in b̃′
w depends on the input of an S-Box com-

putation. We can certainly consider the case that the leakage
depends on the output of an S-Box computation, i.e.,

b̃′
w = μ(S(pw ⊕ kc) ⊕ mw) + τ̃ ′

w.

The computation is completely analog, but we expect that
the second approximating formula applies. Tables 4 and 5
compare the numerical values for the success rate with the
second approximating formula. Again, we computed only a
few instances, but in all instances the values matched very
well (Table 6)
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