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Abstract Predicting functions of un-annotated proteins is

a significant challenge in the post-genomics era. Among

existing computational approaches, exploiting interactions

between proteins to predict functions of un-annotated

proteins is widely used. However, it remains difficult to

extract semantic associations between proteins (i.e. protein

associations in terms of protein functionality) from protein

interactions and incorporate extracted semantic associa-

tions to more effectively predict protein functions. Fur-

thermore, existing approaches and algorithms regard the

function prediction as a one-off procedure, ignoring

dynamic and mutual associations between proteins.

Therefore, deriving and exploiting semantic associations

between proteins to dynamically predict functions are a

promising and challenging approach for achieving better

prediction results. In this paper, we propose an innovative

algorithm to incorporate semantic associations between

proteins into a dynamic procedure of protein function

prediction. The semantic association between two proteins

is measured by the semantic similarity of two proteins

which is defined by the similarities of functions two pro-

teins possess. To achieve better prediction results, function

similarities are also incorporated into the prediction pro-

cedure. The algorithm dynamically predicts functions by

iteratively selecting functions for the un-annotated protein

and updating the similarities between the un-annotated

protein and its neighbour annotated proteins until such

suitable functions are selected that the similarities no

longer change. The experimental results on real protein

interaction datasets demonstrated that our method outper-

formed the similar and non-dynamic function prediction

methods. Incorporating semantic associations between

proteins into a dynamic procedure of function prediction

reflects intrinsic relationships among proteins as well as

dynamic features of protein interactions, and therefore, can

significantly improve prediction results.
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1 Introduction

Assigning functions to proteins whose functions have not

been annotated through biological experiments continues

to be one of the challenges in computational biology due to

the importance of proteins in various biological processes

and the high cost of biological experiments. To tackle this

challenge, significant effort has been given for predicting

protein functions using computational methods or tools. In

general, the development of computational approaches for

protein function prediction has undergone two stages. In

the early stage, researchers mainly concentrated on

searching for the homologous sequences of the un-anno-

tated protein, and the annotated functions of the homolo-

gous sequences were selected as the predicted functions of

the un-annotated protein. In other words, the approaches in

this stage mainly focused on the inner biological structure

of individual proteins without considering the external and
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mutual interactions among proteins (Abual-Rub et al.

2012). The BLAST (Altschul et al. 1990) and FASTA

(Pearson 1990) were two representative tools in this stage.

With the development of biological technology, it has

been revealed that proteins involved in biological processes

do not work individually, but interact with each other to

implement various complex biological processes. It has

been demonstrated that a protein may show different

functions in different biological processes when it interacts

with different proteins (Misteli 2001). These discoveries

lead to the second development stage of computational

prediction approaches, where predictions are based on the

external interactions among proteins, rather than only on

the inner structures of individual proteins. Meanwhile, new

biological technologies have produced large amounts of

high-throughput protein–protein interaction (PPI) data

which provide interaction information between proteins.

Due to the rich information it carries about the external and

mutual interaction information of proteins, PPI data are

now widely used for protein function prediction.

Usually, PPI data are modelled as an interaction network

with nodes representing proteins and edges representing

protein interactions (Kilic and Mehmet 2012; Xiang et al.

2012). With this PPI network model, the neighbour pro-

teins of a protein are defined as those proteins in the net-

work that directly interact with the protein. Based on this

model and an assumption that an un-annotated protein

would share functions with its neighbour proteins, a num-

ber of algorithms have been developed to make use of the

known functions of neighbour proteins to predict functions

of an un-annotated protein. In other words, this kind of

prediction approach exploited the topological, rather than

the semantic or biological, information of the PPI network

for predictions. The representative algorithms of this

approach were the Markov random field (MRF) method

(Deng et al. 2003) and the majority rule method (MRM)

