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Abstract Neuroimaging analysis aims to support clini-

cians in the diagnosis of neurological diseases by using

radiological images. Positron emission tomography (PET) is

a nuclear medicine imaging technique used to produce three-

dimensional images of the human brain for neurological

studies. Due to the large number of generated images, there

is a lot of effort in defining computer based tools to analyze

and classify brain images. Such analyses are used to identify

cerebral regions of interest (ROI) related to specific neuro-

degenerative diseases. Statistical tools, such as SPM (for

Statistical Parametric Mapping) and its MarsBar plugin, are

largely used by physicians for ROIs identification and for

image analysis. Nevertheless, large datasets analysis (e.g.

studying pathologies for many patients and for large sets of

PET images) requires repetitive SPM procedures for each

patient’s image, mainly due to the lack of (i) automatic

procedures for analysing set of patients, and (ii) validation of

using SPM versus patient magnetic resonance as reference

brain templates. Finally, SPM analysis requires human

intervention, and there is no automatic system guiding

physicians for pathologies identification. As a contribution

for the latter issue, we defined an automatic classification

tool using topological relations among ROIs to support

physicians while studying a new patient. Starting from a set

of known pathologies associated to medical annotated PET

images (i.e. associated to neurological pathologies), we used

SPM and MarsBaR tools to define a reference PET images

dataset; ROIs extracted from input PET images have been

compared with known dataset and classified, suggesting

physicians with (a subset of) pathologies associated to those

PET images. Experiments showed that the classifier per-

forms well. Moreover, in order to improve the repeatability

of experiments with large datasets, we use an SPM plugin

called AutoSPET, which allows to perform SPM analysis on

a large PET images dataset, using different SPM plugins

within a unified user interface, and allowing to simply run

statistical analyses. AutoSPET is available on our server and

also as an SPM plugin on the SPM website. Finally we report

experiments to validate the use of the standard T1 SPM

template versus the magnetic resonance ones.

Keywords PET images analysis � Region of interest �
Statistical analysis � Automatic procedure � Systems

integration � Statistical parametric mapping

1 Introduction

Radiological and magnetic resonance (MR) images are

generated by imaging devices able to detect functional or

P. Vizza � P. Veltri (&)

Medical and Surgical Science Department, University Magna

Græcia of Catanzaro, Catanzaro, Italy

e-mail: veltri@unicz.it

P. Vizza

e-mail: vizzap@unicz.it

G. Tradigo

Department of Computer Science, Modeling, Electronics and

Systems Engineering (DIMES), University of Calabria,

Rende, Italy

e-mail: gtradigo@si.deis.unical.it

D. Messina

Mater Domini Hospital at University Medical School

of Catanzaro, Catanzaro, Italy

e-mail: demetrio.messina@alice.it

G. L. Cascini

Experimental and Clinical Science Department,

University Magna Graecia of Catanzaro, Catanzaro, Italy

e-mail: cascini@unicz.it

123

Netw Model Anal Health Inform Bioinforma (2013) 2:191–208

DOI 10.1007/s13721-013-0035-9



structural conformation of human brain regions. Neuro-

imaging tools are used by clinicians to analyse neurological

images to identify known pathologies. Positron emission

tomography (PET) is a powerful image-based analysis

method of functional investigation which can be used to

support brain neurological diseases discovery, allowing to

measure specific biochemical brain processes and identi-

fying changes that occur at cellular and molecular level. It

is thus widely used for neurological studies where sense,

motion and cognitive functions can be identified in brain

regions through metabolic and/or blood flow tracers. E.g.,

in clinical neurology, PET is a suitable method to study

brain changes associated with dementia because images

variations can be associated to physiological parameters

resulting in neurodegenerative changes (e.g., blood flow,

neurotransmission etc.) (Herholz and Heiss 2004). The

study of pathophysiology of neurodegenerative diseases

using PET is carried out through a wider spread of radio-

pharmaceuticals already validated and used in diagnostic

procedures (e.g., the 18F-fluorodeoxyglucose). Images are

then studied by analysing their contents by using statistical

tools that principally based on the analysis of voxels, i.e.

the volumetric picture elements composing the images.

Each voxel is a volume element that represents a value of

signal intensity or color in a three-dimensional space,

similarly to what pixels represent for two-dimensional

images. Available tools allow to perform a voxel-by-voxel

analysis, to identify image variations that can be associated

to functional changes. Most of such tools report a (statis-

tical) map which is studied to identify and select portions

(i.e., voxels) responsible of functional diseases. In case of

brain images, statistical maps are useful to clinicians for

detecting the alterations of cerebral metabolism that can be

associated to diseases. There exist many software tools and

statistical modules for image analysis used to extract

numeric values contained in neurological images. One of

the most widely adopted tools is SPM (for Statistical

Parametric Mapping) (Jeong et al. 2005; Schoenahl et al.

2003; Tzourio-Mazoyer et al. 2002). Many software tools

or SPM plugins, such as MarsBar (Brett et al. 2002), are

available to support clinicians in filtering the large volume

of data obtained from diagnostic image-based instruments,

but the image study and disease identification still requires

human intervention. In this paper we report a framework

for semi-automatic images analysis and disease classifica-

tion based on regions of interest (ROIs) analysis.

The ROIs analysis is carried out by using SPM and

MarsBaR plugin. MarsBaR extracts mean intensity values

from regions thus being complementary to statistical map

analysis which provides local maximum intensity values.

Its output are spatial coordinates (x, y, z) and identifies

maximum and minimum signal values for each ROI (Brett

2011). The here presented framework uses topological

relations among ROIs, treated as 3D minimal bounding

boxes for set of voxels. PET images associated to known

neurodegenerative diseases previously selected are used as

reference sets. PET images of a patient that needs to be

clinically analysed are given as input to the framework;

then ROIs obtained with MarsBar are compared by using

topological relations to the previously available reference

set. Figure 1 shows an example of how the ROI based

classification algorithm works for an input patient data.

ROIs of a patient, indicated as blind patient in the figure,

are compared with ROIs of the previously evaluated ref-

erence diseases data set by using topological relations

among bounding boxes. By applying a sequence of selected

topological operations, i.e., intersection, containments, and

disjoint, among ROIs, similarities of anomalies between

the blind patient images with those of known diseases can

be detected. In the example reported in Fig. 1, the proposed

framework finds similarities among input PET images (left

side in the figure) and a set of reference images associated

to the disease number 3 of the reference dataset (bottom

right part of the figure). Experimental results of framework

applications proved the reliability of the classification

algorithm1.

