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Abstract SIFT-based methods have been widely used for
scene matching of photos taken at particular locations or
places of interest. These methods are typically very time
consuming due to the large number and high dimensional-
ity of features used, making them unfeasible for use in con-
sumer image collections containing a large number of images
where computational power is limited and a fast response is
desired. Considerable computational savings can be realized
if images containing signature elements of particular loca-
tions can be automatically identified from the large number
of images and only these representative images used for scene
matching. We propose an efficient framework incorporating
a set of discriminative image features that effectively enables
us to select representative images for fast location-based
scene matching. These image features are used for classify-
ing images into good or bad candidates for scene matching,
using different classification approaches. Furthermore, the
image features created from our framework can facilitate the
process of using sub-images for location-based scene match-
ing with SIFT features. The experimental results demonstrate
the effectiveness of our approach compared with the tradi-
tional SIFT-, PCA-SIFT-, and SURF-based approaches by
reducing the computational time by an order of magnitude.
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1 Introduction

Scene matching refers to the process of matching a region in
one image with the corresponding region in another image
where both image regions are part of the same scene. Since
most digital media currently being captured and the billions
of earlier digital images taken before the availability of GPS
lack detailed location information, scene matching plays an
important role in determining location information. In the
absence of GPS information, the location at which a photo-
graph was captured can be described in terms of the stationary
background [5]. Earlier work on scene matching involved
computing correlation between images [8], local invariant
features [20], and spatial intensity gradients of the images
[16]. In [20], Schaffalitzky et al. present an effective approach
for matching shots that are images of the same 3D scene in
a film. The wide baseline method represents each frame by
a set of viewpoint invariant local features. However, in addi-
tion to being very computationally intensive, these methods
cannot handle the large variations in scale, lighting, and pose
encountered in consumer images.

More recently, there has been a lot of work on matching
feature-rich complex scenes using scale-invariant features
(SIFT) [15] and faster feature extractions such as PCA-SIFT
and Speeded Up Robust Features (SURF) [1,11]. Further-
more, semantic information has been considered in scene
matching [13,17,19,23]. In the work [19], a combination
of query-by-visual-example (QBVE) and semantic retrieval
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(SR) has been adopted for image retrieval, where images are
labeled with respect to a vocabulary of visual concepts, as is
customary in SR. In [23], a color SIFT descriptor for scene
matching is proposed to explore the invariant properties and
distinctiveness with respect to photometric transformations.
In [18], Quattoni and Torralba proposed a prototype that can
successfully combine both local and global discriminative
information. However, these techniques have been mainly
used to match and register the entire scene for every image,
which is a time-consuming process when a large image data-
base is involved. To avoid comparing each pair of images in
the database to detect scene matches, a method for selecting a
few representative images that can be matched reliably based
on their image characteristics is very desirable.

The criteria used for choosing representative images from
a group of images (or a keyframe from a segment of video)
are often tied to image quality [12] and the best similarity
with other images in the group. The main difference between
our work and Ke et al. [12] is that the work in [12] mainly
focuses on the determination of the quality of photos, while
our work addresses the challenging problem of selection of
good images for the purpose of scene matching. Practically,
a good-quality photo may not be the best candidate for scene
matching. For instance, photos that contain large homoge-
nous regions such as water, grass, and sky could be of high
quality but they are usually poor for scene matching since
they lack specific features that could determine the locations.
Also, photographs of people, which constitute a large portion
of consumer image databases, are not good candidates for
scene matching if the people in the picture are occluding the
background, or if the background is plain, whereas these char-
acteristics usually result in a good quality portrait. Also, the
complexity of various scenes limits the usefulness of apply-
ing traditional scene matching with SIFT features directly.
These factors motivated our effort to produce an effective
framework for fast selection of good candidate images for
location-based scene matching.

In this work, we address these issues by proposing an
efficient framework that explores image features that eval-
uate images in terms of their value for scene matching in
consumer image collections. The proposed framework iden-
tifies images with good matching opportunities for SIFT and
SIFT-like features. Typically, good images for this applica-
tion contain distinctive elements with complex edge struc-
tures. Since our goal is computational savings, the selection
process needs to be extremely fast when compared with the
scene matching task, and our image features are designed
following this criterion. These image features are incorpo-
rated into the framework for selecting representative images
appropriate for the scene matching task. Further reduction
in computation time is achieved by extracting sub-images
containing regions of interest for scene matching. As far as
we know, this is the first time that a generalized framework

for selection of representative images for consumer image
collection is proposed, which is motivated by the appropri-
ateness of the images for scene matching.