(Schwikowski et al. 2000). The MRF method made use of

the topological structure of a PPI network to determine the

probability of a function being assigned to all other pro-

teins in the whole dataset and predicted functions of an

un-annotated protein from the probability ranking. Some

variations of the MRF method can be found in Letovsky

and Kasif (2003) and Vazquez et al. (2003). The MRM,

which was also known as the neighbour counting method,

predicted functions by selecting functions that have higher

occurrence frequencies among the neighbour proteins as

the predicted functions. One deficiency of these algorithms

was that they did not consider the indirect neighbour pro-

teins within the whole PPI network when predicting

functions. To address this issue, Hishigaki et al. (2001)

defined the neighbourhood with levels (i.e. the neighbour

proteins have direct or indirect interactions with the

un-annotated protein), and the top-ranked functions in

terms of their occurrence frequency among the levelled

neighbour proteins are selected as the predicted functions

of an un-annotated protein. Chua et al. (2006) developed

another algorithm to calculate the similarity between a pair

of proteins when making use of both direct and indirect

neighbours of an un-annotated protein to predict functions.

Applying clustering methods on PPI networks to predict

protein functions is another representative approach. This

approach relies on the assumption that proteins in the same

cluster (or complex in biology) should share some common

functions. With this approach, proteins in a PPI network

including unannotated ones are clustered into clusters

based on their similarities derived from their interaction

relationships in the PPI network. The known functions

(usually the representative or the feature functions) of a

cluster are the candidates from which the predicted func-

tions are selected for the un-annotated proteins in the same

cluster. A representative clustering-based method of

detecting a molecular complex is the MCODE (Bader and

Hogue 2003). In the MCODE, each edge of a PPI network

is given a weight and the tensest interconnected modules

are considered complexes. Similar to the MCODE, other

clustering-based algorithms were proposed by Spirin and

Mirny (2003), Pereira-Leal et al. (2004) and Dunn et al.

(2005) to predict complexes as well as functions. Since

clustering-based algorithms rely on protein similarity def-

initions, Samanta and Liang (2003) defined a P value as the

similarity of a pair of proteins and divided a PPI network

into clusters according to the similarity values to improve

accuracy of prediction. Arnau et al. (2005) and Rives and

Galitski (2003) also defined protein similarities to measure

the shortest distance between proteins for function pre-

diction purposes. The clustering-based prediction method

in Zhu et al. (2010) defined a new protein similarity and

excluded the un-annotated proteins in the clustering oper-

ations. In addition to the above approaches, other methods

were also proposed for function predictions, such as those

that use the graph theory and data mining techniques. More

details and discussions can be found in Sharan et al. (2007).

It has been observed that existing prediction methods

exploit the associations (e.g. in terms of topological simi-

larity) between proteins in various ways to predict func-

tions. Although some algorithms have good prediction

results for specific datasets, in most cases the prediction

results have been unsatisfactory. Therefore, extracting and

exploiting semantic associations between proteins (i.e.

protein associations in terms of protein functionality)

constitute one of the keys to improving existing prediction

results. On the other hand, existing similarity-based pre-

diction approaches regard the prediction as a one-off pro-

cedure, i.e. the available known functions in a prediction

domain (e.g. a set of neighbour proteins) finally determine

the functions of an un-annotated protein. In other words,
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the un-annotated protein is passive, and the function pre-

diction is unidirectional and a one-off procedure. However,

in real biological processes, proteins have high mobility

and dynamically interplay to produce a framework which is

ever-changing but overall stable (Misteli 2001). The pro-

teins exchange their biological information and share

functions in a dynamic, rather than a static and unidirec-

tional, circumstance. This means that the mutual interac-

tions between pair-wise proteins reveal the reality of

biological processes, and this dynamic feature of protein

interactions should be taken into account when predicting

functions. Unfortunately, existing prediction approaches do

not take this dynamic feature into consideration.