To perform analysis on large data set images, and to

automatize the preprocessing and preparation phases

required to obtain statistical analysis and to extract ROIs,

we defined a software tool, called AutoSPET (for Auto-

matic SPM invocation for PET images analysis). AutoS-

Pet allows to execute statistical procedures on PET images

by using a unique and simple graphical user interface.

AutoSPET uses SPM and its toolboxes as well as Matlab

toolbox (MathWorks, Matlab, http://www.mathworks.it/).

By using such a tool, it is possible to increase efficiency in

terms of preparation and running of statistical tests. The

tool allows to invoke preprocessing phases (such as Dicom

data conversions, co-registration, normalization, smooth-

ing) and test executions, such as Factorial Design Specifi-

cation, Model Estimation, Contrast Manager, Result

Report, by using a unique and simple graphical user

interface. The AutoSPET tool has been included in the

SPM official web page and it is freely available. In Fig. 2

we report the workflow diagram of the here proposed

framework which uses the AutoSPET tool. Figure shows

how input data (i.e., patients DICOM files) are first pro-

cessed through SPM standard statistical routines, then

elaborated with Marsbar to extract ROIs and finally clas-

sified. All of the described workflow is orchestrated

through a user friendly user interface, as described in the

Sect. 4.

1 A preliminary version of the algorithm, with no experimental

results has been presented as short papers in Vizza et al. (2011, 2012).
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The paper also reports results of using SPM templates

versus (available) magnetic resonance to find the best brain

image model, to validate the use of SPM templates, as

reference image to study PET. Alzheimer patients have

been considered and specific regions of interest for this

disease, have been extracted and examined according to

Tzourio-Mazoyer et al. (2002). Tests are reported in

Sect. 5.1.

Fig. 1 Example of application of the ROI based classification algorithm. The ROIs comparison is performed between an input patient ROI

(called blind patient) and a set of known diseases ROIs. The comparison is indicated as ‘‘vs’’ (standing for versus)

Fig. 2 AutoSPET integration

of SPM tools: flow diagram
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In literature many statistical tools for managing and

processing clinical images are described (Haidekker 2010;

Neurostat/3d-ssp 2011; Loening and Gambhir 2003; Mri-

cro 2011). Many research groups use SPM (Jeong et al.

2005; Schoenahl et al. 2003; Tzourio-Mazoyer et al. 2002)

to perform statistical analysis on image datasets. SPM

based analysis allows to identify regions of variation of the

glucose in the brain (or in region of interests) that can be

associated to known diseases (Jeong et al. 2005; Ishii et al.

2007; Kanda et al. 2008; Mosconi et al. 2008; Mosconi

et al. 2005; Kim et al. 2011; Pavese et al. 2003; Gaura

et al. 2004). For example, in Zhang et al. (2010) and in

Vilardi et al. (2011), SPM analysis has been applied to

PET images to investigate regional cerebral glucose

metabolism in traumatic brain injuries or for early diagnose

of Alzheimer’s disease. For such diseases, SPM statistical

analysis uses a comparison between the patient and a

control group (Ishii et al. 2007). In Volkow et al. (2002) a

study assessed the metabolic changes in the brains for

subjects with Alzheimer’s disease by estimating the coef-

ficient of variation over the entire cortex as index of

regional homogeneity measure. In Foster et al. (2007)

authors prove that using statistical analysis for PET images

increases diagnostic accuracy in distinguishing fronto-

temporal dementia from Alzheimer’s disease. In Kim et al.

(2006), SPM has been used to investigate the clinical sig-

nificance of bilateral temporal hypometabolism in patients

with mesial temporal lobe epilepsy. These studies suggest

that, by using a specific statistical analysis technique, it is

possible to localize neuronal brain areas involved in sen-

sory, motion or cognitive processes.

The paper is organized as follows: Sect. 2 contains a

description of Statistical Analysis performed on PET ima-

ges. Section 3 reports the ROI based algorithm and Sect. 4

presents the use of AutoSPET. Section 5 reports experi-

mental results and, finally, Sect. 6 concludes the paper.

2 PET images analysis

PET images are analysed by using SPM (Statistical Para-

metric Mapping, http://www.fil.ion.ucl.ac.uk/spm/), the

Statistical Parametric Mapping tool that allows to map

image voxels into a spatial map. It is based on the defini-

tion of assumptions (null hypothesis H0) and alternative

hypothesis (called H1) and reliability levels (i.e., thresholds

for the validation of input hypothesis) (Lyman Ott 2010).

Since the studies rely on diseases, the null hypothesis H0 is

an assumption about a population that is compared with an

alternative hypothesis H1 to establish if the null hypothesis

can be rejected. The null hypothesis is the assumption that

will be maintained by the researcher unless the analysis of

data provides significant evidence to disprove it. In this

case, the null hypothesis represents the condition of nor-

mality for the subject (i.e. healthy subject). The probability

to reject H0 when it is true is represented by the signifi-

cance level a that sets the region of rejection for the null

hypothesis (see Fig. 3). The p value (or probability level)

expresses the probability to observe the statistical value

under null hypothesis.

SPM reports results as statistical maps showing that

values are distributed according to a known probability

density function [usually the T-Student or the F-distribu-

tion (Friston et al. 2006)]. In case of PET images, results

are reported as list of coordinates (x, y, z) in MNI (Mon-

treal Neurological Institute) space. Each coordinate refers

to a voxel in a spatial significant cluster above a predefined

threshold. Main modules of SPM are reported in Fig. 4.

Figure also reports the main steps required to perform the

functional neuroimaging analysis (i.e., Spatial Pre-Pro-

cessing, Model Specification and parameters estimation,

Inferences) (Friston 2003).

PET images are pre-processed before being analysed.

Mainly, preprocessing consists of mapping images to

similar anatomical reference images to make them suitable

for statistical analysis. In our methodology we used the

following preprocessing phases.

• Coregistration co-registered PET images to mix func-

tional and anatomical information of PET and Magnetic

Resonance (MR) respectively. PET images are repre-

sented in Dicom (M.C. Center, dcm2nii dicom to

nifti conversion, http://www.mccauslandcenter.sc.edu/

mricro/mricron/dcm2nii.html) format; such a format

needs to be converted in a new format to be manipulated

by SPM [i.e. the NIfTI format (NIH, NIfTI format,

http://nifti.nimh.nih.gov/nifti-1/)]. The Dicom-to-NIfTI

converter included in SPM is not platform independent,

but depends on different devices. E.g., PET generated by

using General Electric (http://www.gehealthcare.com/

euen/fun_img/pet-ct-index.html) and Siemens (http://

www.medical.siemens.com) devices, require co-regis-

tration with respect to a common reference system in

Fig. 3 Null hypothesis verification
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order to translate the converted images in the right ori-

entation. PET images of each patient are co-registered

with a magnetic resonance (MR) reference image (when

available), as shown in Fig. 5.

