Skip to main content

Advertisement

Log in

Parametric identifier of metabolic network associated to hydrogen production in Escherichia coli based on robust sliding-mode differentiation

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

This article proposes a robust parametric identifier of systems that describe metabolic networks in microorganisms. This identifier implements a robust decentralized parallel differentiator that recovers the time variation of the concentrations of all the substances involved in the metabolic network. The sense of decentralized concept used in this study regards the application of the differentiator in each node of the network without considering the effect of the surrounding nodes. This solution can be obtained under the consideration of robustness provided by the kind of differentiator used in this study. The differentiator is based on the super-twisting algorithm (STA) which is applied to the variation of each substance that is included in the metabolic network. These derivatives are fed into a parallel nonlinear least mean square scheme that succeeds in recovering the parameters that characterize the metabolic network. This identifier is applied to a simplified metabolic network, taken from Escherichia coli that regulates hydrogen production from glucose and it is conformed by 18 reactions. The metabolic network is simulated with parameters obtained from previous studies. Then, these parameters were estimated using the parametric identifier evaluated in this study based on the STA. All the parameters were estimated with less than 5 % error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aispuro Castro KR (2011) Determinación de los flujos metabólicos en la producción de hidrógeno. PhD thesis, Unidad Profesional Interdisciplinaria de Biotecnología-IPN

  • Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M (2014) Kinetic models in industrial biotechnology—improving cell factory performance. Metabol Eng 24:38–60

    Article  Google Scholar 

  • Ashyraliyev M, Fomekong-Nanfack Y, Ja Kaandorp, Blom JG (2009) Systems biology: parameter estimation for biochemical models. FEBS J 276(4):886–902

    Article  Google Scholar 

  • Baev S, Shkolnikov I, Shtessel Y, Poznyak A (2006) Parameter identification of non-linear system using traditional and high order sliding modes. In: Proceedings of the 2006 American control conference, pp 2634–2639

  • Berthoumieux S, Brilli M, de Jong H, Kahn D, Cinquemani E (2011) Identification of metabolic network models from incomplete high-throughput datasets. Bioinformatics 27(13):i186–95

    Article  Google Scholar 

  • Chou IC, Voit EO (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219(2):57–83

    Article  MathSciNet  MATH  Google Scholar 

  • Defoort M, Floquet T, Kokosy A, Perruquetti W (2009) A novel higher order sliding mode control scheme. Syst Control Lett 58(2):102–108

    Article  MathSciNet  MATH  Google Scholar 

  • Ederer M, Steinsiek S, Stagge S, Rolfe MD, Beek AT, Knies D, Mattos MJTD, Sauter T, Green J, Poole RK, Bettenbrock K, Sawodny O (2014) A mathematical model of metabolism and regulation provides a systems-level view of how Escherichia coli responds to oxygen. Front Microbiol 5(March):1–12

    Google Scholar 

  • Fan Z, Yuan L, Chatterjee R (2009) Increased hydrogincen increased hydrogen production by genetic engineering of Escherichia coli. Plos One 4(2):e4432

    Article  Google Scholar 

  • Fernández Slezak D, Suárez C, Cecchi Ga, Marshall G, Stolovitzky G (2010) When the optimal is not the best: parameter estimation in complex biological models. PloS One 5(10):e13283

  • Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Ener 34(17):7379–7389

    Article  Google Scholar 

  • Han K, Fridman E, Spurgeon SK (2014) Sampled-data sliding mode observer for robust fault reconstruction: a time-delay approach. J Franklin Inst

  • Henry CS, Jankowski MD, Broadbelt LJ, Hatzimanikatis V (2006) Genome-scale thermodynamic analysis of Escherichia coli metabolism. Biophys J 90(4):1453–1461

    Article  Google Scholar 

  • Kadir TAA, Mannan AA, Kierzek AM, McFadden J, Shimizu K (2010) Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification. Microbial Cell Factories 9(88):1–21

    Google Scholar 

  • Ko CL, Voit EO, Wang FS (2009) Estimating parameters for generalized mass action models with connectivity information. BMC Bioinf 10:140

    Article  Google Scholar 

  • Leander J, Lundh T, Jirstrand M (2014) Mathematical biosciences stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements. Math Biosci 251:54–62

    Article  MathSciNet  MATH  Google Scholar 

  • Leskovac V (2003) Comprehensive enzyme kinetics. Springer, US

    Google Scholar 

  • Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263

    Article  MathSciNet  MATH  Google Scholar 

  • Levant A (2007) Finite differences in homogeneous discontinuous control. IEEE Trans Autom Control 52(7):1208–1217

