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Abstract There is a rapid growth of the amount of
multimedia data from real-world multimedia sharing web
sites, such as Flickr and Youtube. These data are usually of
high dimensionality, high order, and large scale. Moreover,
different types of media data are interrelated everywhere in
a complicated and extensive way by context prior. It is well
known that we can obtain lots of features from multimedia
such as images and videos; those high-dimensional features
often describe various aspects of characteristics in multime-
dia. However, the obtained features are often over-complete
to describe certain semantics. Therefore, the selection of lim-
ited discriminative features for certain semantics is hence
crucial to make the understanding of multimedia more inter-
pretable. Furthermore, the effective utilization of intrinsic
embedding structures in various features can boost the per-
formance of multimedia retrieval. As a result, the appropriate
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representation of the latent information hidden in the related
features is hence crucial during multimedia understanding.
This paper introduces many of the recent efforts in sparsity-
based heterogenous feature selection, the representation of
the intrinsic latent structure embedded in multimedia, and
the related hashing index techniques.

Keywords Structural sparsity - Factor decomposition -
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1 Introduction

Natural images and videos can be well approximated by a
small subset of elements from an over-complete dictionary.
The process of choosing a good subset of dictionary elements
along with the corresponding coefficients to represent a sig-
nal is known as sparse representation [10]. As pointed out
in [56], the receptive files of simple cells in mammalian pri-
mary visual cortex can be characterized as being spatially
localized, oriented, and bandpass (selective to structure at
different spatial scales). Therefore, a learning algorithm is
crucial to find sparse linear codes for natural scenes. The
problem of finding a sparse representation for the data has
become an interesting topic recently in computer vision and
multimedia retrieval nowadays. The essential challenge to
be resolved in sparse representation is to develop an efficient
approach with which each original data element could be
reconstructed from its corresponding sparse representation.

In this paper, we focus on data mainly on images and
videos. The feature selection and hashing of multimedia
are the basis for image and video annotation and retrieval.
The robust and appropriate techniques for feature selec-
tion and hashing can significantly improve the performance
of image/video understanding, retrieval, tracking, matching,
reconstruction, etc.
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It is well known that we can extract high-dimensional
features from one given image or video in the real world
in different types. These different features can be roughly
classified as Local (e.g., SIFT, Shape Context and GLOH)
versus Global (e.g., color, shape and texture) [49], Dense
(e.g., bag of visual words [24]) versus Sparse (e.g., Locality-
constrained Linear Coding [73]), Shadow versus Deep (e.g.,
Hierarchical Models [58]), and Multi-scale (e.g., Spatial
Pyramid Matching [40]), Still versus Motion (e.g., Optical
Flow [29]), Compressed (e.g., Gabor wavelets [42]) versus
and Uncompressed. We call these different types of features
extracted in the same image or video the heterogeneous fea-
tures, and the features of the same type the homogeneous
features.

Different subsets of heterogenous features have different
intrinsic discriminative power to characterize the semantics
in multimedia. That is to say, only limited groups of het-
erogenous features distinguish certain semantics from others.
Therefore, the selected visual features for further multimedia
processing are usually sparse.

Given high-dimensional heterogeneous features in images
and videos, in order to obtain the discriminative features,
we often map original features into a subspace to discover
their intrinsic structure by dimension reduction such as prin-
cipal component analysis (PCA), Locally Linear Embed-
ding (LLE), ISOMAP, Laplacian Eigenmap, Local Tangent
Space Alignment (LTSA) and Locality Preserving Projec-
tions (LPP) [61]. However, it is very hard to discern what
original features play an essential role during the semantic
understanding in the embedded subspace after the dimen-
sion reduction is conducted. As a result, a more interpretable
approach is necessary for feature selection. That is to say,
given the number of extracted over-complete heterogenous
features, it is essential to identify the discriminate features
for certain semantics.

Motivated by the recent advance in compressed sensing,
sparsity-based feature selection approaches are developed in
computer vision and multimedia retrieval [25,46,48,77,82].
The basic idea of sparsity-based feature selection is to impose
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a (structural) sparse penalty to select discriminative features.
For example, Wright et al. [76] casts the face recognition
problem as a liner regression problem with sparse constraints
for regression coefficients. To solve the regression problem,
Wright et al. [76] reformulate face recognition as an £1-norm
problem. Caoetal. [11] propose learning different metric ker-
nel functions for different heterogeneous features for image
classification. After the introduction of the £{-norm at the
group level into sparse logistic regression, a heterogeneous
feature machines (HFM) is implemented in [11].

For all the above approaches, the £1-norm (namely lasso,
least absolution shrinkage and selection operator) [71] is
effectively implemented to make the learning model both
sparse and interpretable. However, for the group of features
in which the pairwise correlations among them are very
high, lasso tends to select only one of the pairwise corre-
lated features and cannot induce the group effect. In the
“large p, small n” problem, the “grouped features™ situa-
tion is an important concern to facilitate a model’s inter-
pretability. In order to remedy the deficiency of lasso, group
lasso [87] and elastic net [93] are proposed, respectively.
If the structural priors embedded in images and videos are
appropriately represented, the performance of semantic
understanding for images and videos can be boosted. For
example, since the extract high-dimensional heterogenous
features from images and videos can be naturally divided
into disjoint groups of homogeneous features, a structural
grouping sparsity penalty is proposed in [77] to induce a
(structural) sparse selection model for the identification of
subgroups of homogenous features during image annotation.
The motivation in [77] can be illustrated in Fig. 1. After
groups of heterogenous features such as color, texture, and
shape are extracted from images, the structural grouping spar-
sity is conducted to set the coefficients (8;) of the discrimina-
tive feature sets as 1 and the coefficients of other insignificant
feature sets as 0. Moreover, the identified subgroup within
each selected feature set is further used as the representa-
tion of each image. Due to the importance of the introduc-
tion of the structural priors into feature selection, Jenatton
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Fig. 1 The illustration of the high-dimensional heterogeneous feature selection with structural grouping sparsity revised from [77]
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et al. recently propose a general definition of the structured
sparsity-inducing norm in [31,32] to incorporate the prior
knowledge or structural constraints to find the suitable linear
features. Under the setting of the structured sparsity-inducing
norm, lasso, group lasso, and even the tree-guided group
lasso [37] are, respectively, its special cases.