The work in this paper addresses the above issues in

function prediction. We incorporate semantic association

information between proteins into a dynamic prediction

procedure to iteratively predict functions for un-annotated

proteins. The algorithm is well designed to make signifi-

cant proteins and functions endorse each other through

iterative procedures, and to select the most semantically

important functions as the predicted functions for

un-annotated proteins. The semantic associations between

proteins in the algorithm are expressed in terms of func-

tional similarity between proteins, and the dynamic pre-

diction procedure of the algorithm reflects the dynamic

features of protein interactions. Incorporating semantic

association between proteins into a dynamic function pre-

diction procedure makes our approach different from

existing ones.

This paper is organized as follows. In Sect. 2, we pro-

pose and discuss the dynamic prediction algorithm that

incorporates semantic association information between

proteins. The experimental results of our algorithm and

result analyses, as well as comparisons with other algo-

rithms, are given in Sect. 3. Finally, in Sect. 4 we conclude

our work and discuss some possible improvements to our

approach in the future.

2 Methods

The proposed protein function prediction algorithm is

based on dynamic functional voting from the neighbour

proteins of the un-annotated protein. The functions that

obtain higher votes or voting scores from the neighbour

proteins are the predicted functions of the un-annotated

protein. The votes a function obtains depend on the

importance of not only the neighbour proteins that have the

function, but also the function among all available func-

tions possessed by the neighbour proteins. These two kinds

of importance are measured in terms of protein semantic

similarity (i.e. the protein similarity defined by function

similarities) and function similarity, respectively. Suppose

we have already defined the semantic similarity between

two proteins p and p0 as sim(p, p0), and the similarity

between two functions f and f0 as f sim(f, f0). Let N(p) be the

set of neighbour proteins of the protein p, F(p) be the set

of functions protein p has, and NF(p) be the set of func-

tions the protein p’s neighbour proteins have, i.e.

NFðpÞ ¼
S

p02NðpÞ Fðp0Þ. The scores a function f 2 NFðpÞ
which can be obtained from functional voting of the

un-annotated protein p’s neighbour proteins are defined as

Scoreðp; f Þ ¼
X

p02NðpÞ
simðp; p0Þ �

X

f 02Fðp0Þ
f simðf ; f 0Þ

2

4

3

5 ð1Þ

It can be seen from (1) that the MRM proposed by

Schwikowski et al. (2000) is actually a special case of our

prediction method, where sim(p, p0) in (1) is set to 1 [i.e.

sim(p, p0) = 1], the component
P

f
0 2Fðp0 Þ f simðf ; f 0 Þ in

(1) is replaced by a simple indicator function (i.e. if p0 has

function f then the value is 1, otherwise 0) without

considering function associations, and N(p) consists of only

the proteins that directly interact with the un-annotated

protein p, i.e. the level-1 neighbour proteins of p.

From Eq. (1), the scores a function f obtains from

neighbour protein voting are determined by two factors: the

importance of each neighbour protein to the un-annotated

protein p [i.e. sim(p, p0) in (1)], and the importance

of function f in each neighbour protein [i.e.
P

f 02Fðp0Þ f simðf ; f 0Þin (1)]. For example, functions that are

possessed by the most important neighbour proteins and are

the most important among neighbour functions will

achieve the highest scores, and therefore be selected as the

predicted functions of the un-annotated protein p. It is

obvious a function possessed by the less important neigh-

bour proteins but very important among neighbour func-

tions, or possessed by very important neighbour proteins

but less important among neighbour functions, is still likely

to obtain higher scores.

For a given un-annotated protein p and its neighbour

proteins, the importance of a function f in each neighbour

protein [i.e.
P

f 02Fðp0Þ f simðf ; f 0Þ in (1)], and in turn the

importance of f among neighbour functions, is fixed.

Therefore, the variation of the score depends on the vari-

ation of semantic similarities between the un-annotated

protein p and its neighbour proteins [i.e. sim(p, p0), in (1)].

