Skip to main content
Log in

Photonic power firewalls

  • Regular Paper
  • Published:
Journal of Cryptographic Engineering Aims and scope Submit manuscript

Abstract

This paper describes a new countermeasure against side-channel power attacks. We show that a conventional chipcard can be powered using an organic electroluminescent diode (OLED) facing a photovoltaic cell. By doing so, the card’s power consumption becomes constant and equal to the OLED’s power consumption. Despite size, energy conversion and heat dissipation issues, we believe that this countermeasure nicely suits several high-security applications. Because photonic power firewalls guarantee physical isolation, we recommend photonic firewalls for applications where energy and form factor considerations are not as important as security ( e.g., diplomatic encryption devices).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that Lasers may, however, severely damage sight.

  2. For an overview of different photovoltaic technologies, please refer to [13].

  3. There are two relative and one absolute peak corresponding to primary light colors in the panel: blue, green, and red. Please refer to [20].

  4. Battery-Backed Random Access Memory

References

  1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryptology – Proceedings of CRYPTO’99, LNCS, vol. 1666:388–397. Springer-Verlag (1999)

  2. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to Differential Power Analysis. J. Cryptogr. Eng. 1(1), 5–27 (2011)

    Article  Google Scholar 

  3. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Berlin (2007)

    MATH  Google Scholar 

  4. Werthen, J.G., Cohen, M.: The power of light: photonic power innovations in medical, energy wireless applications. Photonics Spectra 40(5), 68–70 (2006)

    Google Scholar 

  5. Žukauskas, A., Shur, M., Gaska, R.: Introduction to Solid-State Lighting. Wiley, Hoboken (2002)

    Google Scholar 

  6. Brodrick, J., Pattison, M., Bardsley, N., Elliot, C., Hansen, M., Lee, K., Pattison, L., Tsao, J., Yamada, M.: 2018 solid-state lighting R &D opportunities. Tech. Rep. DOE BTO SSL Program, DOE/EE-1907, US Department of Energy (2019)

  7. Bourget, C.M.: An introduction to light-emitting diodes. HortScience 43(7), 1944–1946 (2008)

    Article  Google Scholar 

  8. Geffroy, B., Le Roy, P., Prat, C.: Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym. Int. 55(6), 572–582 (2006)

    Article  Google Scholar 

  9. Kunić, S., Šego, Z.: OLED Technology and Displays. In: Proceedings of ELMAR’2012, pp. 31–35. IEEE (2012)

  10. National Research Council: Assessment of Advanced Solid State Lighting. The National Academies Press, Washington (2013)

    Google Scholar 

  11. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. John Wiley & Sons, Hoboken (2006)

    Book  Google Scholar 

  12. Green, M.A., Dunlop, E.D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., Hao, X.: Solar cell efficiency tables (version 56). Prog. Photovoltaics Res. Appl. 28(7), 629–638 (2020)

    Article  Google Scholar 

  13. Luceño-Sánchez, J.A., Díez-Pascual, A.M., Peña Capilla, R.: Materials for photovoltaics: state of art and recent developments. Int. J. Mol. Sci. 20(4), 976 (2019)

    Article  Google Scholar 

  14. Athanasopoulos, E., Krithinakis, A., Kopidakis, G., Maxwell, G., Poustie, A., Manning, B., Webb, R., Koyabe, M., Di Cairano-Gilfedder, C.: WISDOM: Security-aware fibres. In: Second European Workshop on System Security – Proceedings of EUROSEC’09, pp. 22–27. ACM (2009)

  15. Webb, R.P., Dailey, J.M., Manning, R.J., Maxwell, G.D., Poustie, A.J., Lardenois, S., Harmon, R., Harrison, J., Kopidakis, G., Athanasopoulos, E., Krithinakis, A., Doukhan, F., Omar, M., Vaillant, D., Di Nallo, F., Koyabe, M., Di Cairano-Gilfedder, C.: All-optical header processing in a 42.6 Gb/s optoelectronic firewall. IEEE J. Sel. Top. Q. Electr. 18(2), 757–764 (2012)

    Article  Google Scholar 

  16. Guo, J., Li, X., Tang, Y., Zhang, L., Gao, T., Huang, S.: An all-optical binary pattern recognition system applied in photonic firewall based on vpi simulation. In: OptoElectronics and Communications Conference & International Conference on Photonics in Switching and Computing – Proceedings of OECC’2019 & PSC’2019, pp. 1–3 (2019)

  17. De Cnudde, T., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 123–148 (2018)

    Article  Google Scholar 

  18. Danger, J.L., Guilley, S., Bhasin, S., Nassar, M.: Overview of dual rail with precharge logic styles to thwart implementation-level attacks on hardware cryptoprocessors. In: 3rd International Conference on Signals, Circuits and Systems – Proceedings of SCS’2009, pp. 1–8. IEEE (2009)

  19. Somanathan Nair, B., Deepa, S.: Solid State Devices. PHI Learning Pvt. Ltd, New Delhi (2018)

    Google Scholar 

  20. Osram Opto Semiconductors: Orbeos for OLED Lighting - CDW-031 - Preliminary Data (2009). http://tinyurl.com/osram-cdw-031 (accessed August 20) (2020)