Note that the introduction of the sparsity penalty into the
traditional matrix factorization can help achieve a good per-
formance. For example, Kim and Park [38] propose a novel
algorithm of sparse NMF to control the degree of sparseness
in the nonnegative basis matrix or the nonnegative coefficient
matrix. The empirical study shows that the performance can
be improved if we impose the sparsity on a factor of NMF by
the £1-norm minimization into the objective function. Sparse
topical coding (STC) is proposed in [92] to discover latent
representations of large collections of data by a nonproba-
bilistic formulation of the topic models. STC can directly
control the sparsity of the inferred representations by the
conduction of sparsity-inducing regularizers. A hierarchical
Bayesian model is developed in [43] to integrate the dictio-
nary learning, sparse coding, and topic modeling for the joint
analysis of multiple images and (when present) the associ-
ated annotations.

After the discriminative features are selected, we need to
represent the intrinsic structures embedded in the heteroge-
nous features. Traditionally, the high-dimensional heteroge-
nous features in images and videos are preferred to being
represented merely as concatenated vectors, whose high
dimensionality always causes the problem of curse of dimen-
sionality. Besides, as reported in [85], the over-compression
problem occurs when the sample vector is very long and the
number of training samples is small, which results in a loss of
information in the dimension reduction process. At present,
many of the representation approaches are proposed such as
matrix, tensor, and graph. Tensor is a natural generalization of
a vector or a matrix, and has been applied to computer vision,
signal processing, and information retrieval [28,45,69]. The
tensor algebra defines multilinear operators over a set of vec-
tor spaces and captures the high-order information in hetero-
geneous features. Usually, the traditional graph only models
the homogeneous similarity and therefore ignores the high-
order relations that are inherent in images and videos. In
order to address this drawback of the traditional graph, hyper-
graph is proposed to represent more complex correlations in
images and videos. Hypergraph [5] is a graph in which one
edge can connect more than two vertices. This characteristic
enables hypergraphs to represent complex and higher-order
relations which are difficult to be represented in the tradi-
tional undirected or directed graphs. Recently, hypergraphs
have been successfully applied to image annotation, image
ranking, and music recommendation, and have received con-
siderable attention. For example, spectral clustering is gener-
alized from undirected graphs to hypergraphs in [91], where

hypergraph embedding and transductive classification are
further developed by spectral hypergraph clustering. Hyper-
graph spectral learning is utilized in [68] for multi-label clas-
sification, where a hypergraph is constructed to exploit the
correlation information among different labels. In many real-
world applications, the complex spatial-temporal or context
in images and videos can be efficiently encoded by a matrix,
a tensor, or a graph and then information is lost if the vector
representation is used. The interesting issue is whether we can
introduce a sparsity penalty into a matrix, a tensor, or a hyper-
graph to make the representation and learning interpretable.
If there is a low-rank structure in a matrix, the penalty of
the matrix rank is a good choice to enforce such sparsity.
However, a matrix rank is neither continuous nor convex.
As a surrogate convex of the nonconvex matrix rank function,
the matrix nuclear norm (trace norm, matrix-/asso) is specifi-
cally employed to encourage the low-rank property. Nuclear
norm is defined as the sum of all the singular values as a
convex function. The idea of a low-rank matrix is an exten-
sion from the concept of “sparse vector” to that of “sparse
matrix”. Robust principal component analysis (R-PCA) is
proposed in [75] to recover low-rank matrices from corrupted
observations by the implementation of the nuclear norm min-
imization for the low-rank recovery and £1-minimization for
the error correction. An accelerated R-PCA approach is pro-
posed in [52] for a large-scale image tag transduction under
the setting of the nuclear norm. One ¢;-graph is constructed
by encoding the overall behavior of the data set in sparse
representations in [14].

How to construct an approximate index structure for
images and videos with the selected features is essential to
the efficient retrieval of a large scale of multimedia. A naive
solution to accurately find the relevantly similar examples to
a query is to search over all the samples in a database and
sort them according to their similarities to the query. How-
ever, this becomes prohibitively expensive when the scale of
the database is very large. To reduce the complexity of find-
ing the relevant samples for a query, indexing techniques are
necessarily required to organize images and videos. How-
ever, studies reveal that many of the index structures have
an exponential dependency (in space or time or both) upon
the number of the dimensions and even a simple brute-force,
linear-scan approach may be more efficient than an index-
based search in high-dimensional settings [4]. Moreover, an
excellent index structure should guarantee that the similarity
of two samples in the index space keeps consistent with their
similarity in the original data space [59]. Recently, locality-
sensitive hashing (LSH) and its variations have been pro-
posed as the indexing approaches for an approximate nearest
neighbor search [17,47]. The basic idea in LSH is to use a
family of locality preserving hash functions to hash simi-
lar data in the high-dimensional space into the same bucket
with a higher probability than these for the nonsimilar data.
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As shown by semantic hashing [60], LSH could be unsta-
ble and lead to an extremely bad result due to its random-
ized approximate similarity search. Unlike those approaches
which randomly project the input data into an embedding
space such as LSH, several machine learning approaches are
recently developed to generate more compact and approxi-
mate binary codewords for data indexing, such as restricted
Boltzmann machine (RBM) in semantic hashing [60], para-
meter sensitive hashing (PSH) in pose estimation [62] and
spectral hashing [74]. These approaches attempt to elaborate
appropriate hash functions to optimize an underlying hash-
ing objective. Shao et al. [63] introduces the sparse principal
component analysis (sparse PCA) and the boosting similarity
sensitive hashing (Boosting SSC) into the traditional spec-
tral hashing and calls this approach sparse spectral hashing
(SSH).

