Skip to main content
Log in

Identification of potential Parkinson’s disease biomarkers using computational biology approaches

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. This aging-related disease occurs due to the degenerative loss of tissue or cellular functions in the brain and due to genetic and epigenetic effects. This study was conducted on an RNA-seq dataset of PD collected from BA9 tissues to get insights to PD. A few RNA-seq based transcriptomics studies on PD are available. However, most of these studies are limited to differential expression analysis, i.e., individual gene-based analysis that ignores interactions and associations among genes to establish the association with the disease. Here, we initially identify differentially expressed genes and then construct a co-expression network on detected genes to identify modules. Module preservation analysis is carried out to find the non-preserved modules. We identify a non-preserved module with 73 (70 are annotated) genes. Differential connectivity analysis, topological analysis, and functional enrichment analysis are performed to find the initial set of interesting genes. Our finding is that 42 (60%) genes are significantly enriched in pathways, biological processes, or molecular functions, and they are topologically interesting. Among these genes, 19 can be linked to the PD based on evidence from literature. They are considered as biomarkers for PD. From the remaining 23 genes, 11 are expressed in brain region. Therefore, these genes may be further explored to understand their roles in PD and can be considered as potential biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://llama.mshri.on.ca/funcassociate/.

  2. https://www.psb.ugent.be/cbd/papers/BiNGO/Home.html.

  3. https://www.genecards.org/.

References

  • Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351(19):1972–1977

    Article  Google Scholar 

  • Al-Aamri A, Taha K, Al-Hammadi Y, Maalouf M, Homouz D (2019) Analyzing a co-occurrence gene-interaction network to identify disease-gene association. BMC Bioinform 20(1):70

    Article  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genom Biol 11(10):R106

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25

    Article  Google Scholar 

  • Auer PL, Doerge RW et al (2011) A two-stage Poisson model for testing RNA-seq data. Stat Appl Genet Mol Biol 10(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101

    Article  Google Scholar 

  • Barbiero JK, Santiago R, Tonin FS, Boschen S, da Silva LM, de Paula Werner MF, da Cunha C, Lima MM, Vital MA (2014) Ppar-\(\alpha\) agonist fenofibrate protects against the damaging effects of mptp in a rat model of parkinson’s disease. Prog Neuro Psychopharm Biolog Psychiatry 53:35–44

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol): 289–300

  • Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S (2018) A review of genome-wide transcriptomics studies in Parkinson’s disease. Eur J Neurosci 47(1):1–16

    Article  Google Scholar 

  • Bowen RL, Atwood CS (2004) Living and dying for sex. Gerontology 50(5):265–290

    Article  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  Google Scholar 

  • Chatterjee A, Singh KK (2001) Uracil-DNA glycosylase-deficient yeast exhibit a mitochondrial mutator phenotype. Nucleic Acids Res 29(24):4935–4940

    Article  Google Scholar 

  • Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson’s disease. J Neurochem 106(2):506–518

    Article  Google Scholar 

  • Chen SY, Feng Z, Yi X (2017) A general introduction to adjustment for multiple comparisons. J Thora Dis 9(6):1725

    Article  Google Scholar 

  • Cheng D, Jenner AM, Shui G, Cheong WF, Mitchell TW, Nealon JR, Kim WS, McCann H, Wenk MR, Halliday GM et al (2011) Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS One 6(2):e17299

    Article  Google Scholar 

  • Chowdhury HA, Bhattacharyya DK et al (2020a) (Differential) Co-expression analysis of gene expression: a survey of best practices. IEEE/ACM TCBB 17(4):1154–1173

    Google Scholar 

  • Chowdhury HA, Bhattacharyya DK et al (2020b) Differential expression analysis of RNA-seq reads: overview, taxonomy, and tools. IEEE/ACM TCBB 17(2):566–586

    Google Scholar 

  • Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, Jaffe AE, Langmead B, Leek JT (2017) Reproducible RNA-seq analysis using recount2. Nat Biotechnol 35(4):319

