Skip to main content
Log in

SL-GLAlign: improving local alignment of biological networks through simulated annealing

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Biological networks are used to describe molecular machineries within cells. Therefore, the comparison among networks of different species or different states (e.g., healthy vs diseased people) may reveal relevant knowledge such as information about evolution. Comparison among networks is usually performed using network alignment algorithms. In a previous work, we used global network alignment to produce prior knowledge about networks that has been used on local network alignment algorithm. Here, we present Simulated Annealing-Global Local Aligner (SL-GLAlign), a novel framework methodology based on the use of topological information extracted from global alignment to guide the building of local alignment. To assess our methodology, we tested SL-GLAlign on several biological networks. Comparing with the state-of-the-art local alignment algorithms, SL-GLAlign is able to improve the alignment building.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Brown KR, Jurisica I (2005) Online predicted human interaction database. Bioinformatics 21(9):2076–2082

    Article  Google Scholar 

  • Cannataro M, Guzzi PH (2012) Data management of protein interaction networks. Wiley, New York

    Google Scholar 

  • Cannataro M, Guzzi PH, Veltri P (2010) Protein-to-protein interactions. ACM Comput Surv 43(1):1–36

    Article  Google Scholar 

  • Ciriello G, Mina M, Guzzi PH, Cannataro M, Guerra C (2012) Alignnemo: a local network alignment method to integrate homology and topology. PLoS One 7(6):e38107

    Article  Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30(7):1575–1584

    Article  Google Scholar 

  • Faisal FE, Zhao H, Milenković T (2015) Global network alignment in the context of aging. IEEE/ACM Trans Comput Biol Bioinform 12(1):40–52

    Article  Google Scholar 

  • Fornito A, Zalesky A, Breakspear M (2013) Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80:426–444

    Article  Google Scholar 

  • Guzzi PH, Cannataro M (2010) \(\mu\)-CS: an extension of the TM4 platform to manage Affymetrix binary data. BMC Bioinform 11:315

    Google Scholar 

  • Guzzi PH, Milenković T (2017) Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin. Brief Bioinform 19:472–481

    Google Scholar 

  • Harispe S, Ranwez S, Janaqi S, Montmain J (2014) The semantic measures library and toolkit: fast computation of semantic similarity and relatedness using biomedical ontologies. Bioinformatics 30(5):740–742

    Article  Google Scholar 

  • Hirsh E, Sharan R (2007) Identification of conserved protein complexes based on a model of protein network evolution. Bioinformatics 23(2):e170–176

    Article  Google Scholar 

  • Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE (2011) An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinform 12(1):357

    Article  Google Scholar 

  • Ibragimov R, Malek M, Guo J, Baumbach J (2013) GEDEVO: an evolutionary graph edit distance algorithm for biological network alignment. In: OASIcs openaccess series in informatics, vol 34, pp 68–79

  • Kuchaiev O, Pržulj N (2011) Integrative network alignment reveals large regions of global network similarity in yeast and human. Bioinformatics 27(10):1390–1396

    Article  Google Scholar 

  • Malod-Dognin N, Przulj N (2015) L-graal: Lagrangian graphlet-based network aligner. Bioinformatics 31:2182–2189

    Article  Google Scholar 

  • Mamano N, Hayes W (2016) Sana: simulated annealing network alignment applied to biological networks. arXiv preprint arXiv:1607.02642

  • Meng L, Striegel A, Milenkovic T (2015) Local versus global biological network alignment. arXiv preprint arXiv:1509.08524

  • Milano M, Guzzi PH, Tymofiyeva O, Xu D, Hess C, Veltri P, Cannataro M (2017) An extensive assessment of network alignment algorithms for comparison of brain connectomes. BMC Bioinform 18(6):31–45

    Google Scholar 

  • Milano M, Guzzi PH, Cannataro M (2019) GLAlign: a novel algorithm for local network alignment. IEEE/ACM Trans Comput Biol Bioinform 16(6):1958–1969

    Article  Google Scholar 

  • Mina M, Guzzi PH (2012) Alignmcl: comparative analysis of protein interaction networks through Markov clustering. In: 2012 IEEE international conference on bioinformatics and biomedicine workshops (BIBMW). IEEE, pp 174–181

  • Mina M, Guzzi PH (2014) Improving the robustness of local network alignment: design and extensive assessmentof a markov clustering-based approach. IEEE/ACM Trans Comput Biol Bioinform 11(3):561–572