2 Sparsity-based feature selection
2.1 Notation and problem formulation

Assume that we have a training set of n labeled samples
such as images and videos with J labels (tags) and that
the p-dimensional heterogenous features can be extracted
from each image or video: {(x;,y;) € R” x {0, 1}/

i = 1,2,...,n}, where x; = (x;1, . ..,xip)T € R? rep-
resents the p-dimension feature vector for the ith image
or video, p represents the dimensionality of features, y; =
Vity v yiJ)T € {0, 1}1 is the corresponding label vector,
vij = 1if the ith sample has the jth label and y;; = O other-
wise. Unlike the traditional multi-class problem where each
sample only belongs to a single category: ij':l yij = 1,in
multi-label setting, we relax the constraint to Z,J'=1 yij = 0.
LetX = (x1, ..., X,) L bethe n x p training data matrix, and
Y= (®1..., y,,)T the corresponding n x J label indicator
matrix.

Suppose that the extracted p dimensional heterogenous
features are divided into L disjoint groups of homogeneous
features, with p; the number of features in the /th group,
ie., ZZL p1 = p. For ease of notation, we use a matrix
X; € R™7! to represent the features of the training data
corresponding to the /th group, with corresponding coeffi-
cient vector B;; € RP!I(I = 1,2, ..., L) for the jthlabel. Let
B;= (/SJT1 R /BJTL)T be the entire coefficient vector for the
Jjth label; we have

L
XB; = > XiBji ()
=1

In the following, we assume that the label indicator matrix
Y is centered and that the feature matrix X is centered and
standardized, namely >/, vij = 0, X7, xig = 0, and
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Z;’zlxizd =1,forj=1,2,....,J andd = 1,2,..., p.
Moreover, we let || 8| |% and ||B;]|1 denote the £;-norm and
the £1-norm of vector B;, respectively.

Denote ,3(8) the estimated coefficients obtained by a fit-
ting procedure §. That is to say, for the jth label, we tend to
train a regression model ﬂA j(8) with a penalty term as follows
to select its corresponding discriminative features:

L
min [|Yc.j) — > XiBjll3 + AP (B)) )
Jj =1

where Y. ;) € (0, D@D s the jth column of indicator
matrix Y and encodes the label information for the jth label,
P(ﬁ ;) is the regularizer which imposes structural priors to
the high-dimensional features. The trained regression model
combines a loss function (measuring the goodness of fit of
the model to the data) with a regularized penalty (encourag-
ing the assumed grouping structure). For example, the ridge
regression uses the £>-norm to avoid overfitting and lasso
produces sparsity on ﬁA ;j by the £i-norm. If the estimated

coefficients in ,é ;1 for jth label are not zero, this means that
the /th homogeneous features are all selected to make the
jthlabel discernible. Simultaneously, homogeneous features
may be dropped out for the representation of jth label due to
their irrelevance. Therefore, we can set up an interpretable
model for feature selection.

The solution to ﬁ (8) can identify all of the discriminative
features for each jth label; however, the individual conduc-
tion of ,é j(8) ignores the correlations between labels in the
setting of images and videos with multiple labels. The effec-
tive utilization of the latent information hidden in the related
labels somehow boosts the performance of multi-label anno-
tation. For example, a multiple response regression model,
called curds and whey (C&W) is proposed in [9]. Curds
and whey sets up the connection between multiple response
regressions and canonical correlations. Therefore, the C&W
method can be used to boost the performance of multi-label
prediction given the prediction results from the regressions of
individual labels [77]. Multi-task feature selection (or multi-
task feature learning) is an alternative to utilizing the label
correlation during feature selection. Argyriou et al. [1] and
Obozinski et al. [55] use the £1 2-norm to regularize the het-
erogeneous features of different tasks and therefore encour-
age multiple features to have similar sparsity patterns across
tasks (tags).

2.2 Lasso and nonnegative garotte

In statistical community, lasso [71] is a shrinkage and vari-
able selection method for linear regression, which is a
penalized least square method imposing an £1-norm penalty
to the regression coefficients. Due to the nature of the
£1-norm penalty, lasso continuously shrinks the coefficients
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toward zero, and achieves its prediction accuracy via the
bias—variance trade-off. In signal processing, lasso always
produces a sparse representation that selects the subset com-
pactly expressing the input signal. In the literature, the lasso-
based sparse representation methods have been successfully
used to solve problems such as face recognition [76] and
image classification [57].

In order to select the most discriminative features for the
annotation of images by the jth tag, lasso is defined to train
a regression model ﬁ (8) on the training set of images X by
a £1-norm:

min [[Y j — XB;115 + 4118, 3)

J
where A > 0 is the regularized parameter. Due to the nature
of the £;-norm penalty, by solving (3), most coefficients in
the estimated ﬁ j are shrinked to zero, which could be used
to select the discriminative features. It is clear that (3) is
an unconstrained convex optimization problem. Many algo-
rithms have been proposed to solve problem (3), such as the
quadratic programming methods [71], least angle regression
[19] and Gauss-Seidel [65].

It has been shown that the nonnegative matrix factoriza-
tion (NMF) [41] can learn part-based representation. The
nonnegativity constraint makes the representation easy to
interpret due to purely additive combinations of nonnega-
tive basis vectors. The model of nonnegative garrote [7] is
proposed to solve the following optimization problem

p
min |[Y( ) — X813+ 1> B,
B; =1
st. B =0, Vi 4

where A > 0 is the regularized parameter. The nonnegative
garrote can be efficiently solved by the classical numerical
methods such as the least angle regression (LARS) [19].
Breiman’s original implementation [7] to solve (4) is to
shrink each ordinary least squares (OLS) estimated coeffi-
cient by a nonnegative amount whose sum is subject to an
upper bound constraint (the garrote). In the extensive simu-
lation studies, Breiman has shown that the garotte is superior
to subset selection and is competitive with ridge regression.
Although the motivation of lasso comes from the garotte, in
overfitting or highly correlated settings, the performance of
the garotte deteriorates same as the OLS. In contrast, lasso
avoids the explicit use of OLS estimates [71].

