
Journal of Cryptographic Engineering (2022) 12:123–135
https://doi.org/10.1007/s13389-021-00262-x

REGULAR PAPER

Modelling cryptographic distinguishers using machine learning

Carlo Brunetta1 · Pablo Picazo-Sanchez1

Received: 20 October 2020 / Accepted: 24 April 2021 / Published online: 1 July 2021
© The Author(s) 2021

Abstract
Cryptanalysis is the development and study of attacks against cryptographic primitives and protocols. Many cryptographic
properties rely on the difficulty of generating an adversary who, given an object sampled from one of two classes, correctly
distinguishes the class used to generate that object. In the case of cipher suite distinguishing problem, the classes are two
different cryptographic primitives. In this paper, we propose a methodology based on machine learning to automatically
generate classifiers that can be used by an adversary to solve any distinguishing problem. We discuss the assumptions, a basic
approach for improving the advantage of the adversary as well as a phenomenon that we call the “blind spot paradox”. We
apply our methodology to generate distinguishers for the NIST (DRBG) cipher suite problem. Finally, we provide empirical
evidence that the distinguishers might statistically have some advantage to distinguish between the DRBG used.

Keywords Cryptanalysis · Distinguisher · Machine learning · Cipher suite distinguishing problem · Pseudorandom generator

1 Introduction

Nowadays, we use cryptography for almost all online activ-
ities, e.g. payments, secure messaging and web navigation.
Even though cryptography is usually seen as “one” piece,
this is not the case. Cryptographic protocols use different
primitives to provide security, and it is always required that
each primitive needs to achieve a certain level of resistance
against different attacks to be considered secure. Thus, it is
crucial to define and classify what an attack is.

To define a cryptographic attack, we need to specify the
goal and the abilities the adversary has with respect to a
security model that describes how the primitive is used and
attacked [16,19]. For example, the plaintext recovering of an
encrypted message without having the key is, by no means,
the classical example of an attack on an encryption scheme.

Let us consider the concrete scenario in which an adver-
sary is given an object sampled from one of two possible
classes and the goal is to correctly guess the class used to
generate that object. This adversary is known as a distin-
guisher for a distinguishing problem.

B Carlo Brunetta
brunetta@chalmers.se

Pablo Picazo-Sanchez
pablop@chalmers.se

1 Department of Computer Science, Chalmers University of
Technology, Gothenburg, Sweden

A classical example of a distinguishing problem in cryp-
tography is the one used for the pseudorandomness property
of a primitive (G) [16]. Such a problem is defined as how to
distinguish elements generated by G from those uniformly
random generated, i.e. (G, rand). In other words, to prove
the non-pseudorandomness, it would be sufficient to create a
distinguisher D with a non-negligible advantage for solving
the related distinguishing problem.

(ML) and cryptography have been widely combined in
the literature, e.g. from random numbers generation [20,23],
random number prediction [17,18,22] and supervised algo-
rithm using encrypted data [12] to testing how good a (PRG)
is [10].

Our contributions In this paper, we propose a constructive
methodology based onML that allows the generation of sev-
eral distinguishers {Di }i for a given distinguishing problem
between two classes (G0,G1). We implement a tool named
MLCrypto and freely release the code to facilitate futurework
on this line1.

In a nutshell, we generate a dataset that contains tuples
of elements yi together with the classes from which they are
sampled. This dataset is the input of an ML algorithm whose
outputs are a distinguisherDi . It also generates strategies and
solutions to allow an adversary to improve her advantage.
Concretely, we present a strategy that allows us to combine
several distinguishers ({Di }i) generated byMLCrypto to cre-

1 https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-021-00262-x&domain=pdf
http://orcid.org/0000-0001-9363-7585
http://orcid.org/0000-0002-0303-3858
https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/

124 Journal of Cryptographic Engineering (2022) 12:123–135

ate a more accurate distinguisher D. We further discuss the
blind spot paradox, a paradoxical phenomenon that can anni-
hilate any advantage when the attacker unconscionably uses
tools like MLCrypto in realistic attack scenarios.

We present a case study on the cipher suite distinguish-
ing problem on the PRG and based on the (NIST) DRBG.
We remark the state-of-the-art generation of a distinguisher
from statistical test suites and link it with the advantage in
breaking the pseudorandomness property, that is, having an
advantage in discriminating between the PRG and a random
element, with the advantage of distinguishing between two
PRG (G0,G1). We design an experiment that usesMLCrypto
as a distinguisher generator between DRBG recommended
by NIST [4]. In more detail, MLCrypto generates Naive
Bayes classifiers because of their (i) computational effi-
ciency, (ii) implementation simplification and (iii) the lack
of learning parameter to be tuned.

From our experiments, we conclude that both ourmethod-
ology and MLCrypto can be used for efficiently generating
general purpose distinguishers.

Case study: distinguishing NIST DBRGs There are two
main approaches to generate distinguishers: theoretical and
empirical. The theoretical approach consists of searching for
flaws by scrutinising the mathematical primitive definition.
For instance, there are theoretical attacks [8,28] against PRG
proposed by NIST [4] based on specific differential crypt-
analysis [6]. The empirical approach relies on defining a
statistically significant number of experiments to provide
enough confidence of the results, used to create a distin-
guisher. For instance, the test suite provided by NIST [5]
is composed of multiple statistical tests that check whether
the outputs generated by the PRG have some kind of corre-
lation with the presence of some pattern—defined by each
one of the tests. After running these tests, the outputs are
compared to the result that a uniform distribution generates.
The more the passed tests, the more the confidence in stating
that the PRG is pseudorandom.