    Article  Google Scholar 

  • Nepusz T, Paccanaro A (2014) Structural pattern discovery in protein–protein interaction networks. In: Kasabov N (ed) Springer handbook of bio-/neuroinformatics. Springer handbooks. Springer, Berlin, Heidelberg, pp 375–398

    Chapter  Google Scholar 

  • Neyshabur B, Khadem A, Hashemifar S, Arab SS (2013) NETAL: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics 29:1654–1662

    Article  Google Scholar 

  • Nooner KB, Colcombe S, Tobe R, Mennes M, Benedict M, Moreno A, Panek L, Brown S, Zavitz S, Li Q et al (2012) The nki-rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci 6:152

    Article  Google Scholar 

  • Pache RA, Aloy P (2012) A novel framework for the comparative analysis of biological networks. PLoS One 7:e31220

    Article  Google Scholar 

  • Patil A, Nakamura H (2005) Hint: a database of annotated protein–protein interactions and their homologs. Biophysics 1:21–24

    Article  Google Scholar 

  • Patro R, Kingsford C (2012) Global network alignment using multiscale spectral signatures. Bioinformatics 28(23):3105–3114

    Article  Google Scholar 

  • Resnik P et al (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res (JAIR) 11:95–130

    Article  MATH  Google Scholar 

  • Saraph V, Milenković T (2014) Magna: maximizing accuracy in global network alignment. Bioinformatics 30(20):2931–2940

    Article  Google Scholar 

  • Sarica A, Cerasa A, Vasta R, Perrotta P, Valentino P, Mangone G, Guzzi PH, Rocca F, Nonnis M, Cannataro M, Quattrone A (2014) Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: a study with tract-based reconstruction compared to voxel-based approach. J Neurosci Methods 224:79–87

    Article  Google Scholar 

  • Schaefer MH, Fontaine J-F, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA (2012) Hippie: integrating protein interaction networks with experiment based quality scores. PLoS One 7(2):e31826

    Article  Google Scholar 

  • Sharan R, Ideker T (2016) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24:427–433

    Article  Google Scholar 

  • Simonis N, Rual J-F, Carvunis A-R, Tasan M, Lemmens I, Hirozane-Kishikawa T, Hao T, Sahalie JM, Venkatesan K, Gebreab F et al (2009) Empirically controlled mapping of the caenorhabditis elegans protein–protein interactome network. Nat Methods 6(1):47–54

    Article  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42

    Article  Google Scholar 

  • Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S et al (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Article  Google Scholar 

  • Sun Y, Crawford J, Tang J, Milenkovic T (2015) Simultaneous optimization of both node and edge conservation in network alignment via WAVE.  In: Pop M, Touzet H (eds) Algorithms in bioinformatics. WABI 2015. Lecture notes in computer science, vol 9289. Springer, Berlin, Heidelberg

  • Tymofiyeva O, Ziv E, Barkovich AJ, Hess CP, Xu D (2014) Brain without anatomy: construction and comparison of fully network-driven structural mri connectomes. PLoS One 9(5):e96196

    Article  Google Scholar 

  • Vijayan V, Saraph V, Milenković T (2015) Magna++: maximizing accuracy in global network alignment via both node and edge conservation. Bioinformatics 31(14):2409–2411

    Article  Google Scholar 

  • Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D (2000) Dip: the database of interacting proteins. Nucleic Acids Res 28(1):289–291

    Article  Google Scholar 

  • Yu J, Pacifico S, Liu G, Finley RL (2008) Droid: the drosophila interactions database, a comprehensive resource for annotated gene and protein interactions. BMC Genom 9(1):1

    Article  Google Scholar 

Download references

Funding

Pietro Hiram Guzzi has been partially funded by GNCS INDAM 2017 Grant.

Author information

Authors and Affiliations

Authors

Contributions

MM designed and implemented SL-GLAlign and performed all the tests. PHG leaded the software design and wrote the manuscript. PV contributed to the design of software and test. MC contributed to the writing of the manuscript and to the design of the tests. WH contributed to the design and implementation of the software and tests. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Pietro Hiram Guzzi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Availability of data and materials

Data and supplementary materials are available at https://sites.google.com/view/sl-glalign/home.

Conflict of interest

Authors declare they have not competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milano, M., Hayes, W., Veltri, P. et al. SL-GLAlign: improving local alignment of biological networks through simulated annealing. Netw Model Anal Health Inform Bioinforma 9, 10 (2020). https://doi.org/10.1007/s13721-019-0214-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-019-0214-4

Keywords

Navigation