As mentioned before, Wright et al. [76] introduce £ -norm
into face recognition and formulates the face recognition as
a liner regression with sparse constraints for regression coef-
ficients. However, lasso makes the representation unneces-
sarily additive. This might result in the representation not
being interpretable as NMF. Moreover, the class label or
discriminant information from the training set is not appar-

ently incorporated during constructing sparse representation,
which may limit the ultimate classification accuracy. Liu
etal. [46] propose a method for supervised image recognition
and refer to it as the nonnegative curds and whey (NNCW).
The NNCW procedure consists of two stages. In the first
stage, NNCW considers a set of sparse and nonnegative rep-
resentations of a test image, each of which is a linear com-
bination of the images within a certain class, by solving a
set of regression-type NMF problems. In the second stage,
NNCW incorporates these representations into a new sparse
and nonnegative representation by using the group nonneg-
ative garrote [87]. This procedure is particularly appropriate
for discriminant analysis owing to its supervised and non-
negativity nature in sparsity pursuing.

It is natural in group lasso to allow the size of each group
to grow unbounded, that is, we replace the sum of Euclidean
norms with a sum of appropriate Hilbertian norms. Under this
setting, several algorithms are proposed to connect multiple
kernel learning and group-lasso regularizer together [2]. The
composite kernel learning with group structure (CKLGS) is
proposed in [86] to select groups of discriminative features.
The CKLGS method embeds the nonlinear data with dis-
criminative features into different reproducing kernel Hilbert
spaces (RKHS), and then composes these kernels to select
groups of discriminative features.

2.3 Structural grouping sparsity

If the pairwise correlation between a group of features is
very high, lasso tends to individually select only one of the
pairwise correlated features and does not induce the group
effect. In the “large p, small n” problem, the “grouped fea-
tures” situation is an important concern to facilitate a model’s
interpretability. That is to say, lasso is limited in that it treats
each input feature independent of each other and hence is
incapable of capturing structural priors among heterogenous
features. In order to remedy this deficiency of lasso, elastic
net [93] and group lasso [87] are proposed, respectively.

Elastic net [93] generalizes lasso to overcome these draw-
backs. For any nonnegative A1 and Aj, elastic net is defined
as a following optimization problem:

min [|Y (., j — XB;113 + Al1B113 + 1B 5)
ﬂ,

J

Group lasso is proposed by Yuan and Lin [87] by solving
the following convex optimization problem:
L 2 L
min | Y. ;) — > XiBj| +2 > V/pillBill2 6)
Bj I=1 5 I=1

where p dimension features are divided into L groups, with
pi the number in group /. Note that || - ||, is the not squared
Euclidean norm. This procedure acts like lasso at the group
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level: depending on A, an entire group of features may be
dropped out of the model. The key assumption behind the
group lasso regularizer is that if a few features in one group
are important, then most of the features in the same group
should also be important. In fact, if the group sizes are all
one, (6) reduces to lasso (3).

Yang et al. [83] takes the regions within the same
image as a group and proposes spatial group sparse coding
(SGSC) for region tagging. In SGSC, the group structure of
regions-in-image relationship is incorporated into the sparse
reconstruction framework by the group lasso penalty. Exper-
imental results show that SGSC achieves a good performance
of region tagging by integrating a spatial Gaussian kernel into
the group sparse reconstruction.

If there is a linear-ordering (also known as chain) in the
features, fused lasso can be used [70]. For example, in order
to remove low-amplitude structures and globally preserve
and enhance salient edges, Xu et al. [81] introduces an order
penalty into the image smooth based on the mechanism of
discretely counting spatial changes.

The heterogenous features in images and videos are nat-
urally grouped. For example, color and shape, respectively,
discern the aspects of visual characteristics. That is to say,
it is convenient to select discriminative features from high-
dimensional heterogeneous features by performing feature
selection at a group level. However, the group /asso does not
yield sparsity within a group. That is, if the selection coeffi-
cients of a group is nonzero, the selection coefficient of each
feature within that group will all be nonzero.

In order to utilize the structure priors between heteroge-
neous and homogeneous features for image annotation, Wu
et al. [77] proposes a framework of multi-label boosting by
the selection of heterogeneous features with structural group-
ing sparsity (MtBGS). MtBGS formulates the multi-label
image annotation problem as a multiple response regression
model with a structural grouping penalty. A benefit of per-
forming multi-label image annotation via regression is the
ability to introduce penalties. Many of the penalties can be
introduced into the regression model for a better prediction.
Hastie et al. [27] proposes the penalized discriminant analy-
sis (PDA) to tackle problems of overfitting in situations of
large numbers of highly correlated predictors (features). PDA
introduces a quadratic penalty with a symmetric and posi-
tive definite matrix §2 into the objective function. Elastic net
[93] is proposed to conduct automatic variable selection and
group selection of the correlated variables simultaneously by
imposing both £1 and £>-norm penalties. Furthermore, moti-
vated by elastic net, Clemmensen et al. [15] extended PDA
to sparse discriminant analysis (SDA).

The basic motivation of imposing structural grouping
penalty in MtBGS is to perform heterogeneous feature group
selection and subgroup identification within homogeneous
features simultaneously. As we know, some subgroups of
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features in high-dimensional heterogenous features have a
discriminative power for predicting certain labels of a given
image.

For each label j and its corresponding indicator vector,
the regression model of MtBGS is defined as follows:

2

L
+ 21 D Bl + 221181

2 =1

L
Ye ) — D XiBji

=1

rqin
@)

where 1| Zszl ||l§j1||2 + Azllﬁj [|1 is the regularizer P(ﬁj)
in (2) and is called the structural grouping penalty in [77].