    Article  MathSciNet  Google Scholar 

  • Lillacci G, Khammash M (2010) Parameter estimation and model selection in computational biology. PLoS Comput Biol 6(3):e1000696

  • Liu X, Niranjan M (2012) State and parameter estimation of the heat shock response system using Kalman and particle filters. Bioinformatics 28(11):1501–1507

    Article  Google Scholar 

  • Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice Hall, New York

  • Maeda T, Sanchez-Torres V, Wood TK (2012) Hydrogen production by recombinant Escherichia coli strains. Microbial Biotechnol 5(2):214–225

    Article  Google Scholar 

  • Mansouri MM, Nounou HN, Nounou MN, Aa Datta (2014) Modeling of nonlinear biological phenomena modeled by S-systems. Math Biosci 249(1):75–91

    Article  MathSciNet  MATH  Google Scholar 

  • Mathews J, Li Q, Wang G (2010) Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media. Biotechnol Bioprocess Eng 15(4):686–695

    Article  Google Scholar 

  • Meskin N, Nounou H, Nounou M, Datta A (2013) Parameter estimation of biological phenomena: an unscented kalman filter approach. IEEE/ACM Trans Comput Biol Bioinf 10(2):537–543

    Article  Google Scholar 

  • Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK (2013) Four products from Escherichia coli pseudogenes increase hydrogen production. Biochem Biophys Res Commun 439(4):576–579

    Article  Google Scholar 

  • Moles C, Mendes P, Bangle JR (2003) Parameter estimation in biochemical pathway: a comparison of global optimization methods. Genome Res 13(11):2467–2474

    Article  Google Scholar 

  • Moreno JA, Osorio M (2012) Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans Autom Control 57(4):1035–1040

    Article  MathSciNet  Google Scholar 

  • Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53(1):3–10

    Article  Google Scholar 

  • Qian L, Wang H, Dougherty R (2008) Inference of noisy nonlinear differential equation models for gene regulatory networks using genetic programming and kalman filtering. IEEE Trans Signal Process 56(7):3327–3339

    Article  MathSciNet  Google Scholar 

  • Rosales-Colunga LM, González Gárcia R, de León Rodríguez A (2010) Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network. Int J Hydrogen Energy 35:13186–13192

  • Salgado I, Moreno A, Chairez I (2010) Sampled output based continuous second-order sliding mode observer. In: Workshop on variable structure systems

  • Selisteanu D, Petre E, Sendrescu D, Roman M, Popescu D (2009) High-gain observers for estimation of kinetics in biological sequencing batch reactors. In: Proceedings of the IEEE international conference on automation and logistics Shenyang, China, pp 1623–1628

  • Seppälä JJ, Larjo A, Aho T, Yli-harja O, Karp MT, Santala V (2013) Prospecting hydrogen production of Escherichia coli by metabolic network modeling. Int J Hydrog Energy 38:11780–11789

  • Sun X, Jin L, Xiong M (2008) Extended kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PloS One 3(11):e3758

    Article  Google Scholar 

  • Vargas A, Moreno J, Vande Wouwer A (2014) A weighted variable gain super-twisting observer for the estimation of kinetic rates in biological systems. J Process Control 24(6):957–965

  • Voit EO, Almedia J (2004) Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinfomatics 20(11):1670–1681

    Article  Google Scholar 

  • Yan XG, Edwards C (2007) Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9):1605–1614

    Article  MathSciNet  MATH  Google Scholar 

  • Zhan C, Situ W, Fat Yeung L, Wai-Ming Tsang P, Yang G (2014) A parameter estimation method for biological systems modelled by ode/dde models using spline approximation and differential evolution algorithm. IEEE/ACM Trans Comput Biol Bioinf 11(6):1066–1076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Chairez.

Appendices

Appendix 1: Reactions involved in the acid fermentation for the production of \(H_{2}\)

In this section are presented all reactions involved in the mixed acid fermentation in Escherichia coli (Table 2).

Table 2 Reactions of the mixed acid fermentation in E. coli

Appendix 2: Reactions considered after the thermodynamic analysis

This section presents the reactions considered in the thermodynamic analysis (Table 3).

Table 3 Reactions of the mixed acid fermentation in E. coli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gálvez, A.S., Badillo-Corona, J.A. & Chairez, I. Parametric identifier of metabolic network associated to hydrogen production in Escherichia coli based on robust sliding-mode differentiation. Netw Model Anal Health Inform Bioinforma 5, 22 (2016). https://doi.org/10.1007/s13721-016-0128-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-016-0128-3

Keywords

Navigation