Co-registration enables the visualization and localization

of neuronal activation loci on PET images by using an

MR image as anatomical reference (i.e., overlapped fil-

ter) (Kiebel et al. 1997). Nevertheless, to optimize this

phase, the study should be performed by using the PET of

the subjects as functional images and MR of the same

patient as anatomical reference. Most studies uses a

reference brain functional image, i.e. a template, avail-

able in SPM, to analyse PET images, e.g., the template

T1-weighted MR reference. In Sect. 5.1, we report

results on estimating using SPM template versus using

patient MR. We show that the SPM template can be

considered as a valid substitute of MR image. The results

regard subjects affected by Alzheimer disease with both

PET and RM studies available

• Normalization is used to convert the examined images

into a common anatomical space, i.e. the Talairach’s

space, to remove the anatomical variability among

different patients (Gispert et al. 2002; Liao et al. 2003).

The target is to manipulate images thus to have

correspondences among anatomic brain parts from

different patients. Typically normalization involves the

translation, rotation, reduction to a common scale and

non-linear warping of brain surface, matching the

template. It determines the optimum among the follow-

ing 12-parameters: (i) 3 translations, (ii) 3 rotations, (iii)

3 shears and (iv) 3 zooms, as reported in Fig. 6.

Once images have been normalized, voxels can be

associated to the known anatomic brain regions. The

normalization is performed in an automatic way. The

affine transformation is performed by SPM and allows

to fit PET images with templates.

• Smoothing is used to replace measures associated to

each voxel, with a weighted average value obtained by

considering voxels neighbours. Smoothing is performed

Fig. 4 General overview of SPM analysis

Fig. 5 PET and MR images for co-registration step
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using a Kernel Gaussian filter, which is a filter with the

shape of a normal distribution curve. The aim of

smoothing is to make data less influenced by sample

variability artefacts (Reimold et al. 2005). The width of

the curve is expressed as Full Width at Half Maximum

(FWHM) and it determines how much the data is

smoothed. Figure 7 shows the application of this filter

with different FWHM values.

Normalized images are smoothed with FWHM equals

to 12 mm Isotropic Gaussian Kernel to increase the

signal to noise ratio.

The last step in SPM analysis is the Inference (see

Fig. 4) (Poline et al. 2011), a procedure which compares

voxels. It associate a t value to each voxel, where t value is

obtained using the t student distribution applied to voxels.

By comparing voxels and set of voxels, it is possible to

identify significant changes between some hypotheses

(e.g., diseases conditions). Changes are associated to

threshold values, which can be defined by using probability

functions. E.g., thresholds can be defined by using the

probability that a cluster (containing voxels) presents a

different activation value for conditions that would be

expected under the null hypothesis. A pair of p statistics

(uncorrected p value and corrected p value), for each voxel

and cluster is used. Uncorrected mean values per-voxel are

the probability that t value is greater than a fixed threshold,

when the null hypothesis is verified (no activation); the

corrected p value is the probability that all voxels are above

the threshold when they are all unactivated. The voxel-

level p value is the probability to find a voxel with t sta-

tistic (or with higher value) under null hypothesis. The

cluster-level p value is the probability to find a cluster with

a number of voxels equal or greater than ke, where ke is

defined by the user (Laureys and Tononi 2008; Shallice and

Cooper 2011) and represents the minimum number of

voxels in a cluster, such that the cluster can be considered

for statistical analysis. Clusters hosting more than ke voxels

are reported in the map results. In our experiments we set

ke to 125.

SPM statistical analysis results are reported in an image

called MAP, where each voxel represents the result of a

specific test. In a MAP, the areas highlighted voxels are

those verifying the null hypothesis according to the specific

statistical test. It is thus possible to investigate the signif-

icance of extracted clusters (i.e. set of voxels), by analysing

the graphical representation. MAP reports in a unique

image the list of clusters (set of voxels) and their statistical

significance; moreover, for each cluster, the most signifi-

cant voxels (also reported as local maxima), are indicated.

An example of MAP is reported in Fig. 8.

Bottom part of the figure reports a table that contains the

following information (from right to left):

• x, y, z (mm): Montreal Neurological Institute (MNI)

space coordinates for each local maximum;

• voxel-level: corrected or non-corrected probability to

find, under null hypothesis, an interesting voxel;

• cluster-level: probability to find a cluster with a number

of voxels equal or greater than a specific size ke for

search volume;

Fig. 6 Normalization step:

12-parameters affine

transformations
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• set-cluster: probability to find a number of clusters

equal or greater than a specific number.

3 ROI based classification Tool

A ROI based classification tool has been developed and it is

here described. The main idea is to use topological relations

(Clementini et al. 1994) among minimal bounding boxes

(ROIs). PET images related to the so-called blind patient are

evaluated by considering relations between discovered ROIs

and ROIs referred to known diseases. ROIs are extracted

using MarsBaR (Brett et al. 2002; Brett 2011) as boxes, and

associates to each box a minimum and a maximum value. An

example of extracted ROI is reported in Fig. 9.

The algorithm uses the following topological operations

defined as follows for two ROIs, x1 and x2:

• intersection (x1, x2) = true, when x1

T
x2; false

otherwise;

• containment (x1, x2) = true, when x1 � x2; false

otherwise;

• disjoint (x1, x2) = true, when x1 62 x2:

ROIs belonging to different patients are compared

and, for each couple of analysed ROIs, topological

relations are evaluated in the following order: intersec-

tion, containment and disjoint. In case of intersection

and containment, a percentage of overlapping is evalu-

ated. An example of the use of ROI based algorithm is

reported in Fig. 1.

Fig. 7 Example of different full

width half maximum (FWHM)

values

Fig. 8 SPM result: statistical

MAP
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The classification algorithm spreads over two distinct

phases: (i) a training phase for data preprocessing and

analysis, and (ii) a test phase running the algorithm on

blind patients. The training phase consists in defining a set

of ROIs that can be considered representative of a specific

disease. For each set of known diseases, available PET

images (expert referred studies) have been analysed. Each

disease is thus associated to a set of geometrically defined

bounding boxes in a commonly adopted reference space.