Let ﬂA ;j be the solution to (7); we predict the probabil-
ity ¥, that unlabeled images X" belong to the jth label as
follows:

Ju =X"B; ®)

Unlike group lasso, the above structural grouping penalty
in (7) not only selects the groups of heterogeneous features,
but also identifies the subgroup of homogeneous features
within each selected group.

Note that when A; = 0, (7) reduces to the traditional
lasso under the multi-label learning setting, and A, = 0 for
the group lasso [87].

As stated before, for problems where the heterogeneous
features lie in a high-dimensional space with a sparsity struc-
ture and only a few common important features are shared
by labels (tasks), regularized regression methods have been
proposed to recover the shared sparsity structure across tasks.
According to [9], if the labels are correlated we may be able
to obtain an accurate prediction. In order to take advantage of
correlations between the labels to boost multi-label annota-
tion, MtBGS utilizes the curds and whey (C&W) [9] method
to boost the annotation performance.

In order to tackle problems of overfitting in situations
of large numbers of highly correlated predictors, Hastie
et al. [27] introduce a quadratic penalty with a symmetric
and positive definite matrix 2 into the objective function.
Taking into account the ability of elastic net which simul-
taneously conducts automatic variable selection and group
selection of correlated variables, Clemmensen et al. [15] for-
mulate (single-task) MLDA as SDA by imposing both ¢;
and ¢, norm regularization. Han et al. [25] extends single-
task SDA to the multi-task problem with a method called
multi-task sparse discriminant analysis (MtSDA). MtSDA
uses a quadratic optimization approach for prediction of the
multiple labels. In SDA, the identity matrix is commonly
used as the penalty matrix. MtSDA introduces a large class
of equicorrelation matrices with the identity matrix as a spe-
cial case and indicates that an equicorrelation matrix has a
grouping effect under some conditions.
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2.4 Structured sparsity-inducing norm

Jenatton et al. propose a general definition of structured
sparsity-inducing norm in [31,32], based on which many
sparsity penalties, such as lasso, group lasso, and even the
tree-guided group lasso [37], may be instantiated.

Definition 1 (Structured sparsity-inducing norm) Given a
p-dimensional feature vector x, let us assume that the set of
groups of features G = {g1, ..., g|g|} is defined as a subset of
the power set of {1, ..., p}; the structured sparsity-inducing
norm §2(x) is defined as

20x) = D wgllxgll2

g€y

where x, € RI¢! is the sub-vector of x for the input feature
index in group g, and wy is the predefined weight for group

8.

In Definition 1, if we ignore weight w, and let G be the set
of singleton, i.e., G = {{1}, {2}, ..., {p}}, £2(x) is instanti-
ated to be an £ -norm of vector Xx.

2.5 Tree and graph-guided sparsity

In a typical setting, the input features lie in a high-
dimensional space, and one is interested in selecting a small
number of features that influence the annotation output. In
order to handle more general structures such as tree or graph,
various models that further extend group lasso and fused
lasso are proposed [13,37]. Tree-guided group lasso [37]
is a multi-task sparse feature selection method. The penalty
of tree-guided group lasso is imposed on the output direc-
tion of the coefficient matrix B = (84, ..., B;), with the
goal of integrating the correlations among multiple labeled
tags into the process of sparse feature selection. Tree-guided
group lasso is formulated as to solve the following regular-
ized regression model:

P
min |[Y — XBJ[5 +y > > w,lBlll ©)
B d=1veGr

For ease of notation, in (9), we let B¢ = B(,;). We call
ZUEQT wv||Bg||2 the penalty of tree-guided group lasso.
Specifically, 3", g, Wyl IB¢||, is a special example of £2 (BY)
in Definition 1, when a set of groups Gr is induced from a
tree structure T that is defined on vector B¢. For the details
of definitions of w, and T, refer to [37].

Furthermore, let us assume that the structure of the p-
dimensional features for each image and video x; is available
as a graph G withasetofnodes V ={1,2, ..., p} and a set
of edges E. Let w,; > 0 denote the weight of the edge e =
(m,l) € E, corresponding to the correlation between two
features for nodes m and /. With w,,; > 0, we only consider

the positively correlated features. In order to integrate graph
G into the process of structural feature selection and guide
the regularization process, a penalty of graph-guided fusion
(G*F) [13] 2¢ (B) is imposed, and the graph-guided feature
selection framework is taken as follows:

1 ~ ~ n
min SIYeh = XB113 +y26(B) + AIBIL (10)

where the G2F penalty 2¢ (ﬁ) is defined as [13]:

QcBr= D wulbu—Al (1)

e=(m,l)eE,m<l

where ,BAm and /§1 are estimated coefficients in }§ correspond-
ing to the selection coefficients of the mth and /th features,
respectively. The weight w,,,; measures the fusion penalty for
each edge e = (m, ) such that ,1§m and /§1 are for highly cor-
related features with a larger w,,; receiving a greater fusion
effect. Therefore, the graph-guided fusion penalty in (11)
encourages highly correlated features corresponding to a
densely connected sub-network in G to be jointly selected
as the relevant features.

Note that, if w,; = 1 for all e = (m,[), the penalty
definition in (11) reduces to:

2cB= D BBl (12)

e=(m,l)eE,m<lI

The standard fused lasso [70] penalty Z]J;ll | ,3 1 — /§ ilisa
special case of (12). Furthermore, if the edge set E consists
of edges of pairs of regions, i.e., graph G is defined to be a
full connected graph, the G>F penalty in (11) is instantiated
to be the grouping pursuit penalty [64].

2.6 Sparsity constrained tensor factorization

As introduced before, nuclear norm is recently proposed to
discover the low-rank structure in a matrix and is denoted as
the matrix-lasso. Unlike a matrix, a tensor is a multidimen-
sional array. More formally, an N-way or Nth order tensor is
an element of the tensor product of N vector spaces, each of
which has its own coordinate system. Tensors include vectors
and matrices as the first-order and the second-order special
cases, respectively.