    Article  Google Scholar 

  • Costa-Silva J, Domingues D, Lopes FM (2017) RNA-Seq differential expression analysis: an extended review and a software tool. PloS One 12(12):e0190152

    Article  Google Scholar 

  • De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  Google Scholar 

  • Di Fonzo A, Chien H, Socal M, Giraudo S, Tassorelli C, Iliceto G, Fabbrini G, Marconi R, Fincati E, Abbruzzese G et al (2007) ATP13A2 missense mutations in juvenile Parkinsonism and young onset Parkinson disease. Neurology 68(19):1557–1562

    Article  Google Scholar 

  • Dick FD, De Palma G, Ahmadi A, Osborne A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Mozzoni P et al (2007) Gene-environment interactions in parkinsonism and Parkinson’s disease: the geoparkinson study. Occup Environ Med 64(10):673–680

    Article  Google Scholar 

  • Dumitriu A, Latourelle JC, Hadzi TC, Pankratz N, Garza D, Miller JP, Vance JM, Foroud T, Beach TG, Myers RH (2012) Gene expression profiles in parkinson disease prefrontal cortex implicate foxo1 and genes under its transcriptional regulation. PLoS Genet 8(6):e1002794

    Article  Google Scholar 

  • Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, Myers RH, Longo KA, Latourelle JC (2015) Integrative analyses of proteomics and rna transcriptomics implicate mitochondrial processes, protein folding pathways and gwas loci in parkinson disease. BMC Med Geno 9(1):5

    Article  Google Scholar 

  • Eder T, Grebien F, Rattei T (2016) NVT: a fast and simple tool for the assessment of RNA-seq normalization strategies. Bioinformatics 32(23):3682–3684

    Google Scholar 

  • Farin FM, Janssen P, Quigley S, Abbott D, Hassett C, Smith-Weller T, Franklin GM, Swanson PD, Longstreth W Jr, Omiecinski CJ et al (2001) Genetic polymorphisms of microsomal and soluble epoxide hydrolase and the risk of Parkinson’s disease. Pharmacogenet Genom 11(8):703–708

    Article  Google Scholar 

  • Filloux C, Cédric M, Romain P et al (2014) An integrative method to normalize RNA-Seq data. BMC Bioinform 15(1):188

    Article  Google Scholar 

  • Filteau M, Pavey SA, St-Cyr J et al (2013) Gene coexpression networks reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evolut 30(6):1384–1396

    Article  Google Scholar 

  • Finotello F, Di Camillo B (2015) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genom 14(2):130–142

    Article  Google Scholar 

  • Fischer D, Hauk TG, Müller A, Thanos S (2008) Crystallins of the \(\beta\)/\(\gamma\)-superfamily mimic the effects of lens injury and promote axon regeneration. Mol Cell Neurosci 37(3):471–479

    Article  Google Scholar 

  • Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119

    Article  Google Scholar 

  • Gerard M, Deleersnijder A, Daniëls V, Schreurs S, Munck S, Reumers V, Pottel H, Engelborghs Y, Van den Haute C, Taymans JM et al (2010) Inhibition of fk506 binding proteins reduces \(\alpha\)-synuclein aggregation and parkinson’s disease-like pathology. J Neurosci 30(7):2454–2463

    Article  Google Scholar 

  • Hadzi TC, Hendricks AE, Latourelle JC, Lunetta KL, Cupples LA, Gillis T, Mysore JS, Gusella JF, MacDonald ME, Myers RH et al (2012) Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 79(16):1708–1715

    Article  Google Scholar 

  • Halliday G, Del Tredici K, Braak H (2006) Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. In: Parkinson’s Disease and Related Disorders, Springer, pp 99–103

  • Harvey B, Mark A, Chou J, Chen G, Hoffer B, Wang Y (2004) Neurotrophic effects of bone morphogenetic protein-7 in a rat model of Parkinson’s disease. Brain Res 1022(1–2):88–95