The training phase generates a set of values, mapped into

matrices data structures. Mean values are also considered

and stored in a vector data structure. A function of mutual

relation is evaluated to consider the relations among ROIs

of different diseases. This phase generates a reference data

set and it is evaluated off line when reference set is defined.

The second phase consists in analysing ROIs of a blind

patients and evaluating topological relations with respect to

ROIs in the reference data set. Topological relations are

considered with respect to a priori defined thresholds (e.g.

greater than 50 % of overlapping among ROIs). A function

cost is defined as metric function to choose the set of ROIs

(and thus the corresponding disease) closest to the input

analysed ROIs. Finally the input PET images (blind

patient) is associated to one or more ROIs with a given

probability. In the following the two phases are detailed.

The training phase consists of the following steps:

1. Selection of N patients, as control reference, among the

Nc patients with no diseases. Selecting the set of

pathological patients P among an available set Pa of

pathological patients, clustered in known disease set.

2. Perform statistical analysis and evaluate ROIs on

selected patients. In particular, for each ROI, the

following information are extracted:

• ROI minimal bounding box vertices: xmin/xmax,

ymin/ymax, zmin/zmax;

• coordinates of local maxima (points with maxi-

mum intensity value): x, y, z;

• mean intensity signal values.

3. Classify ROIs with respect to their known disease, and

for each known pathology, analyse topological rela-

tions between ROIs and intensity values. A function

REL(ROI1,ROI2) is evaluated applying topological

relations for each couple of ROIs. For instance, some

of the following topological relations are evaluated:

ROI1

\
ROI2�50 %_ROI1 � ROI2 _ROI1 � ROI2;

Topological relations are thus evaluated to define a

ROIs reference set associated to each known disease.

4. Evaluation of a Mutual Relation function between

diseases, to evaluate the relation between them.

The function has the following form:

MmMn ¼ 1� að Þ � kmn þ agm; ð1Þ

where m; n ¼ 1; . . .;K; and K is the number of con-

sidered diseases. kmn represents the mutual relation

among two diseases Mm and Mn. gm represents the

relation between the disease Mm with the other diseases

of the dataset. The constant a has been set to 0.25, to

Fig. 9 ROI extracted from voxels defined in the statistical MAP
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give greater weight to the first term; the factor kmn is

obtained by evaluating relations between ROIs of Mm

with each ROIs of Mn.

The factor gm, has been calculated as the relation

between each ROIc of Mm with each ROIc of all other

diseases. Finally, all mutual relations are evaluated and

stored in a matrix A [MK 9 MK].

The test phase works as follows for PET images asso-

ciated to a blind patient.

1. Evaluate statistical analysis and ROIs by using SPM

and MarsBaR for the PET images of patient Pb, and

evaluate ROIs, maximum intensity values for voxels

contained in ROIs and mean intensity values.

2. Evaluate the relation between ROIPb
and ROIs in

reference data set and store information relations on a

matrix, and define a weight vector to relate the patient

disease to known diseases.

3. Evaluate a matrix containing information about rela-

tions among maximum values in patient ROIs and

known studies.

Finally, the tool compares weighted functions repre-

senting mutual relations among ROIs of the blind patient

with those of the known diseases. The disease in corre-

spondence of an index with the lowest value is proposed as

possible disease for the input patient. An example output

for the algorithm is reported in Fig. 1.

4 Automatize the SPM analysis phase

SPM users know that often it is required to run several

statistical experiments, varying parameters, currently

requiring manual procedures using SPM by means of its

user interface. In our tests we used the AutoSPET tool, to

automate SPM analysis steps. It is a useful graphical user

interface to improve efficiency in running SPM experi-

ments. It integrates SPM, Matlab (i.e. the engine of

SPM), MarsBaR and any other SPM plug-in. It manages

all phases of PET statistical analysis and allows to

evaluate and run parametrized tests in parallel. It allows

Dicom import and conversion in NIfTI format, prepro-

cessing, statistical step and ROI-based algorithm. The

main modules of AutoSPET as a PET images analysis

tool are shown in Fig. 2. AutoSPET has been designed

and implemented in the Bioinformatics Laboratory of

University Magna Græcia of Catanzaro and it is freely

available on the SPM official Web site at

http://www.fil.ion.ucl.ac.uk/spm/ext/, linking the appli-

cation running on the Bioinformatics lab servers. Fig-

ure 10 reports the graphical user interface of the tool,

and the choice of parameters for preprocessing phases on

loaded PET image data set, while Fig. 11 reports the

coregistered images by using AutoSPET.

AutoSPET includes the ROI based classification tool

module for disease identification. It has been integrated in

Fig. 10 AutoSPET graphical

user interface
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AutoSPET as a Java module but it can also be used as a

stand alone application. The results of an automatic pro-

cedure for disease identification is shown in Fig. 12.

5 Experimental results

In this section we report the experimental results of the

here presented study. The used data set is firstly described,

with patients diseases. We then report about the contribu-

tion of validating the use of SPM template while co-reg-

istering brain images. The aim is to estimate the reliability

of SPM templates, and in particular of T1 template, with

respect to use patient magnetic resonance. Then use of ROI

based algorithm is reported with experimental results.

PET images acquisition phase. We considered PET

related to healthy and pathological subjects. The data set is

composed of 28 control and 59 pathological ones. PET-TC

GE Health-care Discovery ST Scanner has been used;

18-FDG PET scans have been acquired in the Nuclear

Medicine laboratory of Magna Graecia University Hospi-

tal, where 18-FDG stands for nuclide [18F] used as contrast

and FDG (370 Mega Becquerel, MBq) as tracer used

during image acquisition phase. The delay between the

injection and acquisition phase is of 60 min, whereas 47

slices PET acquisition is run in approximately 18 min.

For each analysed PET images, a voxel-by-voxel based

analysis has been performed using the following criteria:

• intensity image values were corrected to a mean value

of 50 ml/dl/min, using a proportional scaling;

• filters (i.e. masks) were used with 0.8 intensity value to

select only voxels with activity [80 % of the total

Fig. 11 AutoSPET: output of

co-registration

Fig. 12 AutoSPET: results of an instance of ROI based classification

tool
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value; this is done in order to exclude extra cranial

activities;

• a t contrast value has been defined to consider

hypometabolism;

• a probability p value \0.001 and an extent threshold

equal to 125, have been used.

The used p value (i.e. 0.001) means that the probability

to reject erroneously the null hypothesis is of 0.1 %; the

extent threshold of 125 voxels has been chosen to select

clusters with an high number of voxels.