However, since the functions of the un-annotated protein p

are unknown and to be predicted, the semantic similarity

sim(p, p0) is therefore uncertain. Our prediction method is

to iteratively update the semantic similarities sim(p, p0)
between the un-annotated protein and its neighbour pro-

teins, and in turn to iteratively update function scores until

they no longer change. The functions with the higher scores

are then selected as the predicted functions. To do this and
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to reflect the dynamic features of protein interactions in this

iterative semantic similarity updating, it is necessary to

define the semantic similarity between proteins from their

functional similarities, so the important neighbour proteins

and important functions endorse each other through the

iterative updated by Eq. (1), with the final selected func-

tions the most important to the un-annotated protein.

In our iterative prediction algorithm, we adopt the function

similarity and semantic protein similarity definitions from

our previous work, where the protein semantic similarity

between proteins is defined from their functional similarities.

To ensure the completeness and understanding of these

similarity definitions, we present the details of these defini-

tions here. More details can be found in Zhu et al. (2010).

Protein functions can be expressed in the format of an

annotation scheme, such as the Gene Ontology (GO) and

the Functional Catalogue (FunCat). In our work, we use the

FunCat scheme for protein function annotation. The Fun-

Cat is a numerical hierarchical annotation scheme devel-

oped by the Munich Information Centre for Protein

Sequences (MIPS) (Ruepp et al. 2004). The scheme allows

a protein function to be expressed numerically by up to six

layers. A digital number at each layer defines a specific

function category. The deeper a function’s layer achieves,

the more specific the function is. With the FunCat scheme

and our definition, the similarity of two protein functions is

determined by the common layers two functions share, i.e.

the more layers two functions share, the more similar two

functions are. The details of the function similarity defi-

nition are as follows.

For two given functions f and f0, which are in the

FunCat digital layer format, we define lðf ; f 0Þ ¼def

the number of common sequent layers the f and f 0
share from the first layer: It is obvious 0 B l(f, f0) B 6.

For example, suppose f = 10.01.05.03.01.0 and f0 =

10.01.03.0.0.0, these two functions share the first two

layers 10.01 and therefore l(f, f0) = 2. Based on this defi-

nition, we define the similarity f sim(f, f0) between two

functions f and f0 as

f simðf ; f 0Þ ¼
Xlðf ;f

0Þ

i¼1

i2=
X6

j¼1

j2 ð2Þ

If l(f, f0) = 0, then f sim(f, f0) = 0. With the function

similarity definition in (2), we define the semantic

similarity between two proteins p1 and p2 as

simðp1;p2Þ ¼
X

f2Fðp1Þ

X

f 02Fðp2Þ
f simðf ; f 0Þ=

X

f2Fðp1Þ

X

f 02Fðp2Þ
wðf ; f 0Þ

ð3Þ

where

wðf ; f 0Þ ¼ 2� lðf ; f 0Þ=6:

To calculate the function scores in (1) with respect to the

un-annotated protein p, two questions need to be answered:

one is how to choose the neighbour proteins N(p) from

which the functions are predicted, and the second question

is how to calculate the similarities between the

un-annotated protein p and its neighbour proteins.

Regarding the first question, we choose level-1 and level-

2 neighbour proteins of the un-annotated protein p as the

neighbour protein set N(p). Level-1 neighbour proteins are

those that directly interact with the un-annotated protein p,

while level-2 neighbour proteins are those that directly

interact with the level-1 neighbour proteins of p but do not

interact with the un-annotated protein p directly. This

neighbour protein set N(p) construction is based on the

work in (Chua et al. 2006), where it was indicated that in

most cases, level-1 and level-2 neighbour proteins contain

major functions of the protein p.

Regarding the second question above, the issue is that

functions of protein p are unknown. However, our semantic

protein similarity sim(p, p0) is calculated from protein

function similarities. Therefore, to kick off the prediction,

we need to assign initial functions to the un-annotated

protein p. To do this, we select the level-1 neighbour

proteins of p and assume sim(p, p0) = 1 in (1) to calculate

the scores of level-1 functions. The level-1 functions are

then ranked according to their scores. We select the aver-

age number of functions each level-1 neighbour protein has

as the cut-off rate for selecting ranked level-1 functions to

initialize the functions of the un-annotated protein p. For

example, if on average each level-1 neighbour protein has

three functions, we then select the functions with the first

three highest scores as the initial functions of p.

