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Abstract In the present study we performed the com-
parative modeling, structural annotation, domain identifi-
cation and the structural comparison of B-galactosidase
enzyme from Aspergillus niger. Five domains were iden-
tified in the modeled structure at different residue regions.
Two catalytic residues Glu200 and Glu298 were identified
in the first domain of the modeled structure. The modeled
structure showed highest similarity with crystal structure of
Penicillium sp. B-galactosidase. The molecular docking of
the structure with B-p-galactose was also performed.
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1 Introduction

B-Galactosidase (S-p-galactosides galactohydrolase, EC
3.2.1.23), is the enzyme responsible for the catalytic
hydrolysis of B-galactosides into monosaccharides. The
enzyme is an exoglycosidase which hydrolyzes the B-gly-
cosidic bond formed between a galactose and its organic
moiety. The enzyme deficiencies in the human body result
in galactosialidosis or Morquio B syndrome. The enzyme
gene, lacZ in Escherichia coli is present as an integral part
of the inducing lac operon system and is positively regu-
lated by the incidences of low lactose levels in the organ-
ism (Dorland 1997).

The functionality of the enzyme relies on the two
structural peptides, lacZo. and lacZQ, neither of which is
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active by itself, but which are duly operative when coex-
isting in an aggregated entity. The presence or absence of
an active B-galactosidase may be detected by X-gal, which
produces a characteristic blue dye when cleaved by pB-
galactosidase, thereby providing an easy means of distin-
guishing the presence or absence of cloned product in a
plasmid (Dimri et al. 1995).

The exclusive nature of the version of the enzyme found
in Aspergillus niger is its thermostability at a wide toler-
ance range of 35-80 °C (Dimitris et al. 2005). The enzyme
has significant role in A. niger in colony establishment,
since it aids in breaking down complex sugars that can be
readily assimilated by the fungi. Also, in large-scale
industrial processes the fungi has been readily utilized for
commercial production of [B-galactosidase. The enzyme
extracted from A. niger is useful in the commercial pro-
duction of an array of sugars; glucose, galactose, hetero-
polysaccharides, galacto-oligosaccharides. 3-Galactosidase
based medical and industrial applications include cleavage
of blood group A and B glycotypes, biosensor for specific
lactose determination in milk and disease diagnosis (Stai-
ano et al. 2005), treatment of lactose malabsorption, pro-
duction of lactose hydrolyzed milk (Mlichova and
Rosenberg 2006). Immobilization of [-galactosidase
through anion exchange resin, cellulose—gelatin carrier
system, DEAE agarose, glyoxyl/epoxy/BrCN groups, glu-
taraldehyde, polyelectrolyte surfaces, silicon surface, sep-
abeads-epoxy supports partially modified with boronate,
iminodiacetic, metal chelates, and ethylenediamine
improves its stability and re-usage (Klich 2002).

Considering the above facts, a greater insight into the
properties of the [-galactosidase enzyme from A. niger
would be more helpful in the working spectrum. In present
study the comparative modeling, structural annotation,
domain identification, and structural comparison of [-
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galactosidase enzyme from A. niger were performed. Fur-
ther, the docking studies were carried out for catalytic sites,
Glu200 and Glu298 with B-p-galactose (GAL) separately.

2 Materials and methods
2.1 Sequence retrieval

The amino acid sequence of B-galactosidase enzyme from
A. niger was retrieved from GenPept database available at
National Centre for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/protein/).

2.2 Comparative modeling and structural annotation

The prediction of protein structure using comparative
modeling is an active and promising area of research. The
comparative modeling of the target protein was performed
using 3D jigsaw server (http://bmm.cancerresearchuk.org/
~3djigsaw/) (Bates et al. 2001), validated using PRO-
CHECK (Morris et al. 1992), and the structural annotation
was described using SAS-sequence annotated by structure
server  (http://www.ebi.ac.uk/thornton-srv/databases/sas/)
(Milburn et al. 1998), ProFunc-protein function from
structure server (http://www.ebi.ac.uk/thornton-srv/
databases/ProFunc/) (Laskowski et al. 2005), and PDB-
sum-pictorial database of 3D structures in the Protein Data
Bank server (http://www.ebi.ac.uk/pdbsum/) (Laskowski
2001) available at European Bioinformatics Institute.
Domain identification in the amino acid sequence of -
galactosidase enzyme from A. niger was performed using
InterProScan tool (Bateman et al. 2004).

2.3 Structural comparison

Protein structure comparisons are often used to highlight
the similarities and differences among related homologous-
3D structures. Homologous proteins are descended from a
common ancestral protein, but have subsequently dupli-
cated, evolved along separate paths, and thus changed over
time (Mark and Jukka 2000; Dwivedi et al. 2013). Struc-
tural comparison of the modeled structure was performed
using Dali server (http://ekhidna.biocenter.helsinki.fi/dali_
server/start) (Holm and Rosenstrom 2010) in PDB database
to find out the similar structures in another organisms.