Control dataset. Out of 28 subjects, we selected a con-

trol dataset of 25 ones, by using the following enrolment

criteria:

• absence of brain diseases;

• older than 40 years;

• possible presence of cancer (diagnosys or suspect);

• absence of medication;

• not under chemiotherapia and/or radiotherapia cures;

• absence of anomalies and/or structural lesions in brain;

The 28 subjects are patients with some form of (non

neurological) suspect diseases and that thus were studied

by means of PET analysis. Statistical analysis has been

performed on the 28 PET image dataset using the above

reported criteria. Three out of 28 have been used as ref-

erence normality data set selected by clinicians. An FDR

(False Discovery Rate) statistical method has been used for

multiple comparison. FDR is applied in multiple hypoth-

esis statistical tests to verify the expected proportion of

false positives among supra-threshold voxels. The subjects

selected as control dataset have been chosen in according

to the following criteria:

• there is no cerebral difference compared to the

reference normality dataset group;

• the (brain) voxels mean value verifies the following

equation:

Xc ¼ Xg � 2r ð2Þ

where Xc represents the mean value of the patient, Xg is the

mean value of the reference group and r is the standard

deviation.

Mean value and standard deviation calculated on the 3

reference subjects, are respectively 42.8576 and 2.6952;

thus, for each analysed subject, its mean value must be

between 37.4672 and 48.248. Obviously, such values vary

when including additional subjects into reference set.

Table 1 reports the 28 subjects; for each patient, the sex,

the age, the diagnosis (i.e. that brings patient to undertake a

PET analysis), the range of normality and mean are

reported. The selected and considered normality dataset is

composed by 25 out of 28 patients. The 3 ones excluded

are reported in bold font (i.e. patients identified as P21,

P22, P24). Moreover, the first three ones (in italic font) are

subjects used as reference set. Finally, whereas the diag-

nosis is not well defined, the it is indicated as ‘‘unknown‘‘;

however the selected subjects verified the enrolment cri-

teria reported above.

Pathological class dataset. The pathological class disease

is composed of patients that present brain neurological dis-

eases. We performed statistical analysis and studies on 59

pathological subjects. PET images have been compared with

the normality class dataset reported above. As result, regions

Table 1 Subjects enrolled for the definition of the control data set

Patient

(sex)

Age Diagnosis Normality

range

Mean

value

P1 (F) 55 NDD Lymphadenopathy Reference

subject

43.10

P2 (F) 60 NDD Lymphadenopathy Reference

subject

40.04

P3 (M) 62 Intestinal polyps Reference

subject

45.41

P4 (F) 65 Breast nodule 37.46:48.24 42.15

P5 (F) 57 Breast nodule 38.22:47.13 44.14

P6 (F) 45 Non-Hodgkin’s

lymphoma

38.89:47.05 42.21

P7 (F) 61 Unknown 39.39:46.96 43.54

P8 (F) 57 Non-Hodgkin’s

lymphoma

39.76:46.69 41.22

P9 (F) 53 Unknown 39.47:46.49 43.99

P10 (F) 60 Intestinal polyps 39.74:46.44 43.80

P11 (F) 57 Suspect ovarian cancer 39.97:46.35 41.62

P12 (F) 43 HepatoCellular

Carcinoma

39.86:46.19 43

P13 (F) 51 Thymoma 40:46.04 43.11

P14 (M) 51 Non-Hodgkin’s

lymphoma

40.14:45.92 42.33

P15 (M) 71 Pulmonary nodule 40.17:45.78 42.94

P16 (M) 65 Pulmonary nodule 40.27:45.68 43.41

P17 (F) 61 Breast nodule 40.38:45.62 44.50

P18 (F) 54 Rectal cancer 40.45:45.73 42.84

P19 (F) 49 Hodgkin’s lymphoma 40.51:45.64 44.08

P20 (F) 42 Endometrial cancer 40.60:45.66 43.86

P21 (M) 59 Unknown 40.68:45.65 50.32

P22 (M) 47 LymphoHematopoietic
Neoplasms

40.68:45.65 56.62

P23 (M) 47 NDD Lymphadenopathy 40.68:45.65 43.56

P24 (M) 64 Unknown 40.76:45.61 49.31

P25 (M) 56 Unknown 40.76:45.61 42.84

P26 (M) 77 Unknown 40.79:45.54 44.55

P27 (M) 82 Unknown 40.84:45.62 42.51

P28 (M) 51 Unknown 40.84:45.56 43.08

Bold and italic values refer to healthy condition of analyzed patients
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Table 2 Hypometabolic

regions extracted from

statistical analysis

Disease Ster coord

(x, y, z)

Brain area T Thr T value Z score

AD -26 -54 38 Left cerebrum, parietal lobe, subgyral 3.50 12.44 6.71

-44 -46 28 Left cerebrum, parietal lobe, supramarginal gyrus 8.71 5.67

36 -46 -8 Right cerebrum, occipital lobe, fusiform gyrus 8.14 5.47

-54 12 -6 Left cerebrum, temporal lobe, superior temporal

gyrus

6.25 4.69

-38 12 -24 Left cerebrum, temporal lobe, superior temporal

gyrus

4.04 3.46

SCA -38 -48 -42 Left cerebellum, posterior lobe, cerebellar tonsil 3.53 14.10 6.96