However, all these tests can, and more specifically the
failed ones, be used to distinguish between PRG and real
randomness. By observing the failing tests, a distinguisher
can infer that the input elements are generated by PRG. They
can be used to define fingerprints of the PRG, i.e. each PRG
is prone to fail the same tests, uniquely identifying them.
Concretely, this distinguisher can be used to solve a related
problem named cipher suite distinguishing problem [16].
Similar to pseudorandomness, an attacker has to discrimi-
nate between objects generated by two different primitives
(G0,G1) and not from random elements.

Related work Other works propose to distinguish between
random numbers generated with block ciphers [2,9,11,14,15,
25,29] of which a vast majority extract features coming from
the statistical tests proposed by NIST (NIST STS) [5] and
use them as inputs of ML algorithms. While the documen-

tation provided by the NIST does not provide any formal
security analysis [13], Woodgate et al. [28] carry out an in-
depth security review. Contrarily to prior proposals, we apply
MLCrypto to DRBG recommended by NIST [4], being able
to statistically distinguish between two pairs of generators.

To extract features fromNIST STS to distinguish between
random data generated from block ciphers, Zhao et al. [29]
use (SVM). They use OpenSSL to generate ciphertexts from
AES, Camellia, Blowfish, DES, IDEA and TDEA algorithms.
Authors derive 54 features from the NIST STS, obtaining
that accuracies of 42 features are higher than 50% while
the accuracies of 12 features are higher than 60%. Hu et
al. [15] use random forest to classify random data from 16
block chipers instead of the 6 that Zhao et al. use, obtaining
an accuracy of 88% in the classification. Svenda et al. [26]
use software circuits together with evolutionary algorithms
to search for patterns, random bit predictability and random
data indistinguishability.

Contrarily to the aforementioned works, instead of dis-
tinguishing between random data, we use MLCrypto as a
machine learning approach to distinguish between the func-
tions that generate these data, i.e. in our case study, we create
distinguishers between NIST DRBG [4].

Paper organisation In Sect. 2, we give a brief introduc-
tion to pseudorandom generators, NIST DRBG and machine
learning. Section 3 describes the methodology for generat-
ing distinguishers using machine learning and additionally
discusses limitation, such as the blind spot paradox, and a
possible strategy to amplify the adversarial advantage. In
Sect. 4, we implement our methodology into the MLCrypto
tool and consider a particular case study based onDRBG rec-
ommended by NIST. This paper ends with ideas for future
work in Sect. 5.

2 Preliminaries

In this section, we present definitions and concepts used
throughout the paper.

Notation Let Pr
x∈X

[E] denote the probability computed over

the x ∈ X that the event E occurs. We will omit the proba-
bility space whenever it is clear by the context, i.e. Pr [E].

The random sampling in the set X is denoted as x←$X and,
whenever it is not specified, the sampling is always consid-
ered to be uniform at random. Let the natural number be
denoted with N, the real number field with R and the posi-
tive ones with R+. Let [a, b] denote the interval between a
and b, comprised. The space of binary strings of length � is
{0, 1}� while ‖ denotes binary concatenation.

Cryptography We report the definition of a pseudorandom
generator (PRG) and the abstract NIST construction frame-

123

Journal of Cryptographic Engineering (2022) 12:123–135 125

Fig. 1 A state machine representation of the NIST DRBG work flow

work for a DRBG. For readability, we omit the error handling
of these constructions.

Definition 2.1 (PRG [19])Given thepositive integers�in, �out ∈
N with �out > �in, let G : {0, 1}�in → {0, 1}�out be a
deterministic function. We say that G is a pseudorandom
generator if the following two distributions are computa-
tionally indistinguishable for a distinguisher D:

– Sample a random seed s←${0, 1}�in and output G(s).
– Sample a random string r←${0, 1}�out and output r.

Definition 2.2 (Abstract NIST DRBG) Letλ ∈ N be the secu-
rity parameter, s̃ ∈ {0, 1}λ a bit string obtained by a random
source, �s ∈ N the seed length and �r ∈ N the number of iter-
ations before requiring the seed’s reseed. We define a seed
s̃ ∈ {0, 1}�s , a nonce ν ∈ {0, 1}λ and an auxiliary string
aux ∈ {0, 1}∗. Let a NIST abstract DRBG be defined by the
algorithms:

– init(̃s, ν, aux, λ) → st1: given a random binary string
s̃, a nonce ν, an auxiliary string aux and the security
parameter λ , the instantiation algorithm outputs the ini-
tial internal stage st1.

– reseed(st, s̃′, aux) → st′1: given an internal state st, a
random binary string s̃, an auxiliary binary string aux,
the reseeding algorithm outputs a fresh initial internal
stage st′1.

– gen(sti , n, aux) → (y, sti+1): given the internal state
sti , a non-zero number of output bit n ∈ N and an aux-
iliary string aux, the generation algorithm outputs the
pseudorandom bit-string y ∈ {0, 1}n and the successive
internal stage sti+1.

The DRBG is defined as a state machine, and it is depicted
in Fig. 1. It takes a random binary string s̃, a nonce ν, an aux-
iliary string aux and the security parameter λ to initialise the
internal state and generates the internal state st1. The internal

state sti is used as input of subsequent updates togetherwith a
nonzero number n ∈ N indicating the number of random bits
requested and an auxiliary string aux. It outputs a n random
bit-string y and updates the internal state to the next state
sti+1. Whenever it is requested, the DRBG can be reseeded,
i.e. it starts again from a new internal state producing a new
st′1 given a previous state sti , a new random binary string s̃′
and some auxiliary information aux′.

