Skip to main content

Advertisement

Log in

Computational study of diarylcyclopentene derivatives as selective prostaglandin EP1 receptor antagonist: QSAR approach

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

2D quantitative structure–activity relationships (2D QSAR) studies were performed on a series of diarylcyclopentene derivatives as prostaglandin EP1 receptor antagonist. To establish the relationship between Prostaglandin EP1 receptor and diarylcyclopentene derivatives, a 2D-QSAR model based on individual, estate numbers, structural, electro topological and baumann alignment descriptors parameters was developed. The best model-1 correlation coefficient with r 2 = 0.8101, significant cross validated correlation coefficient (q 2 = 0.7491) and for external test set pred_r 2 = 0.7812 developed by Partial Least Squares method. The QSAR model reveals that hydroxyl and methoxy group at R position on the diarylcyclopentene moiety is responsible for improving the prostaglandin EP1 receptor activity. The results of 2D QSAR studies were used to design new molecules and to predict their prostaglandin EP1 receptor activity using the developed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baumann K (2002) an alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 42:26–35

    Article  MathSciNet  Google Scholar 

  • Bhattacharya M, Peri KG, Almazan G, Ribeiro-da-Silva A, Shichi H, Durocher Y, Abramovitz M, Hou X, Varma DR, Chemtob S (1998) Nuclear localization of prostaglandin E2 receptors. Proc Natl Acad Sci USA 95:15792–15797

    Article  Google Scholar 

  • Bianchi M, Broggini MA (2003) randomised, double-blind, clinical trial comparing the efficacy of nimesulide, celecoxib and rofecoxib in osteoarthritis of the knee. Drugs 63(1):37–46

    Article  Google Scholar 

  • Boie Y, Stocco R, Sawyer N, Slipetz DM, Ungrin MD, Neuschafer-Rube F, Puschel G, Metters KM, Abramovitz M (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur J Pharmacol 340:227–247

    Article  Google Scholar 

  • Breyer MD, Breyer RM (2000) Prostaglandin E receptors and the kidney. Am J Physiol Renal Physiol 279:F12–F23

    Google Scholar 

  • Camu F, Shi L, Vanlersberghe C (2003) The role of COX-2 inhibitors in pain modulation. Drugs 63(Suppl 1):1–7

    Article  Google Scholar 

  • Coleman RA, Kennedy I, Humphrey PPA, Bunce K, Lumley P (1990) In comprehensive medicinal chemistry; Pergamon: Oxford, UK, vol 3, pp 643–714

  • Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  Google Scholar 

  • Giblin GMP, Bit RA, Brown SH, Chaignot HM, Chowdhury A, Chessell Iain P, Clayton Nicholas M, Coleman T, Hall A, Hammond B, Hurst David N, Michel Anton D, Naylor A, Novelli R, Scoccitti T, Spalding D, Tang Sac P, Wilson Alex W, Wilson R (2007) The discovery of 6-[2-(5-chloro-2-{[(2,4-difluorophenyl)- methyl]oxy}phenyl)-1-cyclopenten-1-yl]-2-pyridinecarboxylic acid, GW848687X, a potent and selective prostaglandin EP1 receptor antagonist for the treatment of inflammatory pain. Bioorg Med Chem Lett 17:385–389

    Article  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369

    Article  Google Scholar 

  • Gupta SP, Mathur AN, Naggapa AN, Kumar D, Kumaran S (2003) A quantitative structure-activity relationship study on a novel class of calcium entry blockers:1-[{4-(aminoalkoxy)phenylsulfonyl] indolizines. Eur J Med Chem 38:867–873

    Article  Google Scholar 

  • Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol 122(2):217–224

    Article  Google Scholar 

  • Maggi CA, Giuliani S, Patacchini R, Conte B, Furio M, Santicioli P, Meli P, Gragnani L, Meli A (1988) The effect of SC-19220, a prostaglandin antagonist, on the micturition reflex in rats. Eur J Pharmacol 152(3):273–279

    Article  Google Scholar 

  • Minami T, Nishihara I, Uda R, Ito S, Hyodo M, Hayaishi O (1994) Characterization of EP-receptor subtypes involved in allodynia and hyperalgesia induced by intrathecal administration of prostaglandin E2 to mice. Br J Pharmacol 112(3):735–740

    Article  Google Scholar 

  • Minami T, Nakano H, Kobayashi T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Ito S (2001) Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br J Pharmacol 133(3):438–444

    Article  Google Scholar 

  • Namba T, Sugimoto Y, Negishi M, Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S et al (1993) Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365:166–170

    Article  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226

    Google Scholar 

  • Sharma BK, Pilania P, Prithvi Singh P (2010) QSAR rationales for the 1,2-diarylcyclopentenes as prostaglandin EP1 receptor antagonists: potentially useful in the treatment of inflammatory pain. Euro J Chem 1(4):325–334

    Article  Google Scholar 

  • Sheen CL, MacDonald TM (2002) Gastrointestinal side effects of NSAIDs—pharmacoeconomic implications. Exp Opin Pharmacother 3:265–269

    Article  Google Scholar 

  • Takeda H, Sonoshita M, Oshima H, Sugihara K, Chulada PC, Langenbach R, Oshima M, Taketo MM (2003) Cooperation of cyclooxygenase 1 and cyclooxygenase 2 in intestinal polyposis. Cancer Res 63:4872–4877

    Google Scholar 

  • VLife MDS 3.5 (2010) Molecular design suite. Vlife Sciences Technologies Pvt. Ltd., Pune. https://www.vlifesciences.com

  • Wibberley A (2005) Overactive bladder: targeting prostaglandins in sensory pathways. Drug Discov Today: Therap Strateg 2:7–13

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank VLife Sciences Technologies Pvt. Ltd. Pune for providing software facility and Journal referees for their valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita Sharma.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.C., Sharma, S. & Sharma, S. Computational study of diarylcyclopentene derivatives as selective prostaglandin EP1 receptor antagonist: QSAR approach. Netw Model Anal Health Inform Bioinforma 5, 14 (2016). https://doi.org/10.1007/s13721-016-0120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-016-0120-y

Keywords

Navigation