    Article  Google Scholar 

  • Hawkes C, Shephard B, Daniel S (1999) Is Parkinson’s disease a primary olfactory disorder? QJM Int J Med 92(8):473–480

  • Henderson-Smith A, Corneveaux JJ, De Both M, Cuyugan L, Liang WS, Huentelman M, Adler C, Driver-Dunckley E, Beach TG, Dunckley TL (2016) Next-generation profiling to identify the molecular etiology of Parkinson dementia. Neurol Genet 2(3):e75

    Article  Google Scholar 

  • Hossein-Nezhad A, Fatemi RP, Ahmad R, Peskind ER, Zabetian CP, Hu SC, Shi M, Wahlestedt C, Zhang J, Faghihi MA (2016) Transcriptomic profiling of extracellular RNAs present in cerebrospinal fluid identifies differentially expressed transcripts in Parkinson’s disease. J Parkinson’s Dis 6(1):109–117

    Article  Google Scholar 

  • Hu M, Cooper J, Beamish R, Jones E, Butterworth R, Catterall L, Ben-Shlomo Y (2011) How well do we recognise non-motor symptoms in a British Parkinson’s disease population? J Neurol 258(8):1513–1517

    Article  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2008) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocols 4(1):44–57

    Article  Google Scholar 

  • Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22(1):11–17

    Article  Google Scholar 

  • Infante J, Prieto C, Sierra M, Sánchez-Juan P, González-Aramburu I, Sánchez-Quintana C, Berciano J, Combarros O, Sainz J (2015) Identification of candidate genes for Parkinson’s disease through blood transcriptome analysis in LRRK2-G2019S carriers, idiopathic cases, and controls. Neurobiol Aging 36(2):1105–1109

    Article  Google Scholar 

  • Infante J, Prieto C, Sierra M, Sánchez-Juan P, González-Aramburu I, Sánchez-Quintana C, Berciano J, Combarros O, Sainz J (2016) Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease. Neurobiol Aging 38:214-e1

    Article  Google Scholar 

  • Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J (2012) Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 3:668

    Article  Google Scholar 

  • Kadonaga JT (2004) Regulation of rna polymerase ii transcription by sequence-specific dna binding factors. Cell 116(2):247–257

    Article  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605

    Article  Google Scholar 

  • Kõks S, Overall RW, Ivask M, Soomets U, Guha M, Vasar E, Fernandes C, Schalkwyk LC (2013) Silencing of the WFS1 gene in HEK cells induces pathways related to neurodegeneration and mitochondrial damage. Physiol Genom 45(5):182–190

    Article  Google Scholar 

  • Kori M, Aydın B, Unal S, Arga KY, Kazan D (2016) Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of alzheimer’s disease, parkinson’s disease, and amyotrophic lateral sclerosis. Omics 20(11):645–661

    Article  Google Scholar 

  • Kurz A, Double KL, Lastres-Becker I, Tozzi A, Tantucci M, Bockhart V, Bonin M, García-Arencibia M, Nuber S, Schlaudraff F et al (2010) A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PloS One 5(7):e11464

    Article  Google Scholar 

  • Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99(2):248–256

    Article  Google Scholar 

  • Labadorf A, Choi SH, Myers RH (2018) Evidence for a pan-neurodegenerative disease response in Huntington’s and Parkinson’s disease expression profiles. Front Mol Neurosci 10:430

    Article  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):559

    Article  Google Scholar 

  • Langfelder P, Luo R et al (2011) Is my network module preserved and reproducible? PLoS Comput Biol 7(1):e1001057

    Article  MathSciNet  Google Scholar 

  • Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18(R1):R48–R59

    Article  Google Scholar 

  • Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, De Andrade M, Henley JR, Rocca WA, Ahlskog JE, Maraganore DM (2007) A genomic pathway approach to a complex disease: axon guidance and parkinson disease. PLoS Genet 3(6):e98