To correctly instantiate the DRBG, the NIST suggests
three different constructions: (1) a hash function; (2) the
HMAC of a hash function and (3) a block cipher in counter-
mode. NIST requires the use of recommended cryptographic
primitives [4], e.g. HMAC with a secure hash function,
AES-128 or SHA-2 family, and a bit string obtained by a
secure random source [3,24]. Whenever it is not specified,
we always consider NIST approved primitives and security
parameters.

Machine learning Roughly speaking, ML is a set of algo-
rithms whose goal is finding and describing patterns over
a dataset. The dataset is usually composed of independent
instances each one defined by a set of features or attributes.
Once the dataset is generated, it is used as input of the ML
that produces the knowledge that has been learnt [1].

There are for main types of learning: (i) supervised learn-
ing or classification; (ii) unsupervised learning or clustering;
(iii) association; and (iv) numeric prediction [27]. In super-
vised learning, theML learns froman already labelled dataset
and it tries to predict the class of a new instance. On the con-
trary, in unsupervised learning, the dataset is not labelled
and the ML algorithm looks for common patterns based on
heuristics. Association seeks for relationships between the
features of the dataset, whereas the goal of the numeric pre-
diction learning algorithms is to predict numbers instead of
(labelled) data.

Naïve Bayes. The intuition behind Naïve Bayes is that
features are independent and equally important. This is the
consequence of applying the Bayes theorem into a classifi-

123

126 Journal of Cryptographic Engineering (2022) 12:123–135

cation algorithm. There is a particular case of Naïve Bayes
algorithmwhen the likelihood of the features follows aGaus-
sian distribution, i.e.when the (continuous) values associated
with each feature are distributed according to a Gaussian dis-
tribution.

3 Machine learning distinguishers

In this section,we formally define the distinguishing problem
and present our methodology which explains howML can be
used to solve a distinguishing problem.Wediscuss how to use
the accuracy we obtain from ML as a cryptographic advan-
tage, a curious phenomenon we call “blind spot paradox”,
and propose a genericmethodology to increase the advantage
of a distinguisher at the cost of generating multiple ones.

In cryptography, it is common to find security properties
defined by the probability of an adversary A being able to
distinguish between two different instances. For example, in
a simulation-based proof,Amust discriminate between a real
execution of a protocol and an ideal functionality assumed
to be secure. Whenever proving the pseudorandomness of
a function, A must choose if a value is computed by the
function or if it is randomly sampled.

Definition 3.1 (Distinguish problem) Let G0 and G1 be two
classes, b←${0, 1} a randomcoin flip and y an element ofGb.
Consider a distinguisher D that takes as input y and outputs
a guess b′. We define the distinguish problem as D’s task in
discriminating the membership of the value y ∈ Gb between
the two classes (G0,G1) and with advantage2:

AdvDG0,G1
=

∣

∣

∣2 · Pr [D(y) = bi] − 1
∣

∣

∣ (3.1)

Even though the abstract definition form, the distinguishing
problem appears as the core concept behind many impor-
tant cryptographic security problems: pseudorandomness is
defined as a distinguishing problem between a primitive G
and a real random process; in an indistinguishable cipher
plaintext attacks, it is required to distinguish a ciphertext
between two possible messages, and the cipher suite prob-
lem requires to discriminate between different primitives
(G0,G1).

3.1 Our methodology: from classifiers to
distinguishers

Our methodology, depicted in Fig. 2, is based on the idea
that a supervised learning algorithm can be used by an
adversary A to create a distinguisher D between two classes

2 We omit to specify the classes, i.e. AdvD, when they are clear by the
context.

(G0,G1). We must observe that a supervised learning algo-
rithm requires an input of a labelled dataset of correctly
classified values (yi ,Gbi), such that yi ∈ Gbi , that are used
to define the classifier. Our methodology assumes that an
adversary A can pre-compute any labelled simulated train-
ing dataset, i.e. A can easily compute different but related
instances of (G0,G1), e.g. by sampling a different secret key.
In thisway,A can simulate arbitrarily labelled datasetswhich
might not refer to the original problem instance between
(G0,G1)but are somehow related, and thus,we consider them
as correct.

The output of the algorithm is a classifier D that works
exactly as a distinguisher, i.e. provided an element y, it
guesseswhether y belongs toG0 orG1. Thenext step is to con-
sistently evaluate the accuracy that this distinguisher obtains.
For the sake of simplicity, in this paper, we consider the
classifier accuracy as the probability of correctly guessing
the class for every element of a target dataset Y. However,
other mechanisms can also be used to evaluate the accuracy
like computing the confusion matrix and cross-validate the
obtained results. We formally3 define the accuracy as:

AccDG0,G1
(Y) = Pr

yi ∈Y
[

D(yi) = Gbi

]

Observe that the distinguisher’s accuracy highly depends
on the target dataset Y. This implies that the accuracy com-
puted by a distinguisher generated by our methodology is
not directly related to the distinguisher’s advantage previ-
ously described in the distinguishing problem of Definition
3.1. The reason is that the accuracy is computed over a target
subset Y, which is generally much smaller than the set Y of
all the possible elements. In other words, it is not possible to
compare the accuracy Pr

yi ∈Y
[D(yi) = bi] and the probability

Pr
yi ∈Y

[D(yi) = bi] because the target Y might not be repre-

sentative of the whole space Y, i.e. Y might, for example,
only contain “easy to classify” elements providing therefore
a high accuracy for D even though it might have no crypto-
graphic advantage.