-44 -64 -40 Left cerebellum, posterior lobe, cerebellar tonsil 12.72 6.68

-30 -54 -8 Left cerebellum, posterior lobe, declive 6.74 4.86

34 -48 -8 Right cerebrum, occipital lobe, fusiform gyrus 6.69 4.84

32 24 -26 Right cerebrum, temporal lobe, superior temporal

gyrus

5.90 4.48

CBD -34 -34 16 Left cerebrum, temporal lobe, superior temporal

gyrus

3.53 7.41 5.25

40 -34 16 Right cerebrum, temporal lobe, superior temporal

gyrus

7.31 5.21

38 20 -26 Right cerebrum, temporal lobe, superior temporal

gyrus

6.46 4.83

-34 -46 40 Left cerebrum, parietal lobe, inferior parietal

lobule

8.24 5.45

-46 -40 36 Left cerebrum, parietal lobe, supramarginal gyrus 8.08 5.39

-28 -56 36 Left cerebrum, parietal lobe, subgyral 7.55 5.23

40 -38 38 Right cerebrum, parietal lobe, inferior parietal

lobule

6.85 4.91

30 -44 44 Right cerebrum, parietal lobe, subgyral 6.46 4.74

-46 18 -12 Left cerebrum, temporal lobe, superior temporal

gyrus

6.41 4.72

-48 -4 -8 Left cerebrum, temporal lobe, superior temporal

gyrus

4.49 3.72

52 16 -16 Right cerebrum, temporal lobe, superior temporal

gyrus

5.55 4.31

-50 -42 -12 Left cerebrum, temporal lobe, fusiform gyrus 5.07 4.05

FTD 4 18 26 Right cerebrum, limbic lobe, cingulate gyrus 3.43 7.88 5.58

6 32 16 Right cerebrum, limbic lobe, anterior cingulate 7.69 5.51

16 8 10 Right cerebrum, sub-lobar, extra-nuclear 6.24 4.83

50 48 14 Right cerebrum, frontal lobe, Md frontal gyrus 6.09 4.76

48 52 6 Right cerebrum, frontal lobe, Md frontal gyrus 5.96 4.69

-42 56 4 Left cerebrum, frontal lobe, Md frontal gyrus 5.49 4.43

2 -4 32 Right cerebrum, limbic lobe, cingulate gyrus 5.23 4.28

-10 10 6 Left cerebrum, sub-Lobar, caudate 4.93 4.10

12 -22 16 Right cerebrum, sub-lobar, thalamus 4.70 3.96

-52 14 -2 Left cerebrum, frontal

Temporal space

4-70 3.97

-32 62 4 Left cerebrum, frontal lobe, Md frontal gyrus 4.64 3.93

54 44 -2 Right cerebrum, frontal lobe, inferior frontal

gyrus

4.60 3.90

56 18 -6 Right cerebrum, frontal lobe, inferior frontal

gyrus

4.38 3.76

16 -6 18 Right cerebrum, sub-lobar, caudate 4.33 3.72
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of interests (ROIs) with different glucose metabolism for

each neurodegenerative disease have been identified and

hypometabolic ROIs have been identified and measured on

PET images. Such values are reported in Table 2. Moreover,

on such subjects we also run the ROIs based algorithm.

The pathological PET images data set interests the fol-

lowing pathologies:

• Alzheimer disease (indicated as AD in the following);

at an early stage of the disease, the metabolic reduction

affects mesial temporal brain areas, and the posterior

cingulate brain cortex presents an early

hypometobolism.

• Frontotemporal Dementia (indicated as FTD in the

following); it is a neurodegenerative syndrome,

Table 2 continued
Disease Ster coord

(x, y, z)

Brain area T Thr T value Z score

PPF -14 8 10 Left cerebrum, sub-lobar, caudate 3.40 12.91 7.31

8 -18 12 Right cerebrum, sub-lobar, thalamus 10.88 6.75

16 4 12 Right cerebrum, sub-lobar, extra-nuclear 10.20 6.54

-46 16 -14 Left cerebrum, temporal lobe, superior temporal

gyrus

5.73 4.62

6 -44 -36 Right brainstem, medulla 4.29 3.73

PSP -10 12 8 Left cerebrum, sub-lobar, caudate 3.48 8.52 5.67

-4 14 26 Left cerebrum, limbic lobe, cingulate gyrus 7.44 5.26

-4 -14 12 Left cerebrum, sub-lobar, thalamus 6.63 4.91

PD -26 -80 2 Left cerebrum, occipital lobe, subgyral 3.40 11.59 6.96

-26 -56 36 Left cerebrum, parietal lobe, subgyral 10.85 6.75

48 16 -18 Right cerebrum, temporal lobe, superior temporal

gyrus

11.02 6.80

36 -58 -6 Right cerebrum, occipital lobe, subgyral 9.34 6.24

-50 42 8 Left cerebrum, frontal lobe, inferior frontal gyrus 5.37 4.41

34 32 18 Right cerebrum, frontal lobe, subgyral 4.39 3.80

34 20 28 Right cerebrum, frontal lobe, midfrontal gyrus 4.05 3.56

38 10 22 Right cerebrum, frontal lobe, subgyral 3.54 3.19

DLB -18 38 -26 Left cerebrum, frontal lobe, orbital gyrus 3.42 7.18 5.32

-36 -36 12 Left cerebrum, temporal lobe, transverse

temporal gyrus

6.41 4.95

-26 -76 0 Left cerebrum, occipital lobe, subgyral 6.00 4.74

4 -36 22 Right cerebrum, limbic lobe, posterior cingulate 5.74 4.60

44 16 -20 Right cerebrum, temporal lobe, superior temporal

gyrus

5.69 4.57

38 -32 14 Right cerebrum, temporal lobe, superior temporal

gyrus

4.47 3.84

46 -38 26 Right cerebrum, parietal lobe, inferior parietal

lobule

4.91 3.52

-42 14 -26 Left cerebrum, temporal lobe, superior temporal

gyrus

4.01 3.52

-48 18 -12 Left cerebrum, temporal lobe, superior temporal

gyrus

3.97 3.49

ED 14 8 6 Right cerebrum, sub-lobar, extra-nuclear 3.53 9.12 5.74

32 32 20 Right cerebrum, frontal lobe, subgyral 8.33 5.48

34 -64 22 Right cerebrum, temporal lobe, subgyral 8.05 5.39

24 -44 -34 Right cerebellum, posterior, lobe, cerebellar

tonsil

6.02 4.54

-24 -44 -34 Left cerebellum, posterior lobe, cerebellar tonsil 5.84 4.45

4 -56 2 Right cerebellum, anterior lobe, culmen 5.44 4.25

-26 -62 26 Left cerebrum, temporal lobe, subgyral 5.13 4.08

-22 -60 32 Left cerebrum, parietal lobe, precuneus 4.94 3.98

-14 -48 32 Left cerebrum, parietal lobe, precuneus 4.34 3.63
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associated to frontal and rear temporal lobes reduction

of perfusion and metabolism.

• Dementia with Lewy body (indicated as DLB in the

following), where cortical and subcortical brain stem

structures present Lewy body.

• Spino-Cerebellar Ataxia (indicated as SCA in the

following); it is a degenerative genetic disorder where

brain glucose metabolism is variable and out of

normality range, generating multiple SCA disease types

(Wang et al. 2007).

• Multiple System Atrophy (indicated as MSA in the

following); it is associated to cells degeneration in well

defined brain areas, inducting a degenerative neurolog-

ical disorder.

• Parkinson Disease (indicated as PD in the following);

PD is a central nervous system degenerative disorder.

• Cortico Basal Degeneration (indicated as CBD); it is a

rare neurodegenerative disease with deterioration of the

cerebral cortex and the basal ganglia;

• Progressive Primary Freezing (indicated as PPF); it is a

progressive freezing gait disorder;

• Progressive Suprenuclear Palsy (indicated as PSP); it is

a rare disease with degeneration of brain stem structures;

• Epilepsy Disorder (indicated as ED); brain disorders.