With the initial functions assigned to the un-annotated

protein p, we can now calculate the similarities between the

un-annotated protein p and its neighbour proteins in (1). At

this stage, the neighbour protein set N(p) consists of level-1

and level-2 neighbour proteins rather than just level-1

proteins. For a level-2 neighbour protein, its similarity with

the un-annotated protein p is calculated a little differently.

In fact, suppose a level-2 protein is p2, then the similarity

between p and p2 is calculated as

simðp; p2Þ ¼Max simðp; p2Þ; max
p12N1ðp2Þ

simðp; p1Þð
�

� simðp1; p2ÞÞ
i

ð4Þ

where N1ðp2Þ ¼ f p1jp1 is the level 1 neighbour of p

and directly interacts with p2g
With the issues of calculating the function score in

Eq. (1) being resolved as described above, function pre-

diction can be conducted dynamically based on (1). In fact,

with the initial functions being assigned to the un-anno-

tated protein p, we set the N(p) in Eq. (1) as the set of
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level-1 and level-2 neighbour proteins of p, and then cal-

culate the scores of all functions in the neighbour and rank

the functions according to their scores. The functions with

higher scores are selected as the first-round predicted

functions. The number of selected functions depends on the

cut-off rate in the prediction. At this prediction stage, we

define the cut-off rate as the average number of functions

each protein has in the neighbour set N(p). If the current-

round prediction results are the same as the previous ones,

i.e. the prediction results do not change anymore, the

prediction operation is then stopped and the current-round

prediction results are the final predicted functions of the

un-annotated protein (for the first-round of prediction, the

previous-round prediction results are those initial functions

of the un-annotated protein). Otherwise the current-round

predicted functions are assigned to the un-annotated pro-

tein and the prediction based on (1) is conducted again until

the results do not change anymore. This dynamic predic-

tion algorithm is described with a diagram in Fig. 1.

Regarding the convergence of the algorithm, as men-

tioned in the above algorithm discussion, the dynamic

prediction procedure makes the protein similarities and

function scores endorse each other by Eq. (1) iteratively. In

other words, if a function with the highest functional score

is selected as a predicted function after the first round of

iteration, it will be kept as a predicted function in the

following iteration rounds as well, and each iteration round

will select new functions with the highest functional score

while the previously selected functions are still kept. This

means that after finite rounds of iteration, the prediction

results will no longer change or the algorithm is conver-

gent. Our experiments on real protein nitration datasets also

demonstrated the convergence of the algorithm.

Incorporating semantic protein association information

and function similarities into the function prediction via the

function score calculation (1) differentiates our algorithm

from existing ones because this incorporation makes it

possible to iteratively predict functions of an un-annotated

protein and reflect the dynamic features of protein inter-

actions in the prediction procedure. The existing similarity-

based prediction methods, however, try to define the

protein similarity by making use of other available infor-

mation, such as the PPI network topological structure

information or gene microarray information, rather than the

information about the protein and function associations.

Therefore, existing prediction methods cannot predict

functions iteratively as the protein similarities are separated

from function similarities in these methods, thus ignoring

dynamic features of protein interaction.

3 Experimental results

The proposed dynamic prediction algorithm was evaluated

on two real PPI datasets of budding yeast Saccharomyces

cerevisiae. The first dataset was obtained from the BIO-

GRID PPI database (http://thebiogrid.org). This dataset

contained a total of 232,238 protein–protein interactions.