Many data in signal processing, computer vision, and mul-
timedia retrieval can be naturally represented as a tensor (i.e.,
multi-way arrays). Due to the ability of release of the over-
fitting problem in vector-based learning, Tao et al. propose a
supervised tensor learning (STL) framework in [69]. Based
on STL and its alternating projection optimization proce-
dure, the generalization of support vector machines (SVM)
is extended to support tensor machines (STM). Wu et al. [79]
introduces a higher-order tensor framework for video analy-
sis, which represents image frame, audio and text in video
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shots as data points by the three-order tensor (7ensorShot).
A transductive support tensor machine (TSTM) is then devel-
oped to learn and classify tensorshots in videos. Since the
TensorShot dimension reduction method discovers the intrin-
sic tensorshot manifold before classification, the dimension-
reduced tensorshots of training and test data sets show that
TSTM not only is a natural extension of TSVM in tensor
space, but also has a more powerful classification capability.

Tensor factorization and decomposition have several
advantages over the traditional two-order matrix factoriza-
tions even when most of the data are missing. Moreover,
tensor decomposition and factorization explicitly exploit the
high-order structures that are lost when the regular matrix
factorization approaches such as PCA, SVD, NMF, and ICA
are directly implemented to tensors.

Two of the most commonly used tensor decompositions
are the Tucker decomposition [72] and CANDECOMP/
PARAFAC (CANonical DECOMPosition or PARAllel
FACtors model, abbreviated as CP) [12,26]. Both Tucker
decomposition and CP are often considered as higher-order
generalizations of the matrix singular value decomposition
(SVD) or PCA.

The Tucker decomposition is a form of higher-order PCA
and decomposes a tensor into a core tensor multiplied (or
transformed) by a matrix along each mode. The CP decom-
position factorizes a tensor into a sum of component rank-
one tensors. An interesting property of tensor decompositions
by CP is the uniqueness under a weak condition. However,
Tucker decompositions are not unique [39].

When data or signals are inherently represented by
nonnegative numbers, imposing nonnegativity constraints to
tensor decomposition is shown to provide a physically mean-
ingful interpretation. The block principal pivoting method is
developed to solve nonnegativity constrained least squares
(NNLS) problems for computing a low-rank nonnegative CP
decomposition in [36].

3 Multimedia spectral hashing with sparsity

The summarization of multimedia (images and videos) by
much more compact sets of binary bits is of strong inter-
est to many multimedia processing applications. The sum-
maries, or hashes, can be used as a content identification
to efficiently query similar images or videos in a database.
Multimedia hashing is usually implemented in two steps:
first, an intermediate code is obtained by the extraction of
the representative features from images and videos; second,
this intermediate code is quantized by a vector quantization
to generate a binary code. In general, these two steps are
independent of each other.

The hashing algorithms seek compact binary codes of
data points, so that the Hamming distance between code-
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words correlates with a semantic similarity such as the
semantic hashing [60]. As one of the representative hash-
ing approaches, the spectral hashing [74] is formulated as
the problem of the semantic hashing as a form of graph par-
titioning and is designed as an efficient eigenvector solution
to graph partition to generate the best binary code for data
indexing. Spectral hashing finds a projection from Euclid-
ean space to Hamming space and guarantees that data points
close in Euclidean space are mapped to similar binary code-
words. In order to avoid NP problems, spectral relaxation
is implemented in spectral hashing to obtain a number of
eigenvectors with the minimal eigenvalues from a Laplacian
matrix by the PCA. However, the traditional PCA suffers
from the fact that each principal component is a linear com-
bination of all the original variables; thus, it is often difficult
to interpret the results [94].

Assume that we have a collection of n p-dimensional data
points {(x;) € R? : i = 1,2,...,n}, where Xx; represents
the feature vector for the ith data point, and p represents
the dimension of the features from the training data. ® is
an efficient indexing function to map each x; from the p-
dimensional Euclidean space to the k-dimensional Hamming
space y;; we define ® as follows:

©:x; eRP - y; e {—1, 1} (13)

The indexing function & defined above has the following
characteristics: (1) ® is a semantic hashing function. That is
to say, if the distance between the ith data point x; and the jth
data point x; is small in terms of the Euclidean distance in
R? space, their distance in terms of the Hamming distance
in {—1, 1}¥ space is also small; (2) © tends to generate a
compact binary code y;. Only a small number of bits are
required to code the whole data set. Additionally, the coding
is expected to be structure preserving, which means that only
alimited subset of features is chosen to index the original data
and to preserve the intrinsic structure hidden in the images
and videos. The n p-dimensional data are written as X €
R™*P and their corresponding n k-dimensional binary codes
are written as Y € {—1, 1}">k,

Spectral hashing considers such requirements as a partic-
ular problem of thresholding a subset of eigenvectors of the
Laplacian graph as follows [74]:

minimize: ZW(i, DI yi—yj 12
ij
yi € {1, 1}

> yi=0
i
e
l

subject to:
(14
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where W € RV*V is the similarity matrix and W(i, j) =
exp(— || x; — x; 1% /€2). yi € {—1, 1}k guarantees that the
indexing code is binary; >, y; = 0 guarantees that each bit
has 50% to be —1 or 1 when we choose 0 as a threshold; and
% >V yiT = I guarantees that the bits are uncorrelated to
each other.

Though finding the solution to (14) is an NP-complete
problem, by introducing the Laplacian matrix and remov-
ing the constraint y; € {—1, 1}, [74] turns it into a graph
partition so that the solution is simply the m eigenvectors
of Laplacian matrix L. with the minimal eigenvalue, where
L = D — W and D is a diagonal matrix with its entries
D(@,i) = E;’W(i, J). As a result, the solution to (14) is
transformed into Laplacian eigenmap dimension reduction
and thus PCA is directly used in spectral hashing [74].