Roughly speaking, the accuracy can be seen as a statis-
tical estimator of the advantage AdvD meaning that there
is a strong conceptual gap between theoretical and empir-
ical results. However, it is possible to estimate both the
dimensions and the number of samples needed to achieve
a statistically relevant distinguisher, e.g. by verifying some
accuracy properties with an appropriate statistical test and
later evaluate the power analysis to confirm/evaluate the
amount of sample needed to reach statistic relevance.

For the rest of the paper, we assume that there is always a
way to correctly generate statistically relevant distinguishers

3 We will omit to specify the classes whenever they are clear by the
context.

123

Journal of Cryptographic Engineering (2022) 12:123–135 127

Fig. 2 Abstract representation of our methodology

Di for any pair of classes (G0,G1). Furthermore, we refer to
D’s advantage as:

AdvDG0,G1
(Y) =

∣

∣

∣2 · AccDG0,G1
(Y) − 1

∣

∣

∣

Note that, whenever it is possible, the adversary A can
generate many different training datasets, thus obtaining a
set of n distinguishers {Di }n

i=1 each having its own accuracy

AccDi
G0,G1

(Y). By correctly analysing the accuracy’s distribu-
tion,A can consider different attack strategies. Let us explain
this concept with an example. Suppose that all the distin-
guishers generated byA have the same accuracy of 0.5. This
means that A has no advantage and therefore must abandon
the idea of solving the distinguishing problem. Differently,
ifA observes that a distinguisher Di has an accuracy 0.5− δ

for some positive δ ∈ R+,A can invert Di ’s output to define
a new distinguisher D′

i with accuracy 0.5 + δ. In this case,
A can transform distinguishers with an advantage in making
wrong guesses into distinguishers that make correct guesses
with the same advantage.

In summary, our methodology allows an adversary A to
produce ML generated distinguishers if A can:

(i) pre-compute labelled simulated training datasets;
(ii) obtain statistically relevant target datasets, and;
(iii) run appropriate tests to evaluate the accuracy.

Consider an adversaryA that, after executing our method-
ology, obtains several distinguishers of which she does not
know the accuracy distribution. Despite the odd requirement,
observe that this is the standard in practice since, to compute
the accuracy distribution, it is required to obtain a correct tar-
get dataset which might not be obtainable, e.g. a primitive’s
security might be defined as a distinguisher problem where
the adversary cannot query the correct primitive instantiation,
thus not allowing A to get any target dataset.

Fig. 3 Representation of the blind spot paradox

The blind spot paradox, depicted in Fig. 3, is the para-
doxical phenomenon where a blind adversaryAthat does not
know whether a specific distinguisher has an advantage or
not is unable to spot how to correctly utilise the results, thus
annihilating any advantage possessed. This paradox arises
naturally whenever the accuracy is distributed symmetrically
with respect to the probability of 0.5.Consider a distinguisher
D and observe that, without any precise knowledge, it is
impossible to know if D has a potential advantage δ or −δ.
The symmetric accuracy’s distribution property implies that
the probability ofD being a “good” or a “bad” distinguisher
is the same. For this reason,A is unable to properly utilise the
potential advantage obtained, thus giving rise to the paradox.
To avoid the paradox, it is necessary to allow the adversary
to receive “hints” in the form of a statistically relevant list
of target’s outputs correctly classified. In this way, the adver-
sary can get an estimation of the accuracy distribution and
use this information to “filter out the bad” distinguishers.
This completely breaks the symmetry of the distinguishers
and allows them to use the “good” distinguishers. Of course,
these hints might not be allowed by some theoretical secu-
rity’s properties but might better represent a realistic usage
of such property.

123

128 Journal of Cryptographic Engineering (2022) 12:123–135

3.2 Distinguisher accuracy amplification

In this section, we propose a generalisation method to
combine and amplify the advantage of several independent
distinguishers into a more accurate one by assuming that all
the distinguishers have the same accuracy. The underlying
reasoning still holds even when considering different accu-
racy’s distribution assumptions.

Let us assume we have n distinguishers {Di }n
i=1, between

classes (G0,G1), all with the same accuracy p > 0.5. We
require the distinguishers to be independent in the sense that
they are generated from different and independent training
sets. Our goal is to consider the majority of all the n dis-
tinguisher’s guesses. In order to always have a majority, we
must assume that n is odd, i.e. there exists k ∈ N such that
2k + 1 = n.

Proposition 3.1 Let k ∈ N, 0.5 < p < 1, n = 2k + 1
and {Di }n

i=1 be independent distinguishers with accuracy
p. We define the distinguisher D′ as the majority func-
tion of the n independent Di guesses. Formally, D′(y) =
maj (D1(y), . . . ,Dn(y)). Then, it holds that D′ has an accu-
racy pk greater than p.

Proof Note that the distinguisher’ outputs define a binomial
distribution of parameters p and n where the probability of
“t distinguishers are correct” is:

Pr [t are correct,] =
(

2k + 1

t

)

· (1 − p)2k+1−t · pt

Thefinal guess ofD′ is defined by at least k+1 distinguish-
ers that have the same guess. This implies that the accuracy
of D′ directly depends on p and n. Formally, the probability
of correctly guessing the distinguishing game for D′, with
q = (1 − p), is:

pk = Pr
[

D′correct
] = Pr

[≥ k + 1
Dicorrect

]

=
2k+1
∑

t=k+1

(

2k + 1

t

)

· q2k+1−t · pt

Let us recall the binomial identities
(j

k

) = (j−1
k

) + (j−1
k−1

)

and
(2k−1

t

) = 0 whenever t > 2k − 1. Let us define p0 to
be exactly p. Our goal is to consider the probability pk and
obtain a relation with respect to pk−1. Then, it holds that:

pk =
2k+1
∑

t=k+1

(

2k + 1

t

)