For evaluation purposes, 172,001 interactions that con-

tained annotated proteins (i.e. the functions of these pro-

teins were known) were selected for the experiments, and

the other 60,237 interactions that contained un-annotated

proteins were removed from the dataset. For the selected

172,001 interactions, there were 5,702 annotated proteins

involved in the interactions. Another dataset was obtained

from the MIPS PPI database (ftp://ftpmips.gsf.de/yeast/

PPI). There were a total of 15,456 PPIs, from which we

selected 8,050 PPIs for the experiments, while removing

7,406 PPIs that referred to un-annotated proteins. The

selected 8,050 PPIs contained 1,172 annotated proteins.

The summary of these two datasets is shown in Table 1.

In the experiments, we used the MIPS FunCat scheme

(Ruepp et al. 2004) for function annotation. To evaluate the

effectiveness of the algorithm, we chose some annotated

proteins from the dataset and recorded their functions. We

regarded these chosen proteins as un-annotated proteins

and predicted their functions with our dynamic prediction

algorithm. For each un-annotated protein, if a predicted

function was the same as a recorded one, the prediction

was correct for that function. We did not consider layered

predictions in the experiments.

Fig. 1 The diagram of the dynamic function prediction algorithm
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The effectiveness of the algorithm was evaluated by the

prediction precision, recall and F value. Their definitions

are as follows. Let NA be the number of real functions a

protein actually processes, NC be the number of correctly

predicted functions, and NP be the number of all predicted

functions. The prediction precision and recall for a protein

are calculated as:

Precision ¼ NC

NP

; Recall ¼ NC

NA

: ð5Þ

To avoid the trade-off between the precision and recall

in the evaluation, we adopted the F value (Kiritchenko

et al. 2005) to evaluate the overall performance of a

prediction, which is defined as follows:

F value ¼ 2� Precision� Recall

Precisionþ Recall
ð6Þ

Due to the lack of existing similar iterative prediction

algorithms, we compared our iterative algorithm with the

MRM (Schwikowski et al. 2000). We denote this method

as MRM, and our proposed method as Dynamic Prediction

Algorithm (DPA). The MRM is a non-dynamic method and

its prediction also relies on neighbour function voting from

which our dynamic prediction algorithm stems. The

comparison was to show that the dynamic prediction

approach with the incorporation of semantic protein

associations can significantly improve function predictions.

Since the neighbour of an un-annotated protein in our

DPA consists of level-1 and level-2 neighbour proteins, to

make the prediction results comparable, we also extended

the MRM method to level-1 and level-2 neighbour proteins

of an un-annotated protein. We named the original MRM

method as MRM_1, and the extended MRM method as

MRM_2.

We compared the prediction precisions, recalls and

F values of three methods on both datasets. The purpose

was to demonstrate that the DPA outperformed non-

dynamic algorithms on different datasets that had different

data sizes and came from different data resources. We first

evaluated the algorithms on the BIOGRID PPI dataset. We

randomly selected ten groups of proteins from the dataset.

The number of functions to be predicted for each group

was between 15 and 26, and the total number of functions

to be predicted for ten groups was 211. We predicted the

functions for each protein in each group using three

methods, and calculated the corresponding precisions,

recalls and F values. Then, we calculated the average

precision, recall and F values for each group. The overall

(i.e. the average of all groups) precision, recall and F value

of three methods across ten groups are listed in Table 2. It

can be seen from Table 2 that the DPA achieved 60.6, 40.2

and 48.3 % of average precision, recall and F value,

respectively, which were much higher than the methods

MRM_1 and MRM_2.
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Fig. 4 Comparison of F values on the BIOGRID dataset

Table 1 Datasets for evaluation

Descriptions BIOGRID MIPS

Total number of PPIs 232,238 15,456

Number of PPIs with annotated proteins 172,001 8,050

Number of PPIs with un-annotated proteins 60,237 7,406

Total number of proteins for evaluation 5,702 1,172

Table 2 Overall precisions, recalls and F values of three methods on

the BIOGRID dataset

MRM_1 MRM_2 DPA

Overall precision 0.344 0.588 0.606

Overall recall 0.312 0.301 0.402

Overall F value 0.327 0.398 0.483
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As the data quality varies for different data groups, we

present Figs. 2, 3 and 4 to examine the detailed prediction

performance of three methods on each individual group. In

terms of precision (see Fig. 2), the dynamic method DPA

outperformed the MRM_1 across all groups, and outper-

formed the MRM_2 for most groups. In terms of recall and

F value (see Fig. 3, 4), the DPA outperformed the MRM_1

and MRM_2 across all groups. Therefore, overall, the

dynamic method DPA outperformed the non-dynamic

methods on the BIOGRID dataset.