Table 2 reports ROIs of the analysed pathological class

data set, where table columns contain: (i) the disease,

indicated using the above reported abbreviation (AD, for

Alzheimer Disease, FTD for Frontotemporal Dementia,

and so on); (ii) stereotaxic coordinates (indicated as Ster

Coord in the table) of the voxel with a local maximum; (iii)

the anatomical brain area corresponding to the stereotaxic

coordinates; (iv) the T value threshold (indicated as T-Thr);

(v) the T value; (vi) the Z score of each voxel identified by

the stereotaxic coordinates. T value is evaluated by SPM

using user-defined statistical parameters. In PET-image

analysis, for each defined disease all PET images show a

decreasing metabolism in similar areas. This is also shown

in Fig. 13, which reports comparison among control data

set and analysed brain neurological disease. For each

analysed disease, ipo-metabolism brain area is identified

and shown as darker area, while the ‘‘\’’ symbol (used as

Fig. 13 Areas of diseases versus control dataset. Ipo-metabolism condition of a specific disease is compared to the control dataset (e.g. Control

vs Parkinson, where vs stands for versus)
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arrow in SPM results), indicates the center of axes. Note

that in figure, vs stands for ‘‘versus’’.

5.1 Using SPM template versus MR

We performed tests to compare results obtained using SPM

templates versus results obtained using brain magnetic

resonance (MR) of the analysed patients (for patients

where MR images are available). The aim is to estimate the

reliability of SPM templates, and in particular of T1 tem-

plate, in order to increase classification performances for

those analysis where MR is not available. The comparisons

between the reference images of SPM and MR of the

patients are made in co-registration phase. Using the

available dataset, we showed that there is no relevant dif-

ference in using SPM T1 template versus using MR of the

patient as template, except for only two patients when

considering particularly small ROIs areas (i.e. amygdala

left and right zones), due to the small dimensions (less the

2,000 pixels) which leads to an higher probability of

misalignment.

The following ROIs area have been used for compari-

sons among T1 based results and MR based results:

• Amygdala Left (also indicated as AmL in the

following);

• Amygdala Right (also indicated as AmR in the

following);

• Anterior Cingulum Left (also indicated as AnCinL);

• Anterior Cingulum Right (also indicated as AnCinR);

• Inferior Parietal Left (also indicated as InParL);

• Inferior Parietal Right (also indicated as InParR);

• Hippocampus Left (also indicated as HippL);

• Hippocampus Right (also indicated as HippR);

• Olfactory Left (also indicated as OlfL);

• Olfactory Right (also indicated as OlfR);

• Inferior Temporal Left (also indicated as InTemL);

• Inferior Temporal Right (also indicated as InTemR);

• Middle Temporal Left (also indicated as MiTemL);

• Middle Temporal Right (also indicated as MiTemR).

PET brain images where MRs of patients were avail-

able, have been studied, executing the coregistration phases

Table 3 Results in terms of

mean intensity value of cerebral

metabolic glucose rate in ml/dl/

min by the comparison between

coregistration with MR patient

and SPM template

ROI Ref P1 P2 P3 P4 P5 P6 P7 P8

AmL MR 73.56 73.86 62.83 77.31 74.17 66.86 76.01 73.85

T1 68.05 70.6 50.98 71.94 67.55 71.61 67.77 69.67

AmR MR 74.87 74.88 70.82 75.11 75.83 67.72 74.99 74.55

T1 67.04 70.2 68.48 62.37 67.92 71.03 67.36 69.82

AnCinL MR 74.04 73.3 74.49 74.67 72.46 70.79 73.25 73.81

T1 74.09 73.34 74.52 74.76 72.53 70.75 73.18 73.84

AnCinR MR 74.58 73.82 80.46 73.76 72.81 71.29 73.58 74.04

T1 74.64 73.86 80.45 73.81 72.87 71.29 73.51 74.08

InParL MR 68.98 70.29 46.5 72.36 67.95 71.06 68.81 68.59

T1 68.91 70.28 46.45 72.44 67.96 70.98 68.97 68.56

InParR MR 66.17 70.81 53.27 61.79 66.39 71.24 68.65 68.71

T1 66.15 70.77 52.78 61.99 66.4 71.18 68.8 68.7

HippL MR 73.72 72.34 46.96 77.42 71.35 68.22 75.07 74.04

T1 73.78 72.35 47.08 77.53 71.45 68.26 75.07 74.09

HippR MR 74.61 73.92 59.28 69.76 74.53 70.85 75.05 74.83

T1 74.67 73.97 59.44 69.67 74.61 70.9 75.03 74.88

OlfL MR 73.97 72.64 70.85 74.52 72.01 64.39 74.26 72.97

T1 74.01 72.64 70.81 74.6 72.09 64.43 72.2 72.97

OlfR MR 74.26 72.47 71.01 72.8 71.88 64.18 74.14 72.34

T1 74.3 72.48 70.92 72.8 71.97 64.16 74.03 72.33

InTemL MR 66.69 68.6 50.67 72.59 68.75 68.19 69.56 67.11

T1 66.64 68.55 50.67 72.68 68.7 68.19 69.07 67.03

InTemR MR 68.65 69.37 69.9 66.06 69.23 68.48 70.28 69.85

T1 68.6 69.28 69.82 65.76 69.14 68.49 69.91 69.77

MiTemL MR 68.12 68.47 52.29 72.01 68.54 68.92 68.81 69.31

T1 68.08 68.43 52.29 71.87 68.49 68.91 68.46 69.29

MiTemR MR 70.06 70.73 68.62 64.34 70.32 71.15 70.37 71.55

T1 70.05 70.71 68.65 64.28 70.31 71.13 70.21 71.56
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by using magnetic Resonance (MR) and by using SPM T1

template (T1). Cerebral metabolic glucose values have

been evaluated and analysed for PET images of 8 patients,

focusing on the above reported brain areas. For each brain

area, mean intensity metabolic glucose values have been

evaluated when coregistered with respect to MR and with

respect to T1 template. Numerical results are reported in

Table 3, where columns refer to considered ROI area (i.e.,

AmR for Amygdala Right ROI area, AmL for Amygdala

Left ROI area, AnCinL for Anterior Cingulum Left ROI

area and so on). Reading the table by row, for a given ROI

area (first column), mean intensity values obtained by

coregistering w.r.t. MR and w.r.t. T1 template are reported

for each patient (P1, . . .;P8). It is possible to verify that,

except Amygdala Lef and Right (first two lines in the table,

i.e. AmL and AmR), for each ROI area and for each

patient, mean values of MR and T1 are almost the same

(e.g., values 74.04 and 74.09 ml/dl for Patient P1 and for

AnCinL area). The differences among values have been

plot on Fig. 14, where mean intensity values plots for 8

patients are reported. One plot refers to coregistration with

respect to MR, while the other one is coregistered with

respect to T1 SPM template (i.e., the values of Table 3).