· q2k+1−t · pt

=
2k+1
∑

t=k+1

((

2k − 1

t

)

+2 ·
(

2k − 1

t − 1

)

+
(

2k − 1

t − 2

))

·

· q2k+1−t · pt

=
2k+1
∑

t=k+1

(

2k − 1

t

)

· q2k+1−t · pt

+ 2
2k+1
∑

t=k+1

(

2k − 1

t − 1

)

· q2k+1−t · pt

+
2k+1
∑

t=k+1

(

2k − 1

t − 2

)

· q2k+1−t · pt (3.2)

Let us take a look at the addend and observe that it can be
rewritten as:

2k+1
∑

t=k+1

(

2k − 1

t

)

· q2k+1−p · pt

= q2 ·
2k−1
∑

t=k+1

(

2k − 1

t

)

· q2k−1−t · pt

= q2 ·
(

2k−1
∑

t=k

(

2k − 1

t

)

· q2k−1−t · pt

)

− q2
(

2k − 1

k

)

· qk−1 · pk

= q2 · pk−1 −
(

2k − 1

k

)

· qk+1 · pk (3.3)

where we note the presence of a relation to the winning prob-
ability pk−1. Similarly, we manipulate the second and third
addends and obtain:

2
2k+1
∑

t=k+1

(

2k − 1

t − 1

)

· q2k+1−t · pt

= 2 · p · q ·
2k
∑

t=k+1

(

2k − 1

t − 1

)

· q2k−t · pt−1

= 2 · p · q ·
2k−1
∑

t=k

(

2k − 1

t

)

· q2k−1−t · pt

= 2 · p · q · pk−1 (3.4)

2k+1
∑

t=k+1

(

2k − 1

t − 2

)

· q2k+1−t · pt

= p2 ·
2k+1
∑

t=k+1

(

2k − 1

t − 2

)

· q2k+1−t · pt−2

= p2 ·
2k−1
∑

t=k

(

2k − 1

t

)

· q2k−1−t · pt+

+ p2 ·
(

2k − 1

k − 1

)

· qk · pk−1

123

Journal of Cryptographic Engineering (2022) 12:123–135 129

= p2 · pk−1 +
(

2k − 1

k − 1

)

· qk · pk+1

= p2 · pk−1 +
(

2k − 1

k

)

· qk · pk+1 (3.5)

where we used the fact that:

(

2k − 1

k − 1

)

= (2k − 1)!
(k − 1)! · k! =

(

2k − 1

k

)

By putting together Equations 3.3, 3.4,3.5 into Equation 3.2,
it holds that:

pk = pk−1

(

q2 + 2qp + p2
)

+
(

2k − 1

k

)

· qk · pk+1

−
(

2k − 1

k

)

· qk+1 · pk

= pk−1
(

q + p
)2 +

(

2k − 1

k

)

· (

q · p
)k · (

p − q
)

= pk−1 +
(

2k − 1

k

)

· (

q · p
)k · (

2p − 1
)

from which we observe that pk > pk−1 whenever:

pk > pk−1 ⇔
(

2k − 1

k

)

· (

q · p
)k · (

2p − 1
)

> 0

⇔ (

2p − 1
)

> 0 ⇐⇒ p >
1

2

which is true by our hypothesis. The distinguisher D′ built
with 2k + 1 distinguisher has an accuracy pk > pk−1 >

· · · > p0 = p, concluding our proof. �

4 Case study: cipher suite distinguisher for
pseudorandom generators

In this section, we implement our methodology into the
MLCrypto tool which we use to create distinguishers for
NIST DRBG. We also discuss the connection between our
empirical results and the constraints posed by a possible real
attack against the primitives.

Let us consider a PRG G : {0, 1}�in → {0, 1}�out , as in
Definition 2.1, and focus on the pseudorandomness prop-
erty. Such a property states the indistinguishability between
the distributions of the G’s outputs and the uniformly ran-
dom elements. By using the game-proving framework, it is
required that any distinguisher D is unable to distinguish
between a random value and G’s output when provided by
the challenger. Formally, we define the advantage as:

AdvDG,rand(λ) = |Pr [D(G(s)) = G] − Pr [D(r) = G]|

for some random seed s←${0, 1}�in , uniformly sampled
r←${0, 1}�out . The theoretical approach is conceptually sim-
ple and tight but infeasible because it requires a function that
outputs random elements, which is, by other terms, precisely
what the PRG tries to emulate, thus creating a brain-twisting
loophole in which the goal is the solution at the same time.

To avoid this loophole, we can use a statistical approach,
which consists of running several statistical tests using the
outputs of G. After running G, the tests compare the real and
the theoretical distributions to accept/reject the hypothesis
thatG is random or not. There are several statistical test suites
to analyse the PRG such as NIST STS [5], Dieharder [7] and
TestU01 [21].

Let us explain the approach with an example. Consider a
list of N outputs {yi }N

i=1 from a pseudorandomG ofwhichwe
want to determine if they appear random. To do so, consider
the statistical test that shows the frequency of 1s in the output,
i.e. it returns the number of 1s in a given output binary string.

Theoretically, we know that the output should describe
the binomial distribution of which we know the character-
istic function, i.e. the function that describes the probability
distribution. For this reason, we apply the test on the set of
outputs {yi }N

i=1 and compare it with the theoretical binomial
ones thus testing if the outputs are “binomial enough”. In
Fig. 4, we illustrate the possible outcomes of the test where
we compare the ideal distribution (b) with respect to a fitting
(c) and a completely random one (a).