The rest of the paper is organized as follows: in Sect. 2, we
present a framework for selection of representative images.
In Sect. 3, we investigate the feature representation for our
framework. Given the extracted features, in Sect. 4 we discuss
the classification algorithms relying on the extracted features.
The comparison of the performance of our approach with
traditional approaches is demonstrated in Sect. 5. We give a
brief summary and conclusion in Sect. 6.

2 Our framework

A large number of images in consumer image collections are
not suitable for scene matching. Earlier work on consumer
collections [5] observed that only about 10% of the images
present in co-located events can actually be matched using
scene matching techniques. The main reasons for this are
(1) The background elements that can be used for matching
images captured at the same location are mostly occluded by
the people in the images. (2) The images are blurry due to
focusing problems or camera and/or object motion, resulting
in failure of SIFT feature point detection. (3) The images con-
tain few meaningful edges and specific objects, e.g., images
with natural scenes, or generic objects such as cabinets and
furniture common to many locations. Our goal is to select
the best candidate images for successful SIFT-based scene
matching, while eliminating the images with the above-
mentioned problems.

An event clustering algorithm described in [14] is used to
segment a user’s collection into events and sub-events using
temporal and color histogram information, where events are
very likely to have been captured at the same location because
of their temporal proximity. Our approach to selecting the
best images for SIFT-based scene matching can be applied
to select a few representative images from each event, thus
greatly reducing the number of images that need to be
matched in the collection.

We formulate the problem of selecting representative
images as a fast binary classification problem—the separa-
tion of good representative images from unsuitable images
in consumer image collections, using features that can dis-
criminate between the two classes. This allows us to filter
out a large fraction of the images in a collection, resulting
in a framework in which scene matching can be performed
efficiently. Figure 1 shows a block diagram of our approach.
The output of our method is a shortlist of images that are suit-
able for SIFT-based scene matching, and sub-image regions
corresponding to these images where scene matching should
be performed.
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Fig. 1 Block diagram of our
framework

3 Relevant feature extraction

This section describes the main features we have developed to
distinguish between good candidate images for scene match-
ing and other images in the collection.

3.1 Occlusion extent

Based on evidence gathered from a large number of con-
sumer images, it can be seen that the occlusion of objects of
interest due to the presence of people is an important fac-
tor in determining whether the image is a good candidate
image for scene matching. Obviously, the higher the extent
of the occlusion, the smaller the probability that the image
can be matched with other images from the same scene by
using unique objects present in the scene. Typically, a large
fraction of consumer images contain people. To measure the
occlusion extent, we determine the approximate positions of
people in the images using face detection. Specifically, we
estimate the position of people from the position and size
of the facial circle (the center and the radius) output by a
face detector. We use the face detection algorithm by Jones
et al. [9] due to its faster implementation, utilizing integral
images and a cascade of classifiers. It should be noted that
human detection approaches that could yield higher accuracy
in detecting people in images in some domains, while they
may not achieve the speed of [9]. However, for consumer
image collections, in many cases the torsos are occluded by
other people or objects in the scene, while the faces are most
likely unobstructed in the photos. Therefore, the face detector
has better detection performance as compared with human
detectors in our application. We rely on bagging [2] to reduce
the false detection and improve the accuracy of face detec-
tion. Particularly, in three runs of the detector using different
parameters, if the detection results satisfy |x(i) − x( j)| <

5, |y(i)− y( j)| < 5, |r(i)− r( j)| < 5, where i, j = 1, 2, 3,
i �= j, x(i), y(i) are the coordinates of the center of the face,

and r(i) is the radius of the circle, we consider the detection
to be correct. We choose the regions with the highest vote as
the regions where faces are detected. Subsequently, we esti-
mate the area of the regions of the human body by making
reasonable assumptions that (1) the width of the shoulder is
approximately twice as long as the width of the head and (2)
the length of the occluding part of the body in the image is
approximately four times as long as the length of the head.
We obtain these priors by averaging the results over 3,000
images with different postures of people, including standing
and sitting.

We compute the occlusion extent k1 as

k1 = P

Q
, (1)

where P is the total number of occluded pixels and Q is
the total number of pixels in the image. Figure 2 illustrates
the occlusion extent for some sample consumer images. It
should be noted that there could be some situations where
people are overlapping with each other, which could make
our estimates slightly larger than the true value. However,
from the experimental results, it does not have much influ-
ence on our classification results. Furthermore, this problem
can be solved by first sorting the human face by x and y coor-
dinates and then determining the overlap regions of adjacent
human faces.

