Skip to main content

Advertisement

Log in

In silico vaccine design against type 1 diabetes based on molecular modeling of coxsackievirus B4 epitopes

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

An in silico study was conducted to identify antigens with potential possibility of being a vaccine against type 1 diabetes mellitus (T1DM). A molecular mimicry between protein 2C of coxsackievirus B4 and autoantigen glutamic acid decarboxylase 65 is a significant factor in the pathogenesis of T1DM. The aim of this study was to predict the protein 2C of coxsackievirus B4 epitopes and design a vaccine against T1DM. Several web servers were used to predict continuous B cell epitopes and 8 peptides (P1–P8) were selected. Then the 3D structure of P2C was built by structural modeling using Robetta and the structure was subjected to 10 ns molecular dynamics simulation by Amber to obtain an average structure in an explicit water system. Molecular mimicry theory was confirmed by local structural alignment of modeled structure protein 2C with glutamic acid decarboxylase 65 using Swiss pdb viewer. Then conformational B cell epitope web servers were used to identify discontinuous B cells epitopes. PDBsum was used for the analysis of the protein 2C secondary structure. Finally, T cells epitopes have been predicted by the immune epitope database analysis resource (IEDB). In silico analysis of the sequence and structure retrieved by mentioned methods and web servers, revealed that two out of 8 peptides (P2 and P7 epitopes) are the best choices for the vaccine design. These results suggest that epitopes and structural features of the protein 2C of coxsackievirus B4 can be predicted and this information could be used to make novel vaccines for control of T1DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad S, Gromiha M, Fawareh H, Sarai A (2004) ASAView: database and tool for solvent accessibility representation in proteins. BMC Bioinform 5:51

    Article  Google Scholar 

  • Atkinson MA, Bowman MA, Campbell L, Darrow BL, Kaufman DL, Maclaren NK (1994) Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Investig 94:2125

    Article  Google Scholar 

  • Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15:516–542

    Article  Google Scholar 

  • Bergamin CS, Dib SA (2015) Enterovirus and type 1 diabetes: What is the matter? World J Diabetes 6:828

    Article  Google Scholar 

  • Blomqvist M et al (2002) Rotavirus infections and development of diabetes-associated autoantibodies during the first 2 years of life. Clin Exp Immunol 128:511–515

    Article  Google Scholar 

  • Boettler T, von Herrath M (2011) Protection against or triggering of Type 1 diabetes? Different roles for viral infections. Expert Rev Clin Immunol 7:45–53

    Article  Google Scholar 

  • Case DA et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  Google Scholar 

  • Case D et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    Article  Google Scholar 

  • Chen P, Rayner S, Hu KH (2011) Advances of bioinformatics tools applied in virus epitopes prediction. Virologica Sinica 26:1–7

    Article  Google Scholar 

  • Coppieters KT, Boettler T, von Herrath M (2012) Virus infections in type 1 diabetes. Cold Spring Harb Perspect Med 2:a007682

    Article  Google Scholar 

  • Diaz-Horta O, Baj A, Maccari G, Salvatoni A, Toniolo A (2012) Enteroviruses and causality of type 1 diabetes: how close are we? Pediatr Diabetes 13:92–99

    Article  Google Scholar 

  • EL-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21:243–255

    Article  Google Scholar 

  • Emini EA, Hughes JV, Perlow D, Boger J (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55:836–839

    Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  Google Scholar 

  • Florea L, Halldorsson B, Kohlbacher O, Schwartz R, Hoffman S, Istrail S (2003) Epitope prediction algorithms for peptide-based vaccine design. In: Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE, 2003. IEEE, pp 17–26

  • Gale E (2008) Congenital rubella: citation virus or viral cause of type 1 diabetes? Diabetologia 51:1559–1566

    Article  Google Scholar 

  • Gamble D, Taylor K (1969) Seasonal incidence of diabetes mellitus. Bmj 3:631–633

    Article  Google Scholar 

  • Ganjalikhany MR, Ranjbar B, Taghavi AH, Moghadam TT (2012) Functional motions of Candida antarctica lipase B: a survey through open-close conformation. PloS One 7:e40327

    Article  Google Scholar 

  • Ghazarian L, Diana J, Simoni Y, Beaudoin L, Lehuen A (2013) Prevention or acceleration of type 1 diabetes by viruses. Cell Mol Life Sci 70:239–255