The tests take an analytical approachby computing precise
values, e.g. the p-value for some specific statistical test. By
repeating the test multiple times, it is possible to improve the
confidence of the result. Sadly, regardless of the number of
different tests we can perform and analyse, this approach can
only state if a generator is plausibly pseudorandom or not.

On the other hand, the statistical approach allows the direct
construction of a distinguisher D for the general pseudo-
randomness property, i.e. D executes the statistical test on
the given output and uses the test results to discriminate
between pseudorandom and non-pseudorandom. A failing
test result allowsD to have an advantage in discriminate non-
pseudorandom PRG.

Let us take a step back and observe that the pseudorandom
property can be modified into a cipher suite distinguish-
ing problem in which a distinguisher D must distinguish
between two different generators G0 and G1, regardless of
their pseudorandom properties. By arithmetic manipulation
of Equation 3.1, we obtain:

AdvDG0,G1
(λ)

=
∣

∣

∣Pr [D(G1(s)) = G1] − Pr [D(G0(s)) = G1]
∣

∣

∣

=
∣

∣

∣Pr [D(G1(s)) = G1] − Pr [D(r) = G1]

123

130 Journal of Cryptographic Engineering (2022) 12:123–135

(a) (b) (c)

Fig. 4 Example of distribution fitting with respect to an ideal binomial distribution

+ Pr [D(r) = G1] − Pr [D(G0(s)) = G1]
∣

∣

∣

≤
∣

∣

∣Pr [D(G1(s)) = G1] − Pr [D(r) = G1]
∣

∣

∣

+
∣

∣

∣Pr [D(r) = G1] − Pr [D(G0(s)) = G1]
∣

∣

∣

≤ AdvDG0
, rand(λ) + AdvDrand,G1

(λ)

where the second addend:

∣

∣

∣Pr [D(r)=G1]− Pr [D(G0(s))=G1]
∣

∣

∣ ≤ AdvDrand,G1
(λ)

measures the probability of D to wrongly distinguishing G0.
By the nature of the absolute value, we canmodify this faulty
distinguisher into a correct one by just flipping D’s output.
The idea behind our observation is that, by triangular dis-
equality, distinguishing between two generators imposes a
lower bound on the generator’s pseudorandomness advan-
tage. Formally:

AdvDG0,G1
(λ) ≤ AdvDG0,rand(λ) + AdvDrand,G1

(λ) (4.1)

Since executing the cryptanalysis necessary to create D is
tedious, time-consuming and a human-intensive task, we use
MLCrypto to automatically generate D from different NIST
DRBG outputs.

4.1 Experiments and results

In this section, we analyse the distinguishers generated by
MLCrypto for the cipher suite distinguishing problem. Con-
cretely, we focus on the DRBG that NIST recommends [4].
Also, all the experiments we present in this section were run
on an Intel(R)Core(TM) i7-4790CPU@3.60GHz and 16GB
ofRAMwithLinux.We implementMLCrypto in Python, and

all the source code of our tool is freely released for future
research4.

For this experiment, we consider the NIST DRBG
based on the primitives TDEA, AES-256, SHA-256 and
HMAC-SHA-256. The choice of these DRBG is arbitrary, and
if other primitives were chosen, the conclusions remain the
same.

For all the experiments, there is a common initial phase
where we calculate all possible pairs of combinations
(alg0, alg1) of the primitives and we accordingly gen-
erate the training and target datasets. For the training
dataset, we want to simulate an adversary who cannot
create such a dataset with the same seed as the target.
Thus, all the training datasets have different seeds than
the targets ones. In our case study, we analyse if the dis-
tribution of the accuracy of the distinguishers generated
by MLCrypto (see Sect. 3) is affected by (i) the size of
the datasets (training and target) and (ii) different target
dataset.

The reason why we chose Naive Bayes classifiers for
MLCrypto is that they are (i) computationally efficient, (ii)
simple to implement and (iii)lack of learning parameter to be
tuned.

Dataset size To cross-validate our ML classifiers, we
check if the size of the datasets affects the output of the
distinguisher. To do so, we generate for each primitive alg a
training dataset Xalg containing nX outputs of alg and a tar-
get dataset Yalg containing nY outputs of alg. In more detail,
the size of the training (nX) and the target (nY) datasets are
nX ∈ {2i : i ∈ [12, 14]} and nY ∈ {2i : i ∈ [14, 16]},
respectively. The datasets generation is computationally effi-
cient, and the size average with 216 values is ∼ 1.1 MB.
We independently executeMLCrypto tX times with a freshly
generated training dataset, say X′, but with the same target
dataset Y. Concretely, we consider tX = 210 which would
provide to compute a Cohen’s coefficient of d = 0.0876 for

4 https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/.

123

https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/

Journal of Cryptographic Engineering (2022) 12:123–135 131

Fig. 5 Distinguishers’ accuracy distributions of two arbitrary primitives computed for 3 different training dataset sizes

Fig. 6 Distinguishers’ accuracy distributions of two arbitrary primitives computed for 4 different target datasets

a statistical power of p = 0.8, whenever analysing the distin-
guishers’ accuracy distribution with a one-sample t-Student
test with significance level α = 0.5. In other words, the
size of our datasets, as well as the number of tests, provides
a (simplistic) statistical analysis that the obtained classifiers
accuracy’s distribution has some statistical confidence. In
Fig. 5, we observe that changing the training dataset size
nX does not have any major impact on the accuracy distri-
bution. This suggests that it is possible to provide smaller
training datasets and still achieving the same accuracy dis-
tribution. Finally, we also checked our model’s ability to
predict new data (i.e. avoid overfitting or selection bias); we
obtained the cross-validation value of each one of the experi-

mentsweperformed. Inmore detail,we computed the 10-fold
cross-validation using the function provided by scikit-learn
and got a consistent accuracy in all our independent experi-
ments.