3.2 Compactness of edges

The success of scene matching is highly dependent on the
presence of spatially compact regions with dense edge struc-
tures corresponding to unique objects in the image. There-
fore, we propose a feature that estimates the number of
regions of interest for scene matching in any candidate image.
The larger the number of such regions contained in the image,
the higher the probability that the image is a good candi-
date for scene matching. In this paper, we consider the edge
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Fig. 2 Visual illustration of occlusion extent for some example images
from consumer collections

Fig. 3 Visual illustration of the regions of interest for scene matching
estimated in some example images from consumer collections

information [7,24] as the most salient information for deter-
mining regions of interest for scene matching. This choice
enables a fast implementation—the edge clustering method
has also been shown to be an efficient method for fast object
detection [4]. In this work, we evaluate the number of possi-
ble regions of interest by first clustering the edges spatially
and then computing the variance of each cluster. If the vari-
ance of each cluster is smaller than a threshold, we consider
the cluster to be a region of interest. The steps in this process
are shown in Fig. 4. Since the edges of textured regions such
as grass are usually not compact enough (such as in Fig. 3a),
these regions can be filtered out by thresholding based on the
variance of the cluster.

To remove the small variations in pixel values and false
edges due to illumination differences and textured regions,
we pre-process the images with Gaussian filters to smooth
the images. Subsequently, Canny detectors are applied to
the smoothed images. We subtract the edges contributed by
people in the images from the total edge map by combining

Fig. 4 Steps in the extraction of compactness of edges feature

the results from face detection and people detection discussed
earlier. By doing this, it is more likely that the remaining
edges are mostly from non-people objects in the image.

Once we obtain the edge map for objects in the image,
we utilize hierarchical clustering [10], where agglomerative
methods proceed by a series of fusions of the n sub-block
of edges into objects where each of the sub-block of edges
is of size 3×3. This method can handle the uncertain number
of regions in the images (unlike K-means clustering [6] where
the number of regions need to be pre-specified). The detailed
hierarchical clustering algorithm is as follows:

1. Initialize c = n, Di = {xi } where c is the current number
of clusters, n is the number of sub-block of edges, Di

represents the i th cluster and xi represents the i th sample
which belongs to the cluster Di .

2. Decrease c by 1 through finding nearest clusters, say, Di

and D j , merge Di and D j .
3. Repeat Step 2 until the distance between nearest clusters

dmean(Di , D j ) = ‖mi −m j‖ (where mi and m j are mean
value vectors for the clusters Di and D j ) is larger than
the threshold of the average distance between objects in
images learned from the training dataset, which is about
one fourth of the length of the image. Return the current
number of clusters and the corresponding clusters c, for
regions of interest.

We compute the feature compactness of edges, k2, as the
number of estimated regions of interest, which is defined
explicitly as

k2 = |c : Var(c) < threshold|, (2)

where c is the number of clusters detected by hierarchical
clustering, the outside || denotes cardinality, and Var(c) rep-
resents the variance of the cluster c. As shown in Fig. 3 (where
regions of interest are highlighted with bounding boxes), in
most of the cases, our method based on compactness of edges
can identify regions of interest that are relevant for scene
matching. For instance, in Fig. 3a, where a person is fea-
tured against a grassy background, we correctly determine
that there is no specific region fitting our matching needs.
In Fig. 3c, there are two regions identified: table and basket.
In Fig. 3d, although the background is complicated, the use
of our feature enables us to eliminate the false positives and
correctly identify that there are no regions of interest in this
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Fig. 5 Steps in the extraction of the blur extent feature

image. The objects that are present (flowers, lake, vegetation)
are not suitable for SIFT-based scene matching. These objects
are filtered out at different steps of our method. The strength
of edges from flowers is weak and they are removed dur-
ing the preprocessing stage when smoothing with Gaussian
filters. The variances of the edge locations for the fence, lake
or trees are larger than the threshold. Therefore, they are also
removed in the process of computing the compactness of
edges feature.

3.3 Blur extent

Some of the consumer images are of poor quality due to lack
of focus and motion blur, and not suitable as candidate images
for scene matching. As we know, edges can be generally
classified into four types: Dirac-structure, Astep-structure,
Gstep-structure, and Roof-structure. We rely on the approach
described in Tong et al. [22] to determine the blur extent
of images. Typically, if the blur occurs, both of the Gstep-
structure and Roof-structure tend to lose their sharpness as
described in [22]. Figure 5 shows the steps in determining the
types of edges. The detailed steps are provided as follows:

1. Perform Harr wavelet transform to the original image
with decomposition level 3, which results in a hierarchi-
cal pyramid structure.

2. Construct the edge map in each scale by

Emapi (m, n) =
√

L H2
i + H L2

i + H H2
i , (3)

where i = 1, 2, 3; m and n are the coordinates of rows
and columns in the edge map.

3. Partition the edge maps and find local maxima in each
window, with window sizes of 2 × 2, 4 × 4, and 8 × 8,
respectively.