  21. Sanyo: Sanyo Amorphous Solar Cell - Amorton - AM-8801 (2008). http://tinyurl.com/amorton-8801 (accessed August 20)(2020)

  22. Sanyo Amorton: Amorphous Silicon Solar Cells - Amorphous Photosensors (2011). https://tinyurl.com/sanyo-amorton (accessed August 20) (2020)

  23. Minnaert, B., Veelaert, P.: A proposal for typical artificial light sources for the characterization of indoor photovoltaic applications. Energies 7(3), 1500–1516 (2014)

    Article  Google Scholar 

  24. International Organization for Standardization (ISO) / International Electrotechnical Commission (IEC): ISO/IEC 7816-3:2006 Information Technology - Identification Cards - Integrated Circuit(s) Cards with Contacts - Part 3: Electronic Signals and Transmission Protocols. ISO/IEC (2006)

  25. EMVCo: EMV Integrated Circuit Card Specification for Payment Systems, Book 1: Application Independent ICC to Terminal Interface Requirements - Version 4.2. EMVCo (2008)

  26. Infineon: 5-V Low Drop Fixed Voltage Regulator - TLE 4264 - Data Sheet Rev. 2.3 (2008). https://tinyurl.com/tle-4264 (accessed August 20, 2020)

  27. Mertens, R.: The OLED Handbook (2019 edition). Lulu.com (2019)

  28. Schmidt, J.M., Plos, T., Kirschbaum, M., Hutter, M., Medwed, M., Herbst, C.: Side-Channel Leakage across Borders. In: Smart Card Research and Advanced Application – Proceedings of CARDIS’10, LNCS, vol. 6035, pp. 36–48. Springer Berlin Heidelberg (2010)

  29. Prelas, M.A., Weaver, C.L., Watermann, M.L., Lukosi, E.D., Schott, R.J., Wisniewski, D.A.: A review of nuclear batteries. Prog. Nucl. Energy 75, 117–148 (2014)

    Article  Google Scholar 

  30. Kumar, S.: Atomic batteries: Energy from radioactivity. arXiv preprint arXiv:1511.07427 (2015)

  31. Lal, A., Blanchard, J.: Daintiest dynamos [nuclear microbatteries]. IEEE Spectr. 41(9), 36–41 (2004)

    Article  Google Scholar 

  32. Landis, G.A., Bailey, S.G., Clark, E.B., Myers, M.G., Piszczor, M.F., Murbach, M.S.: Non-solar photovoltaics for small space missions. In: 2012 38th IEEE Photovoltaic Specialists Conference, pp. 002819–002824. IEEE (2012)

  33. Olsen, L.C., Cabauy, P., Elkind, B.J.: Betavoltaic power sources. Phys. Today 65(12), 35 (2012)

  34. Bower, K., Rutkiewic, A., Bower, C., Yousaf, S.: Radioisotope Microbattery Commercialization. CRC Press, Boca Raton (2002)

    Google Scholar 

  35. Labs, C.: P-Series NanoTritium\(^{TM}\) Betavoltaics. https://tinyurl.com/city-labs (accessed August 20) (2020)

  36. Labs, C.: NanoTritium\(^{TM}\) Betavoltaics - P200 Series - Package Specifications. https://tinyurl.com/city-labs-p200 (accessed August 20) (2020)

  37. Ciufo, C.A.: Atomic technology powers crypto keys for the long haul. VME Crit. Syst. 29(1), 16–18 (2011)

    Google Scholar 

  38. Trimberger, S.M., Moore, J.J.: Fpga security: motivations, features, and applications. Proc. IEEE 102(8), 1248–1265 (2014)

    Article  Google Scholar 

  39. Peterson, E.: Developing Tamper-Resistant Designs with UltraScale and UltraScale+ FPGAs. XAPP 1098(v1.3) (2018)

  40. Vaisband, I.P., Jakushokas, R., Popovich, M., Mezhiba, A.V., Köse, S., Friedman, E.G.: On-chip Power Delivery and Management. Springer, Berlin (2016)

    Book  Google Scholar 

  41. Van Elsbergen, V., Boerner, H., Löbl, H.P., Goldmann, C., Grabowski, S.P., Young, E., Gaertner, G., Greiner, H.: OLEDs for lighting applications. In: Organic Light Emitting Materials and Devices – Proceedings of SPIE’2008, SPIE, vol. 7051, pp. 211–219. SPIE (2008)

  42. Pode, R., Diouf, B.: OLED Lighting Technology. Springer, London (2011)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their thoughtful and constructive comments and efforts toward improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir-Pasha Mirbaha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2 and 3.

Table 2 Maximum power output of the illuminated photovoltaic cells facing the boosted OLED
Table 3 Powering attempts for different smart cards using the photovoltaic cell’s energy

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutertre, JM., Mirbaha, AP., Naccache, D. et al. Photonic power firewalls. J Cryptogr Eng 12, 245–254 (2022). https://doi.org/10.1007/s13389-022-00291-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13389-022-00291-0

Keywords

Navigation