    Article  Google Scholar 

  • Li B, Ruotti V, Stewart RM et al (2009) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26(4):493–500

    Article  Google Scholar 

  • Li B, Zhang Y, Yu Y et al (2015) Quantitative assessment of gene expression network module-validation methods. Sci Rep 5:15258

    Article  Google Scholar 

  • Liiv M, Cagalinec M, Hodurova Z, Vaarmann A, Mandel M, Zeb A, Kuum M, Hickey MA, Safiulina D, Choubey V et al (2015) Wolfram syndrome 1: from ER stress to impaired mitochondrial dynamics and neuronal development. SpringerPlus 4(1):P22

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  Google Scholar 

  • Mason MJ, Fan G, Plath K et al (2009) Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genom 10(1):327

    Article  Google Scholar 

  • Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, Meikle PJ, Bruce CR, Watt MJ (2014) PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 3(6):652–663

    Article  Google Scholar 

  • Medina IR, Lubovac-Pilav Z (2016) Gene co-expression network analysis for identifying modules and functionally enriched pathways in type 1 diabetes. PloS One 11(6):e0156006

    Article  Google Scholar 

  • Michel TM, Käsbauer L, Gsell W, Jecel J, Sheldrick AJ, Cortese M, Nickl-Jockschat T, Grünblatt E, Riederer P (2014) Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat Dis 20:S68–S72

    Article  Google Scholar 

  • Mitchell JC (1969) Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester University Press, Manchester

    Google Scholar 

  • Moran EP, Jx Ma (2015) Therapeutic effects of ppar\(\alpha\) on neuronal death and microvascular impairment. PPAR research 2015: https://doi.org/10.1155/2015/595426

  • Nam JH, Park ES, Won SY, Lee YA, Kim KI, Jeong JY, Baek JY, Cho EJ, Jin M, Chung YC et al (2015) TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain 138(12):3610–3622

    Article  Google Scholar 

  • Nuber S, Petrasch-Parwez E, Arias-Carrión O, Koch L, Kohl Z, Schneider J, Calaminus C, Dermietzel R, Samarina A, Boy J et al (2011) Olfactory neuron-specific expression of A30P alpha-synuclein exacerbates dopamine deficiency and hyperactivity in a novel conditional model of early Parkinson’s disease stages. Neurobiol Dis 44(2):192–204

    Article  Google Scholar 

  • Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31(7):763–780

    Article  Google Scholar 

  • O’Keeffe GW, Hegarty S, Sullivan A (2017) Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson’s disease. Neuronal Signaling p NS20170027

  • Paisán-Ruız C, Jain S, Evans EW, Gilks WP, Simón J, Van Der Brug M, De Munain AL, Aparicio S, Gil AM, Khan N et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600

    Article  Google Scholar 

  • Park S, Choi SG, Yoo SM, Son JH, Jung YK (2014) Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 10(11):1906–1920

    Article  Google Scholar 

  • Planken A, Kurvits L, Reimann E, Kadastik-Eerme L, Kingo K, Kõks S, Taba P (2017) Looking beyond the brain to improve the pathogenic understanding of Parkinson’s disease: implications of whole transcriptome profiling of Patients’ skin. BMC Neurol 17(1):6

    Article  Google Scholar 

  • Riley BE, Gardai SJ, Emig-Agius D, Bessarabova M, Ivliev AE, Schüle B, Alexander J, Wallace W, Halliday GM, Langston JW et al (2014) Systems-based analyses of brain regions functionally impacted in Parkinson’s disease reveals underlying causal mechanisms. PloS One 9(8):e102909

    Article  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25

    Article  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  Google Scholar 

  • Ruipérez V, Darios F, Davletov B (2010) Alpha-synuclein, lipids and Parkinson’s disease. Prog Lipid Res 49(4):420–428

    Article  Google Scholar 

  • Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, Nativ N, Bahir I, Doniger T, Krug H, Sirota-Madi A, Olender T, Golan Y, Stelzer G, Harel A, Lancet D (2010) GeneCards Version 3: the human gene integrator. Database. https://doi.org/10.1093/database/baq020