2.4 Molecular docking
The catalytic residue and their ligand interaction for the
modeled structure identified using SAS server was used for

molecular docking to find out the protein-ligand interac-
tion using ArgusLab 4.0.1program (Thompson 2004).
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3 Results
3.1 Sequence retrieval

The amino acid sequence of B-galactosidase enzyme from
A. niger was retrieved in FASTA format using their
accession number, AAC60538.1

3.2 Comparative modeling and structural annotation

The 3D structure of target protein was generated by 3D
jigsaw server using comparative modeling approach. The
predicted structure was visualized under PyMol program.
(Fig. 1) The PROCHECK analysis of the modeled

Fig. 1 3D structure of B-galactosidase enzyme in Aspergillus niger
from PyMol
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Fig. 2 Ramachandran plot of B-galactosidase enzyme from Asper-
gillus niger derived from PROCHECK
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Fig. 3 The figure shows the wiring diagram of the B-galactosidase enzyme from Aspergillus niger, created via SAS server

structure yielded the corresponding Ramachandran plot for  server showed the results for the secondary structure
the predicted structure (Fig. 2), showing the following  summary as: the 966 residue span of the structure con-
anomalies: the ¢/ angles of 89.1 % residues are in the  sisting of 226 residues (23.4 %), which were involved in
most favoured regions, 10 % in the additional allowed the formation of the strands, 104 residues (10.8 %) for the
regions, 0.6 % in the generously allowed regions, 0.2 % in  alpha helices, 26 residues (2.7 %) for the 3—10 helix and
the disallowed regions. Based on an analysis of 118 610 residues (63.1 %) for the several other structural
structures of resolution of at least 2.0 A and R-factor no  moieties. Also, the result showed 15 B-sheets, 5 B-o-B
greater than 20 %, a good quality model would be expected ~ motifs, 14 B-hairpins, 12 B-bulges, 52 strands, 20 helices,
to have over 90 % in the most favored regions. The wiring 12 helix-helix interactions, 109 B-turns, 9 y-turns. Five
diagram was generated by SAS server as depicted in Fig. 3. distinct domains were found to compose the structural
The ProMotif documentation of the enzyme via Profunc  framework of the target protein. The first domain belonging
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Fig. 5 The ball and stick
representation of the molecular
interaction between -
galactosidase active site Glu200
(dark green) and the ligand B-p-
galactose (yellow) (color figure
online)

‘ GLU-200

Fig. 6 The binding of p-p-
galactose (red solid sphere) at
the enzyme active site Glu200
of B-galactosidase (gray solid
surface) (color figure online)

GLTU-200
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Fig. 7 The figure shows the
Ball and stick representation of
the molecular docking between
B-galactosidase active site
Glu298 (bicolor) and the ligand
beta-pD-galactose (green) (color
figure online)

—

Fig. 8 The figure shows the binding of the ligand (red solid sphere)
at the enzyme active site of [3-galactosidase (grey solid surface) (color
figure online)

to glycosyl hydrolases family 35 was found from Ser52 to
Phe387 residue regions containing the catalytic site Glu200
(Rojas et al. 2004) and Glu298 (Maksimainen et al. 2011).
The second domain belonging to B-galactosidase, domain 2
family was found from Tyr395 to Tyr573 residue regions.
The third domain belonging to B-galactosidase, domain 3
family was found from Trp574 to Ala658 positions. The
fourth and fifth B-galactosidase jelly roll domains belong-
ing to B-galactosidase domain 4 and 5 families were found

from Tyr690 to Leu802 residue regions. The topology of
the enzyme structure is illustrated in Fig. 4.

3.3 Structural comparison

The structural comparison of the modeled structure showed
highest similarity with crystal structure of Penicillium sp.
B-galactosidase in PDB database.

3.4 Molecular docking

The catalytic residues (Glu200 and Glu298) and the
interacting ligand (GAL) were identified using SAS server.
The molecular docking of both the catalytic residues exe-
cuted separately with GAL showed the best docking score
in both the cases (Figs. 5, 6, 7, 8). The bond interactions
between the catalytic sites and the ligand are shown in
Table 1. Though the bond interactions are efficient at both
the sites, the bond formed between the catalytic site
Glu200 was found stronger due to two H-bonds in com-
parison to the other catalytic site Glu298.

4 Discussion

The modeled structure of B-galactosidase from A. niger
resembled the high-resolution experimental structure of the

Table 1 The table shows the

Ligand (H-bonding atom) Distance (of the order 10™°m)

order of H-bonding formed Enzyme

between the two catalytic sites Residue H-bonding atom

as observed under ArgusLab

4.0.1 Software tool Glu200 Oxygen (no. 7431)
Glu200 Oxygen (no. 7424)
Glu298 Oxygen (no. 7426)

Oxygen (no. 1271) 2.305053
Oxygen (no. 1270) 2.897954
Oxygen (no. 2000) 2.677949

@ Springer



302

S. K. Ghosh et al.

same enzyme from Penicillium sp. Hence it could be evi-
dently concluded that the range of functionality of the
enzyme from A. niger could be enhanced. Also, B-p-gal-
actose was found to behave as a ligand for the enzyme in A.
niger. P-p-galactose was reported with strong bonding
affinities for two different catalytic sites Glu200 and
Glu298 of the enzyme, forming a greater association with
Glu200 catalytic site. The molecular docking of B-p-gal-
actose with B-galactosidase from A. niger was carried out
to throw light into the stereotypic behavior of the ligand
toward the enzyme binding sites. It was found that B-b-
galactose behaved as a potent inhibitor of the enzyme. In
cellular pool, where B-galactosidase is not available in its
native form, this conclusion was quite far-fetched. Ana-
lytically, if B-p-galactose can be made to accumulate in the
enzyme activity area, it would compete with the substrate
and irreversibly bind with the active site of the enzyme and
rendering it inactive for functioning, thereby, causing a
feedback inhibition.
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