Different targets We generate the training datasets of such
primitives and obtain a distinguisher D for the algorithms
(alg0, alg1). Once we have D, we randomly generate a tar-
get dataset and compute the accuracy of the distinguisher
as AccDalg0,alg1 . Figure 6 depicts that the same distinguish-
ers define different accuracy distributions when computed
on different target datasets. This phenomenon is explained
by the fact that each target dataset is generated using a differ-
ent seed thus making the generator de facto different. This

123

132 Journal of Cryptographic Engineering (2022) 12:123–135

Fig. 7 Distinguishers’ accuracy distributions of the combination between the primitives in alg. We compute the distributions for 3 target dataset
sizes and 3 training ones

implies that an increased accuracy advantage δ for a distin-
guisherD holds exclusively for a specific target. By changing
the target, D changes the advantage to a different value δ′.
We also consider a variation of nY and observe that the peaks
are differently spread. This is coherent when considering that
a smaller dataset X′ is a sample of a bigger one X, meaning
that X′ might not be a statistically significant representation
of X. This implies the necessity of always using statistically
significant target datasets when computing the accuracy dis-
tribution.

Timing and space efficiency In total, we generate 4 ·
(1 + tX) = 4100 independent datasets, being 4 the num-
ber of different primitives considered, and

(4
2

) · tX · 3 =
18432 distinguishers, being 3 the distinct nX possible val-
ues. Each distinguisher outputs 3 values, being 3 the number
of distinct nY possible values of a total of 55296 mea-
surements. In Fig. 7, we show how the accuracy of the
distinguishers is always distributed with either a single
peak centred in 0.5 or as two symmetric peaks at value
0.5 ± δ for some non-negligible δ ∈ R+ of the order
of δ ∼ 10−3. This demonstrates that MLCrypto can cre-
ate a distinguisher D with advantage AdvD = 2δ. Even

though that δ might initially be small when we consider
only the distinguishers with accuracy 0.5 + δ, we apply
the distinguisher’ amplification method presented in Propo-
sition 3.1 to increase up that advantage. For instance, in
this case we have tX

2 − 1 = 511 distinguishers with an
accuracy of p ∼ 50.1% which implies that the ampli-
fication method creates a distinguisher D′ with accuracy
p′ ∼ 51.8%.

For completeness, we execute MLCrypto over all the
NIST DRBG, with training datasets size nX = 213 and
target dataset size nY = 216 of which accuracy distribu-
tions are depicted in Fig. 8. We observe that the accu-
racy distribution is always symmetric. This means that
a blind adversary A must face the blind spot paradox,
allowing us to empirically confirm that NIST DRBG are,
most probably, hard to distinguish between themselves.
On the other hand, if A can reconstruct the distribution,
then there is a concrete possibility to achieve a non-
negligible advantage in distinguishing between the primi-
tives.

123

Journal of Cryptographic Engineering (2022) 12:123–135 133

Fig. 8 Distinguishers’ accuracy distribution of all the NIST recommended DRBG combinations with training dataset size nX = 213 and target
dataset size nY = 216

123

134 Journal of Cryptographic Engineering (2022) 12:123–135

5 Conclusions and future work

In this paper, we presented a methodology to use ML in
developing practical distinguisher for cryptographic pur-
poses. In particular, we show how it can be used for solving
and analysing instances of distinguishing problems, e.g. we
analyse the distinguishers obtained by MLCrypto for the
cipher suite distinguishing problem between NIST DRBG.
We foresaw the possibility of applying our tool to cipher
suite distinguishing problems for block ciphers, hash func-
tions, message authentication codes and similar primitives.
The generality of our method allows it to be used for more
practical problems related to side-channel attacks where the
attacker is interested in distinguishing between two prim-
itives based on non-cryptographic measurements, e.g. the
power consumption and the computational timing, and pro-
vides a consistent framework for future comparison between
distinguishers generated by different ML approaches, e.g.
random forest, neural network or the multi-layers perceptron
model [2].

Acknowledgements This work was partially supported by the Swedish
Foundation for Strategic Research (SSF).

Funding Open access funding provided by Chalmers University of
Technology.

Declarations

Conflict of interest The authors declare that they do not have conflict
of interests.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alpaydin, E.: Introduction to Machine Learning, 3rd edn. (2014)
2. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted

differential distinguishers for lightweight ciphers (extended ver-
sion) (2020)

3. Barker, E., Kelsey, J.: Recommendation for Random Bit Gener-
ator (RBG) Constructions. Technical report. National Institute of
Standards and Technology (2016)

4. Barker, E.B., Kelsey, J.M.: Recommendation for Random Number
GenerationUsingDeterministicRandomBitGenerators. Technical
report. NIST SP 800-90Ar1. National Institute of Standards and
Technology (2015). https://doi.org/10.6028/NIST.SP.800-90Ar1

5. Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker,
E., Leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, N.,
Dray, J.: A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications. Technical
report. National Institute of Standards and Technology (2010).
https://doi.org/10.6028/NIST.SP.800-22r1a

6. Biham, E., Shamir, A.: Differential cryptanalysis of DES-
like cryptosystems. J. Cryptol. (1991). https://doi.org/10.1007/
BF00630563

7. Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: A Random
Number Test Suite. Open Source Software Library (2013)