  • Sahu A, Chowdhury HA et al (2020) Integrative network analysis identifies differential regulation of neuroimmune system in Schizophrenia and Bipolar disorder. Brain Behav Immun Health 2:100023

    Article  Google Scholar 

  • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM (2011) PRDM16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Investig 121(1):96–105

    Article  Google Scholar 

  • Shi GX, Cai W, Andres DA (2013) RIT subfamily small GTPases: regulators in neuronal differentiation and survival. Cell Signal 25(10):2060–2068

    Article  Google Scholar 

  • Singer GA, Lloyd AT, Huminiecki LB et al (2004) Clusters of co-expressed genes in mammalian genomes are conserved by natural selection. Mol Biol Evolut 22(3):767–775

    Article  Google Scholar 

  • Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, Goldmann J, Myers RH, Young RA, Jaenisch R (2016) Parkinson-associated risk variant in distal enhancer of \(\alpha\)-synuclein modulates target gene expression. Nature 533(7601):95

    Article  Google Scholar 

  • Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, Soreq H (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10(3):e1003517

    Article  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) \(\alpha\)-Synuclein in Lewy bodies. Nature 388(6645):839

    Article  Google Scholar 

  • Tesson BM, Breitling R, Jansen RC (2010) DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinform 11(1):497

    Article  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160

    Article  Google Scholar 

  • Van Duijn C, Dekker M, Bonifati V, Galjaard R, Houwing-Duistermaat J, Snijders P, Testers L, Breedveld G, Horstink M, Sandkuijl L et al (2001) PARK7, a novel locus for autosomal recessive early-onset Parkinsonism, on chromosome 1p36. Am J Hum Genet 69(3):629–634

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440

    Article  MATH  Google Scholar 

  • Weinert BT, Timiras PS (2003) Invited review: theories of aging. J Appl Physiol 95(4):1706–1716

    Article  Google Scholar 

  • Winklhofer KF, Haass C (2010) Mitochondrial dysfunction in Parkinson’s disease. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1802(1):29–44

  • Woodard CM, Campos BA, Kuo SH, Nirenberg MJ, Nestor MW, Zimmer M, Mosharov EV, Sulzer D, Zhou H, Paull D et al (2014) iPSC-derived dopamine neurons reveal differences between monozygotic twins discordant for Parkinson’s disease. Cell Rep 9(4):1173–1182

    Article  Google Scholar 

  • Wu R, Xm Liu, Jg Sun, Chen H, Ma J, Dong M, Peng S, Jq Wang, Jq Ding, Li Dh et al (2017) DJ-1 maintains energy and glucose homeostasis by regulating the function of brown adipose tissue. Cell Dis 3:16054

    Article  Google Scholar 

  • Xia R, Mao ZH (2012) Progression of motor symptoms in Parkinson’s disease. Neurosci Bull 28(1):39–48

    Article  Google Scholar 

  • Zhao Z, Cao L, Reece EA (2017) Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc Nat Acad Sci 114(17):4489–4494

    Article  Google Scholar 

  • Zwiener I, Frisch B, Binder H (2014) Transforming RNA-Seq data to improve the performance of prognostic gene signatures. PloS One 9(1):e85150

    Article  Google Scholar 

Download references

Acknowledgements

PB thanks financial support from the Ramalingaswamy Re-entry Fellowship from the Department of Biotechnology (DBT), Ministry of Science & Technology, Government of India. HAC acknowledges Ministry of Minority Affairs for financial assistance in terms of UGC-MANF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruba Kumar Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, H.A., Barah, P., Bhattacharyya, D.K. et al. Identification of potential Parkinson’s disease biomarkers using computational biology approaches. Netw Model Anal Health Inform Bioinforma 10, 10 (2021). https://doi.org/10.1007/s13721-020-00280-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-020-00280-5

Keywords

Navigation