    Article  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  Google Scholar 

  • He Y, Rappuoli R, De Groot AS, Chen RT (2010) Emerging vaccine informatics. J BioMed Biotchnol 2010:218590

    Google Scholar 

  • Hober D, Sauter P (2010) Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host nature reviews. Endocrinology 6:279–289

    Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65:712–725

    Article  Google Scholar 

  • Hou J, Said C, Franchi D, Dockstader P, Chatterjee NK (1994) Antibodies to glutamic acid decarboxylase and P2-C peptides in sera from coxsackie virus B4-infected mice and IDDM patients. Diabetes 43:1260–1266

    Article  Google Scholar 

  • Idrees S, Ashfaq UA (2013) Structural analysis and epitope prediction of HCV E1 protein isolated in Pakistan: an in silico approach. Virol J 10:113

    Article  Google Scholar 

  • Jaidane H, Hober D (2008) Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 34:537–548

    Article  Google Scholar 

  • Janin J, Wodak S, Levitt M, Maigret B (1978) Conformation of amino acid side-chains in proteins. J Mol Biol 125:357–386

    Article  Google Scholar 

  • Karplus P, Schulz G (1985) Prediction of chain flexibility in proteins Naturwissenschaften 72:212–213

    Google Scholar 

  • Karvonen M, Viik-Kajander M, Moltchanova E, Libman I, LaPorte R, Tuomilehto J (2000) Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 23:1516–1526

    Article  Google Scholar 

  • Kaufman D, Erlander M, Clare-Salzler M, Atkinson M, Maclaren N, Tobin A (1992) Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest 89:283

    Article  Google Scholar 

  • Kolaskar A, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174

    Article  Google Scholar 

  • Kringelum JV, Lundegaard C, Lund O, Nielsen M (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8:e1002829

    Article  Google Scholar 

  • Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2

    Article  Google Scholar 

  • Laskowski RA (2009) PDBsum new things. Nucleic acids Res 37:D355–D359

    Article  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  Google Scholar 

  • Lönnrot M, Hyöty H, Knip M, Roivainen M, Kulmala P, Leinikki P, Åkerblom H (1996) Antibody cross-reactivity induced by the homologous regions in glutamic acid decarboxylase (GAD65) and 2C protein of coxsackievirus B4. Clin Exp Immunol 104:398–405

    Article  Google Scholar 

  • MacLaren N, Schatz D, Drash A, Grave G (1989) Initial pathogenic events in IDDM. Diabetes 38:534–538

    Article  Google Scholar 

  • Mahdavi M, Mohabatkar H, Keyhanfar M, Jafarian A, Dehkordi MR (2012) Linear and Conformational B Cell Epitope Prediction of the HER 2 ECD-Subdomain III by in silico Methods. Asian Pac J Cancer Prev 13:3053–3059

    Article  Google Scholar 

  • Mohabatkar H (2007) Prediction of epitopes and structural properties of Iranian HPV-16 E6 by bioinformatics methods. Asian Pac J Cancer Prev 8:602–606

    Google Scholar 

  • Movahedi AR, Hampson DJ (2008) New ways to identify novel bacterial antigens for vaccine development. Vet Microbiol 131:1–13

    Article  Google Scholar 

  • Nair S, Kukreja N, Singh BP, Arora N (2011) Identification of B cell epitopes of alcohol dehydrogenase allergen of Curvularia lunata. PloS One 6:e20020

    Article  Google Scholar 

  • Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8:238

    Article  Google Scholar 

  • Parker J, Guo D, Hodges R (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

    Article  Google Scholar 

  • Pellequer JL, Westhof E, Van Regenmortel MH (1993) Correlation between the location of antigenic sites and the prediction of turns in proteins. Immunol Lett 36:83–99

    Article  Google Scholar 

  • Peters B et al (2005) The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol 3:e91

    Article  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  Google Scholar 

  • Ponnuswamy P, Prabhakaran M, Manavalan P (1980) Hydrophobic packing and spatial arrangement of amino acid residues in globular proteins Biochimica et Biophysica Acta (BBA)-Protein. Structure 623:301–316

    Google Scholar 

  • Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514

    Article  Google Scholar 

  • Raman S et al (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins Struct Funct Bioinform 77:89–99

    Article  Google Scholar 

  • Redondo MJ, Rewers M, Yu L, Garg S, Pilcher CC, Elliott RB, Eisenbarth GS (1999) Genetic determination of islet cell autoimmunity in monozygotic twin, dizygotic twin, and non-twin siblings of patients with type 1 diabetes: prospective twin study. Bmj 318:698–702