Note that, as readable by values of first lines in Table 3,

only for the Amygdala left and right there is a difference in

the use of T1 or MR as reference image; for the other ROIs,

the use of MR image of the patient or the use of T1 tem-

plate of SPM as reference image does not produce signif-

icant differences. For example, for patient P1, the mean

intensity value of cerebral metabolic rate of glucose in

Amygdala left region with the MR is 73.56 in ml/dl/min

(i.e., millilitres cerebral blood that flows in 1 dl of brain per

minute); in the same region, instead, if template T1 of SPM

is used, the value is 68.05 ml/dl/min. Moreover, for just

two patients, due to the alignment of adjacent structures

having low metabolic activities, we observed a lower

information content for SPM template with respect to using

MR. In these cases (i.e. smaller and low activity ROIs) we

claim that using MR template usually leads to better

results. Nevertheless, SPM template still maintains

acceptable levels of reliability when considering group

analysis.

Table 4 Results of asymmetric

indexes with SPM template
Patient Amyg AnCin InPar Hipp Olfac InTemp MiTemp

P1 -0.0075 0.0036 -0.02 0.006 0.0019 0.0145 0.0142

P2 -0.0028 0.0036 0.0034 0.011 -0.0011 0.0053 0.0116

P3 0.1464 0.0383 0.0638 0.116 0.0007 0.1589 0.1468

P4 -0.0712 -0.0063 -0.0777 -0.0534 -0.0122 -0.05 -0.0134

P5 0.0027 0.0023 -0.0116 0.0216 -0.0008 0.0032 0.0112

P6 -0.0041 0.0038 0.0014 0.0189 -0.0021 0.0022 0.0081

P7 -0.003 0.0023 -0.0012 -0.0003 -0.0011 0.0061 0.0114

P8 0.0011 0.0016 0.001 0.0053 -0.0044 0.02 0.0054

Table 5 Results of asymmetric

indexes with MR patient image
Patient Amyg AnCin InPar Hipp Olfac InTem MiTemp

P1 0.0088 0.0036 -0.021 0.006 0.0019 0.0145 0.0141

P2 0.0068 0.0036 0.0037 0.011 -0.0011 0.0056 0.0163

P3 0.06 0.0386 0.0679 0.116 0.0012 0.1595 0.1351

P4 -0.0144 -0.0061 -0.0788 -0.0521 -0.0117 -0.0471 -0.0562

P5 0.0111 0.0024 -0.0116 0.0218 -0.0009 0.0035 0.0128

P6 0.0064 0.0035 0.0013 0.0189 -0.0016 0.002 0.0159

P7 -0.0068 0.0022 -0.0012 -0.0002 -0.0008 0.0051 0.0113

P8 0.0048 0.0016 0.0009 0.0053 -0.0044 0.02 0.016

Fig. 14 Mean intensity values for each ROI by using MR image or

T1 image. Values on y axis are measured in cerebral metabolism

glucose rate (ml/100 g/min)
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5.2 Asymmetric indexes

We performed numerical evaluations to measure the brain

asymmetries for patients, starting from the available set

PET images data set. In this analysis we used both T1

template and MR on 8 patients (the ones used above to

validate T1 template). The asymmetric indexes have been

evaluated considering the ROIs of the SPM template val-

idation (i.e., the one reported in Table 3). Indeed, even if

the cerebral hemispheres are approximately equal in terms

of (i) volume, (ii) weight and density, (iii) global and local

structural, some functional asymmetries have been high-

lighted and reported in literature (Hugdahl 2005). We

calculate the asymmetric indexes to estimate this asym-

metry between right and left cerebral hemispheres. Dif-

ferent methods to evaluate these indexes have been

proposed in literature (Kajimoto et al. 2007; Bruno et al.

2011; Kang et al. 2001); in this work the asymmetric

indexes have been calculated according to the following

equation:

AI ¼ ðR� LÞ=ðLþ RÞ ð3Þ

where AI means asymmetric index, L (left) and R (right)

stand for the intensity mean values of signal referring to

left (L) and right (R) hemispheres. If the AI value is[0, the

left side signal is lower than the right one, representing a

major hypo-metabolism. On the contrary (AI ratio\0), the

hypo-metabolism is predominant in the right side. The

Asymmetric Indexes evaluated coregistering (i) by using

T1 template and (ii) by using MR patient images are

respectively reported in Tables 4 and 5.

Evaluated coregistration values confirm the validity of

using T1 template versus using MR, except for amygdala

region. Again, the non standard in Amygdala region is also

present for asymmetric indexes and depends on the dif-

ferent use of SPM templates and MR patient images.

5.3 Results on using ROI Based classification

algorithm

The ROI based classification algorithm has been tested on

four different pathologies (out of 9 available set of

pathologies). These pathologies are Parkinson, Lewy’s

Body, Frontotemporal and Freezing for a total of 30 sub-

jects: 18 subjects have been used to extract ROIs of dis-

eases and for the definition of the reference dataset; 12

subjects have been used as input for the algorithm, hiding

the referred diseases (indicating the patient data set as

‘‘blind patients‘‘). Results of the algorithm are reported in

Table 6, where patients are indicated as S1… S12 (note

that it is a different set of patients with respect to P1… P28

reported in Table 1).

The results accuracy is of 100 % on the available cases

for Parkinson diseases, 1 out of 2 Frontotemporal disease

subjects, for an overall 83 % of accuracy on the available

dataset. The classification module can be used in the

AutoSPET tool, performing tests by using a single interface.

6 Conclusions

We developed an algorithm for disease classification based

on region of interests extracted from PET images. The

experiments show interesting results for a semi automatic

process to support physicians in images analysis and dis-

eases identification. Moreover, we performed statistical

analysis on PET images relative to different diseases, and

we tested the reliability of T1 SPM template, as reference

space for PET image analysis, with respect to magnetic

resonances (MR). Finally, by using AutoSPET it is possible

to perform and repeat experiments several times avoiding

manual invocation of SPM and Matlab interfaces.

Acknowledgments Authors thank Walter Morelli for his coding
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