In addition to the evaluations on the BIOGRID PPI

dataset, we also evaluated the effectiveness of the methods

on the MIPS PPI dataset, due to the usual differences in

data quality between different datasets. Our evaluation was

to demonstrate that for different datasets with different data

quality, our dynamic prediction algorithm still outper-

formed the non-dynamic algorithms. To this end, and

similar to the evaluation on the BIOGRID PPI dataset, we

also randomly selected ten protein groups from the MIPS

PPI dataset for evaluation. The number of functions to be

predicted in each selected group ranged from 50 to 62. The

total number of functions to be predicted for all groups was

532. The overall prediction effectiveness of the three

methods in terms of precision, recall and F value across all

groups is shown in Table 3. It is clear from Table 3 that the

DPA still outperformed the MRM_1 and MRM_2.

The performance of the three methods on individual

groups in terms of precision, recall and F value is presented

in Figs. 5, 6 and 7, respectively. The evaluations on the

MIPS dataset, as well as the BIOGRID dataset, showed that

the predictions on the prediction domain that consisted of

level-1 and level-2 neighbour proteins of an un-annotated

protein produced better prediction results, i.e. the MRM_2

and DPA methods outperformed the MRM_1 method. For

the MRM_2 and DPA, which both relied on the level-1 and

level-2 neighbour proteins of an un-annotated protein for

prediction, the dynamic method DAP outperformed the

MRM_2 on the MIPS dataset in terms of precision, recall

and F value as shown in Figs. 5–7.

Figure 8 presents the precision-recall curves of the three

methods, which show the effectiveness of the methods

from another perspective. It clearly shows that the dynamic

method DPA is much more effective than the non-dynamic

methods MRM_1 and MRM_2 across the whole range of

recall.
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Table 3 Overall precisions, recalls and F values of the three

methods on the MIPS dataset

MRM_1 MRM_2 DPA

Overall precision 0.377 0.471 0.547

Overall recall 0.313 0.308 0.384

Overall F value 0.342 0.372 0.451
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In our experiments, we also evaluated the convergence

of our iterative prediction algorithm DPA. For each eval-

uation data group, we calculated the average precision and

recall for each round of iteration, and observed that usually

after two to five rounds of iteration the prediction results

became stable, i.e. the results no longer changed. In other

words, the DPA algorithm was convergent. It was also

observed that after the initialization, the first round of

iteration and the following iterations significantly

improved the initial prediction results. Figure 9 shows the

evaluation results on a data group. As shown in Fig. 9, the

precision and recall increased gradually until the results

became stable after five iterations.

Finally, we randomly selected some sample prediction

results produced from our dynamic prediction algorithm

and present them in Table 4. As shown in Table 4, most

cut-off rates used in the DPA were the same as or close to

the real number of functions the ‘‘un-annotated’’ proteins

have. It demonstrated that our cut-off rate selection for the

predictions was reasonable. It can be seen from the table

that most real functions of the ‘‘un-annotated’’ proteins

were predicted correctly. It was also noticed that some

Table 4 Randomly selected sample prediction results from the DPA method

ID Protein No. of functions Cut-off rate FunCat FunCat description Predicted

1 Q0045 3 3 02.11.0.0.0.0 Electron transport and membrane-associated

energy conservation

H

02.13.03.0.0.0 Aerobic respiration H

20.01.15.0.0.0 Electron transport H

2 YAL062w 5 3 01.01.03.02.01.0 Biosynthesis of glutamate 9

01.01.03.02.02.0 Degradation of glutamate H

01.02.0.0.0.0 Nitrogen, sulphur and selenium metabolism H

02.10.0.0.0.0 Tricarboxylic-acid pathway

(citrate cycle, Krebs cycle, TCA cycle)