However, PCA suffers from the fact that it is difficult to
interpret the result of dimension reduction due to the lack of
sparseness of the principal vectors, i.e., all the data coordi-
nates participate in the linear combination [94]. Usually, the
codebook is often over-complete. Intuitively, given a data
point, only a limited subset of features is sufficient to rep-
resent this data point. Take an image as an example. Color-
related visual words could be salient features to represent an
image of rainbow and shape-related visual words are better
to distinguish an image of a car from others.

Motivated by the nature of the grouping effect in elas-
tic net, sparse PCA in [94] transforms PCA as a noncon-
vex regression-type optimization problem via the elastic net
penalty to estimate PCs with sparse loadings. Due to its non-
convex solution of sparse PCA in [94], a convex relaxation
method is developed [16] to achieve a globally optimal solu-
tion to sparse PCA. In essence, the convex relaxation method
is a semi-definite program. Since sparse PCA maximizes the
variance explained by a particular linear combination of the
input variables and constrains the number of nonzero coeffi-
cients in this combination, Shao et al. [63] introduces the idea
of sparse PCA [94] into spectral hashing for data indexing
and calls this approach as SSH. The proposed SSH not only
achieves dimensionality reduction, but also reduces the num-
ber of the explicitly used features during indexing. In order
to resolve the out-of-sample problem, same as the parameter-
sensitive hashing [62], here SSH introduces boosting simi-
larity sensitive coding (Boost SSC) into SSH in order to find
a more practical threshold for the quantization of the binary
code.

As discussed before, The structural information is of great
significance in many applications. For example, due to the
importance of local features in face recognition, NMF is
used to learn the facial parts of the images and shows a
better performance than other holistic representation meth-
ods such as PCA and vector quantization. It is a quite
interesting issue to embed structural prior into the com-
pact binary codes by the replacement of sparse PCA with

the structured sparse principal component analysis [32] in
SSH.

4 Cross-media analysis and retrieval

As an example to showcase the applications, there are huge
collections of heterogeneous media data from microblog,
mobile phone, social networking Web sites, and news media
Web sites. These heterogeneous media data are integrated
together to reflect social behaviors. Different from the tradi-
tional structural and nonstructural data, these heterogeneous
media data are referred to as cross-media with three proper-
ties: (1) Cross-modality: heterogeneous features are obtained
from data in different modalities; (2) Cross-domain: hetero-
geneous features may be obtained from different domains
(e.g., from both target domain and auxiliary domain for
problems such as topic modeling, multimedia annotation);
(3) Cross space: the virtual world (cyberspace) and the real-
world (reality) complement each other [23]. Here, sparse
representation also plays an important role [78]. For exam-
ple, all of the heterogenous features from different views can
be unified as a consensus representation for the cross-media
semantics, and factorized into a latent spaces with a struc-
tured sparsity that can be exploited to simultaneously learn a
low-dimensional latent space [33]; traditional canonical cor-
relation analysis (CCA) can be extended to sparse CCA and
therefore learn the multi-modal correlations of media objects
[78]; graphical lasso can be applied to discover the network
community [22]. Moreover, different from the traditional
content-based single media retrieval systems, in content-
based cross-media retrieval system, multimedia objects are
retrieved uniformly. The query examples and retrieval results
do not need to be of the same media type. For example, users
can query images by submitting either an audio example or
an image example in a cross-media retrieval system [84].

5 Computational issues
5.1 Complexity

In principle, the £;-norm [71] and the structured sparsity-
inducing norm [32] penalized sparse feature selection prob-
lems can be solved by the generic optimization solvers. For
example, the sparse penalized problems are first posed as
a second-order cone programming or a quadratic program-
ming [71] formulation and then solved by the interior-point
methods. However, such approaches are expensive even for
the problems of a moderate size.

Recently, inspired by Nesterov’s method [53] and the fast
iterative shrinkage-thresholding algorithm (FISTA) [3], the
first-order gradient approach has been widely used to solve
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optimization problems with a convex loss function (e.g.,
least-square loss) and nonsmooth penalty (e.g., the £1-norm).
It has been shown that the first-order gradient approach can
achieve the optimal convergence rate O(Le) for a desired
accuracy €. FISTA only deals with relatively simple and
well-separated nonsmooth penalties, such as £1-norm, group
lasso penalty. Though the pathwise coordinate descent [21]
method has been widely applied to solve many complex spar-
sity penalties, this method may get stuck and does not con-
verge to the exact solution for certain nonseparated penalties,
such as the fused /asso [70] penalty.

In order to efficiently solve the complex sparsity penalized
problems, e.g., graph-guided fusion [13] and tree-structured
groups [30] penalties, many proximal gradient methods
[13,30] are developed. The main challenges are to find an
approximation of the nonseparable and nonsmooth struc-
tured sparsity-inducing norm. The smoothing proximal gra-
dient (SPG) [13] method is an efficient proximal gradient
method for general structured sparse feature selection meth-
ods. According to the smoothing method in [54], SPG first
finds a separable and smooth approximation of £2(x), and
then solves this transformed simple £ -norm penalized sparse
learning problem by the FISTA approach. It has been proven
that SPG achieves a convergence rate of 0(%) for a desired
accuracy € [13], which is faster than the subgradient method
with a convergence rate of O (Eiz ). The gap between O (%) and
o( %) [3] is due to the approximation of the nonseparable
and nonsmooth structured sparsity-inducing norm penalty.

The most common theoretical approach to understand-
ing the behavior of the algorithms is the worst-case analysis.
However, there are many algorithms that work exceedingly
well in practice, but are known to perform poorly in the worst-
case analysis or lack a good worst-case analysis according
to the theory of the smoothed analysis [67]. In Tibshirani’s
original paper [71], he has found that the model selection
problem with £;-norm usually can be solved with the iter-
ation number within the range of (0.5p, 0.75p) in practice.
Take the algorithm of MtBGS [77], for example, the run-
time performance of the regression model with the structural
grouping sparsity is also very efficient when implemented as
the cyclic coordinate descent method. From the description
of the coordinate descent by the Gauss—Seidel method, we
see that for a complete cycle through all the coordinates, it
takes O (k) operations, where k is the number of the nonzero
elements when the sparsity of the data is considered. Thus
the complexity of the regression model with the structural
grouping sparsity is roughly O(p x n).