8. Cohney, S., Kwong, A., Paz, S., Genkin, D., Heninger, N., Ronen,
E., Yarom, Y.: Pseudorandom black swans: cache attacks on
CTR_DRBG. In: S&P (2020)

9. Dileep, A., Sekhar, C.: Identification of block ciphers using support
vector machines. In: IEEE International Joint Conference on Neu-
ral Network Proceedings (2006). https://doi.org/10.1109/IJCNN.
2006.247172

10. Fischer, T.: Testing cryptographically secure pseudo random
number generators with artificial neural networks. Trust-
Com/BigDataSE (2018). https://doi.org/10.1109/TrustCom/
BigDataSE.2018.00168

11. Gohr, A.: Improving attacks on round-reduced speck32/64 using
deep learning. In: Advances in Cryptology—CRYPTO 2019
(2019). https://doi.org/10.1007/978-3-030-26951-7_6

12. González-Serrano, F.J., Amor-Martín, A., Casamayón-Antón, J.:
Supervised machine learning using encrypted training data. Int. J.
Inf. Secur. 17(4), 365–377 (2018)

13. Hirose, S.: Security analysis of DRBG using HMAC in NIST SP
800–90. Inf. Secur. Appl. (2009). https://doi.org/10.1007/978-3-
642-00306-6_21

14. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Van-
dewalle, J.: Machine learning in side-channel analysis: a first
study. J. Cryptogr. Eng. (2011). https://doi.org/10.1007/s13389-
011-0023-x

15. Hu, X., Zhao, Y.: Block ciphers classification based on random
forest. J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-
6596/1168/3/032015

16. Joux, A.: Algorithmic Cryptanalysis (2009)
17. Kant, S., Khan, S.S.: Analyzing a class of pseudo-random bit gen-

erator through inductive machine learning paradigm. Intell. Data
Anal. 10(6), 539–554 (2006)

18. Kant, S., Kumar, N., Gupta, S., Singhal, A., Dhasmana, R.: Impact
of machine learning algorithms on analysis of stream ciphers. In:
ICM2CS (2009). https://doi.org/10.1109/ICM2CS.2009.5397953

19. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (2014)
20. Koza, J.: Evolving a computer program to generate random num-

bers using the genetic programming paradigm. In: International
Conference on Genetic Algorithms (1991)

21. L’Ecuyer, P., Simard, R.: TestU01: a C library for empirical testing
of random number generators. ACM Trans. Math. Softw. (2007).
https://doi.org/10.1145/1268776.1268777

22. Peinado, A., Ortiz, A.: Prediction of sequences generated by LFSR
using back propagation MLP. Sococisisiceute (2014). https://doi.
org/10.1007/978-3-319-07995-0_40

23. Sipper, M., Tomassini, M.: Generating parallel random number
generators by cellular programming. Int. J. Mod. Phys. C (1996).
https://doi.org/10.1142/S012918319600017X

24. Sönmez Turan, M., Barker, E., Kelsey, J., McKay, K., Baish, M.,
Boyle, M.: Recommendation for the Entropy Sources Used for
Random Bit Generation. Technical report. NIST Special Publica-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/BF00630563
https://doi.org/10.1109/IJCNN.2006.247172
https://doi.org/10.1109/IJCNN.2006.247172
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-642-00306-6_21
https://doi.org/10.1007/978-3-642-00306-6_21
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1088/1742-6596/1168/3/032015
https://doi.org/10.1088/1742-6596/1168/3/032015
https://doi.org/10.1109/ICM2CS.2009.5397953
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1007/978-3-319-07995-0_40
https://doi.org/10.1007/978-3-319-07995-0_40
https://doi.org/10.1142/S012918319600017X

Journal of Cryptographic Engineering (2022) 12:123–135 135

tion (SP) 800-90B, National Institute of Standards and Technology
(2018). https://doi.org/10.6028/NIST.SP.800-90B

25. Souza, W.A.D., Tomlinson, A.: A distinguishing attack with a neu-
ral network. DataMin.Workshops (2013). https://doi.org/10.1109/
ICDMW.2013.116

26. Svenda, P., Ukrop,M.,Matyáš, V.: Towards cryptographic function
distinguishers with evolutionary circuits. In: SECRYPT (2013)

27. Witten, I.H., Frank, E.: Data mining: practical machine learning
tools and techniques with Java implementations. SIGMOD Rec.
(2002). https://doi.org/10.1145/507338.507355

28. Woodage, J., Shumow, D.: An analysis of NIST SP 800–90A.
EUROCRYPT (2019). https://doi.org/10.1007/978-3-030-17656-
3_6

29. Zhao, Z., Zhao, Y., Liu, F.: The research of cryptosystem recogni-
tion based on randomness test’s return value. CloudComput. Secur.
(2018). https://doi.org/10.1007/978-3-030-00015-8_1

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.1109/ICDMW.2013.116
https://doi.org/10.1109/ICDMW.2013.116
https://doi.org/10.1145/507338.507355
https://doi.org/10.1007/978-3-030-17656-3_6
https://doi.org/10.1007/978-3-030-17656-3_6
https://doi.org/10.1007/978-3-030-00015-8_1

	Modelling cryptographic distinguishers using machine learning
	Abstract
	1 Introduction
	2 Preliminaries
	3 Machine learning distinguishers
	3.1 Our methodology: from classifiers to distinguishers
	3.2 Distinguisher accuracy amplification

	4 Case study: cipher suite distinguisher for pseudorandom generators
	4.1 Experiments and results

	5 Conclusions and future work
	Acknowledgements
	References