H

42.01.0.0.0.0 Cell wall 9

3 YBL002w 3 3 10.01.09.05.0.0 DNA conformation modification (e.g. chromatin) H

11.02.03.04.0.0 11.02.03.04 Transcriptional control H

16.03.01.0.0.0 DNA binding H

4 YBL004w 2 2 11.04.01.0.0.0 rRNA processing H

16.03.03.0.0.0 RNA binding H

5 YBL017c 4 3 14.04.0.0.0.0 Protein targeting, sorting and translocation H

16.01.0.0.0.0 Protein binding 9

20.09.07.0.0.0 Vesicular transport (Golgi network, etc.) H

20.09.13.0.0.0 Vacuolar/lysosomal transport H

6 YBL052c 4 3 10.01.09.05.0.0 DNA conformation modification (e.g. chromatin) H

11.02.03.04.0.0 Transcriptional control H

14.07.04.0.0.0 Modification by acetylation, deacetylation H

34.11.03.0.0.0 Chemoperception and response 9

7 YBL082c 2 2 01.05.0.0.0.0 C-compound and carbohydrate metabolism H

14.07.02.02.0.0 N-directed glycosylation, deglycosylation H

8 YBL090w 3 2 12.01.01.0.0.0 Ribosomal proteins H

12.04.01.0.0.0 Translation initiation 9

42.16.0.0.0.0 Mitochondrion H

9 YBL037w 3 2 14.10.0.0.0.0 Assembly of protein complexes 9

20.09.13.0.0.0 Vacuolar/lysosomal transport H

20.09.18.0.0.0 Cellular import H

10 YAL055w 2 2 14.04.0.0.0.0 Protein targeting, sorting and translocation H

20.09.03.0.0.0 Peroxisomal transport H

The symbol ‘‘H’’means the corresponding function was predicted correctly by our algorithm, and the symbol ‘‘9’’ means the corresponding

function was not predicted correctly by our algorithm
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functions could not be predicted by the DPA method. There

might be other factors that affected the prediction accuracy

of the algorithm, such as the noises in the dataset and the

selection of cut-off rate. These factors will be addressed

and investigated in our future work.

4 Conclusions

In this paper, we propose an innovative algorithm to

incorporate the semantic association information between

proteins for dynamically or iteratively predicting functions

of un-annotated proteins. The dynamic prediction proce-

dure of our algorithm reflects dynamic features of protein

interactions. Protein semantic similarities derived from

protein function similarities guarantee the dynamics of the

prediction procedure and the convergence of the algorithm.

These two major contributions make our method different

from other existing methods. The evaluations on real pro-

tein–protein interaction datasets demonstrated the effec-

tiveness of our new method. It is concluded that

incorporating semantic protein association information into

dynamic prediction can significantly improve the predic-

tion quality.

It was observed from our evaluations on real PPI data-

sets that the selection of a cut-off rate in the prediction had

some impact on the prediction quality. If the cut-off rate

was low (i.e. the number of predicted function was small),

it may result in some real functions being excluded from

the final predicted functions and a low recall value. But if

the cut-off rate was too high (i.e. the number of predicted

functions was too big), it may result in many unrelated

functions being included in the final predicted functions

and a low precision. Selecting cut-off rates dynamically to

achieve a better balance between the precision and recall of

the prediction is a possible way to improve dynamic pre-

diction results. Our evaluations on different PPI datasets

from different resources also demonstrated that the data

quality varied across different datasets. Choosing reliable

protein interactions from a dataset or many datasets to

increase the accuracy of predictions is a further challenge.

These issues will be addressed in our future work to

improve the quality and effectiveness of function

prediction.
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