5.2 Consistent selection and nonconvex relaxation

Given high-dimensional heterogenous features and their cor-
responding semantics, the question is whether there is a true
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model and whether the true model can select all the fea-
tures for the representation of their semantics; that is to
say whether the selected features are comsistent with the
data. For example, after p-dimensional heterogenous fea-
tures X; = (xi1,..., xi,,)T € R? are extracted from the ith
image or video, assume a true model (an oracle) is found
to select all the discriminate features for the ith image or
video and the coefficients of the selected features are denoted
as A = {m : BX # 0} and|A| = po < p. If B(8) is
the estimated coefficients produced by a fitting procedure
8, the question is whether the selection result by § is the
same as that of the result by the true model. According to
[20,95], § is called an oracle procedure if ,3(8) has the fol-
lowing oracle properties: § can identify the correct subset,
{m : ,éj # 0} = A; and § has the optimal estimate rate.

When we talk about the inconsistent selection, it means
that the correct sparse subset of the relevant variables cannot
be identified asymptotically with a large probability. Without
loss of generality, assume that the first g elements of vector
,3 A(S) are nonzeroes and thftt others are zeros. Let B(‘S)(l) =
(BO)1, ..., BG)g) and B(8)2) = (BB)g+1:---,B©)p),
then ,3(8)(1) # 0 element-wise and /§(8)(2) = 0. Recent
work [50,88,90,95] has given some conditions for a consis-
tent selection in lasso. It has been shown that in the classical
case when p and ¢ are fixed, a simple condition, called the
Irrepresentable Condition (IC) on the generated covariance
matrices, is necessary and sufficient for the model selection
consistency by Lasso. An Elastic Irrepresentable Condition
(EIC) is given in [34] to show that Elastic Net can consis-
tently select the true model if and only if EIC is satisfied.
One of the consistency conditions of group lasso is given in
[44].

Many of penalty regularizers can be developed for feature
selection; however, Fan and Li [20] provide a deep insight
into how to choose a penalty function. In their analysis,
they encourage choosing penalty functions satisfying cer-
tain mathematical conditions such that the resulting penal-
ized likelihood estimate possesses the properties of sparsity,
continuity and unbiasedness. These mathematical conditions
imply that the penalty function must be singular at the origin
and nonconvex over (0, 0c0). Accordingly, a number of non-
convex relaxation approaches, such as the smoothly clipped
absolute deviation (SCAD) penalty [20] and the minimax
concave (MC) penalty [89], have been proposed. Shi et al.
[66] treats the MC penalty as a nonconvex relaxation of the
lp penalty for dictionary learning and achieves a robust and
sparse representation.

5.3 Stability of selection

Two key issues in the design of multimedia learning algo-
rithms are bias and variance, and one needs to find a
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trade-off between them. Therefore, besides a good accuracy
of sparse learning algorithms, we also desire the property of
a low variance, or a high stability. In a broad sense, stabil-
ity means that an algorithm is well posed, so that given two
very similar data sets, the algorithm’s performance varies lit-
tle [80]. In the landmark work about stability in [6], stability
is explored based on the sensitivity analysis, which aims at
determining how much the variation of the data can influence
the performance of a learning algorithm. Two sources of the
instability come from the sampling mechanism used to gen-
erate the input data and the noise in the input data, respec-
tively. The former is mainly investigated by the sampling
randomness, for example using the re-sampling methods
[77] of cross validation, jackknife [51], and bootstrap [18],
whereas the latter is usually referred to as the perturbation
analysis.

In [6], stability is taken as an avenue for proving the gen-
eralization performance of an algorithm. More specifically,
stability is a principled way of establishing bounds on the dif-
ference between the empirical and the generalization errors.
In statistical learning theory, Vapnik—Chervonenkis dimen-
sion (VC-dimension) is a measure of the capacity or com-
plexity of a statistical classification algorithm. It has been
proven that an algorithm having a search space of a finite VC-
dimension is stable in the sense that its stability is bounded
by its VC-dimension [35]. Therefore, Bousquet and Elis-
seeff [6] use the stability to derive the generalization error
bound based on the empirical error and the leave-one-out
error.

lasso [71] is known to have the stability problems [8].
Although its predictive performance is not disastrous, the
selected predictor may vary a lot. Typically, given two cor-
related variables, lasso only selects one of the two, at ran-
dom. In [80], Xu et al. prove that sparsity and stability are at
odds with each other. They show that sparse algorithms are
not stable: if an algorithm encourages sparsity, e.g., lasso,
then its sensitivity to small perturbations of the input data
remains bounded away from zero. Based on the uniform sta-
bility [6] properties, they have proven that a sparse algo-
rithm can have nonunique optimal solutions and is therefore
ill-posed.

Breiman [8] has shown that the unstable linear regres-
sion process can be stabilized by perturbing the data, get-
ting a new predictor sequence and then averaging over many
such predictor sequences. Thus, how to develop a stable fea-
ture selection model by the perturbing technique is an open
problem. Furthermore, Xu et al. also prove that the stabil-
ity bound of the elastic net [93] coincides with that of an ¢,
regularization algorithm and thus has the uniform stability.
Consequently, it is interesting to explore the stability of the
recent proposed sparse models, such as group lasso [§7], SDA
[15], and even the structured sparsity penalized regression
models.

6 Conclusion

This paper surveys some recent research work on hetero-
geneous feature selection, representation, and hashing for
images and videos after the introduction of sparsity con-
straints. The utilization of sparsity in images and videos
make multimedia understanding and retrieval interpretable.
However, how to define the intrinsic spatial-temporal struc-
ture in images and videos and then to apply an appropri-
ate sparse penalty is still an open problem for multimedia
research.
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