    Article  Google Scholar 

  • Roivainen M, Klingel K (2010) Virus infections and type 1 diabetes risk. Curr DiabRep 10:350–356

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  Google Scholar 

  • Saha S, Raghava G (2004) BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Artificial immune systems. Springer, Berlin, pp 197–204

    Chapter  Google Scholar 

  • Saha S, Raghava G (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network Proteins: structure. Funct Bioinform 65:40–48

    Article  Google Scholar 

  • Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mole Sci 3:198–210

    Article  Google Scholar 

  • Schloot N, Roep B, Wegmann D, Yu L, Wang T, Eisenbarth G (1997) T-cell reactivity to GAD65 peptide sequences shared with coxsackie virus protein in recent-onset IDDM, post-onset IDDM patients and control subjects. Diabetologia 40:332–338

    Article  Google Scholar 

  • Schloot N, Willemen S, Duinkerken G, Drijfhout J, De Vries R, Roep B (2001) Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum Immunol 62:299–309

    Article  Google Scholar 

  • Schranz DB, Lernmark Å (1998) Immunology in diabetes: an update. Metab Rev 14:3–29

    Article  Google Scholar 

  • Sharma V, Kalim S, Srivastava MK, Nanda S, Mishra S (2009) Oxidative stress and coxsackievirus infections as mediators of beta cell damage: a review. Sci Res Essays 4:42–58

    Google Scholar 

  • Song Y et al (2013) High-resolution comparative modeling with RosettaCM. Structure 21:1735–1742

    Article  Google Scholar 

  • Srikanta S, Ricker A, McCulloch D, Soeldner J, Eisenbarth G, Palmer J (1986) Autoimmunity to insulin, beta cell dysfunction, and development of insulin-dependent diabetes mellitus. Diabetes 35:139–142

    Article  Google Scholar 

  • Steck AK, Rewers MJ (2011) Genetics of type 1 diabetes. Clin Chem 57:176–185

    Article  Google Scholar 

  • Sun J et al (2009) SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res 37:W612–W616

    Article  Google Scholar 

  • Tan EL, Wong APY, Poh CL (2010) Development of potential antiviral strategy against coxsackievirus B4. Virus Res 150:85–92

    Article  Google Scholar 

  • Tian J, Lehmann PV, Kaufman DL (1994) T cell cross-reactivity between coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J Exp Med 180:1979–1984

    Article  Google Scholar 

  • Varela-Calvino R, Sgarbi G, Arif S, Peakman M (2000) T-Cell reactivity to the P2C nonstructural protein of a diabetogenic strain of coxsackievirus B4. Virology 274:56–64

    Article  Google Scholar 

  • Vreugdenhil G, Geluk A, Ottenhoff T, Melchers W, Roep B, Galama J (1998) Molecular mimicry in diabetes mellitus: the homologous domain in coxsackie B virus protein 2C and islet autoantigen GAD65 is highly conserved in the coxsackie B-like enteroviruses and binds to the diabetes associated HLA-DR3 molecule. Diabetologia 41:40–46

    Article  Google Scholar 

  • Vreugdenhil GR, Batstra MR, Aanstoot HJ, Melchers WJ, Galama J (1999) Analysis of antibody responses against Coxsackie virus B4 protein 2C and the diabetes autoantigen GAD65. J Med Virol 59:256–261

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by University of Isfahan (Grant No: 97886/90).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Esmaeili.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1. Sequence of P2C of CVB4 (TIFF 137 kb)

Figure S2: Ramachandran plot obtained for modeled structure by PROCHECK (JPEG 105 kb)

Figure S3: Root mean square deviation (Å) of P2C versus MD simulation time (ns) (JPEG 71 kb)

13721_2016_112_MOESM4_ESM.pdf

Figure S4: Accessible surface area plot for modeled P2C. Colour index: Blue: Positive charged residues (R, K, H), Red: Negative charged residues (D, E), Green: Polar uncharged residues (G, N, Y, Q, S, T, W), Yellow: Cysteine, Gray: Hydrophobic residues (All others) (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherzadeh, M., Esmaeili, A. & Ganjalikhany, M.R. In silico vaccine design against type 1 diabetes based on molecular modeling of coxsackievirus B4 epitopes. Netw Model Anal Health Inform Bioinforma 5, 5 (2016). https://doi.org/10.1007/s13721-016-0112-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-016-0112-y

Keywords

Navigation