4. We denote the results from step (3) as Emaxi (i = 1, 2, 3).
We compute the percentage of Gstep-structure and Roof-
structure edges to describe the blur extent. Typically, if
Emax1(m, n) > threshold or Emax2(m, n) > threshold
or Emax3(m, n) > threshold, the edge at (m, n) is a
Dirac-structure or Astep-structure edge.

5. If Emax1(m, n) < Emax2(m, n) < Emax3(m, n), (m, n)

has a Roof-structure or Gstep-structure edge.

Fig. 6 Visual illustration of the blur extent for some example images
from consumer collections

If Emax2(m, n) > Emax1(m, n) and Emax2(m, n) >

Emax3(m, n), (m, n) has a Roof- structure edge.

The blur extent k3 is computed as

k3 = N1

N2
, (4)

where N1 denotes the sum of the number of Gstep-structure
and Roof-structure edges, N2 denotes the total number of
edges. Figure 6 provides visual illustration of the blur extent
for some example images from consumer image collections.
Figure 6a and b show blur caused by camera motion, where
the proposed method computes a blur extent of 0.75 and 0.77,
respectively. For two out-of-focus, blurred images shown in
Fig. 6c and d, the proposed method also effectively computed
the blur extent as 0.90 and 0.92, respectively.

There are other features that could further improve the
accuracy of selections, such as contrast, brightness, color
histogram, and the camera focal length. However, the overall
improvement is not very significant since these affect only a
small portion of images. For example, brightness is important
when the pictures are taken during the night. Therefore, in our
experiments, we mainly present results using the three most
discriminative features described in detail in this section.

4 Classification algorithms

We explore a number of classification strategies for group-
ing images into two categories—good candidates for scene
matching and poor candidates for scene matching—based on
the features we have described in the previous section.
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4.1 Naive Bayesian framework

Given the list of features, k, one way of integrating them into
one unified framework is to use the naive Bayesian frame-
work [12]. Let us assume we consider the first three most
discriminative features (it can be easily extended to the case
of utilizing more features). The overall quality metric accord-
ing to Bayes rule is defined as

kall = P(good|k1, k2, k3)

P(bad|k1, k2, k3)

= P(k1, k2, k3|good)P(good)

P(k1, k2, k3|bad)P(bad)
. (5)

Assuming independence of the features given the class,

kall = P(k1|good)P(k2|good)P(k3|good)P(good)

P(k1|bad)P(k2|bad)P(k3|bad)P(bad)
. (6)

We can choose equal numbers of good and bad candidate
images, so that P(good) and P(bad) can be dropped from
the equations.

4.2 Adaptive boosting classifier

The goal of boosting is to improve the accuracy of any given
learning algorithm. In boosting, a classifier is first created that
has greater-than-average accuracy on the training dataset, and
then new component classifiers are added to form an ensem-
ble whose joint decision rule has arbitrarily high accuracy on
the training set. In such a case, the classification performance
is said to have been “boosted”. There are a number of varia-
tions on basic boosting. The most popular, AdaBoost (from
“adaptive boosting” [21]), can also be effectively used in our
problem since AdaBoost is adaptive in the sense that it allows
the designer to continue adding weak learners until some
desired low training error has been achieved. In AdaBoost,
each training pattern receives a weight that determines its
probability of being selected for a training set for an individ-
ual component classifier. If a training pattern is accurately
classified, then its chance of being used again in a subse-
quent component classifier is reduced. On the contrary, if the
pattern is not accurately classified, then its chance of being
used again is raised. The major steps of the AdaBoost algo-
rithm are outlined as follows:

1. We begin by initializing D = {x1, y1, . . . , xn, yn} where
xi are patterns and yn are their labels in D, the maxi-
mum number of iterations kmax , and the weights W1(i) =
1/n,∀i = 1, . . . , n.

2. In each iteration, we train weak learner Ck using D sam-
pled according to Wk(i). If we denote Ek as the training
error of Ck measured on D using Wk(i), the updated
weight is determined by

Fig. 7 Classification error with AdaBoost relying on two features
(occlusion and blur extent) and three features (occlusion, blur extent,
and compactness of edges)

Wk+1(i) = Wk(i)

Zk
× e−αk ,

i f hk(xi ) = yi (CorrectlyClassi f ied)

Wk+1(i) = Wk(i)

Zk
× eαk ,

i f hk(xi ) �= yi (I ncorrectlyClassi f ied),

(7)

where the error for classifier Ck is determined with respect
to the distribution Wk(i) on which it was trained. Zk is a nor-
malizing constant computed to ensure that Wk(i) represents
a true distribution and hk(xi ) is the category label (+1 or −1)
given to pattern xi by component classifier Ck . The final clas-
sification decision of xi is based on a discriminant function
that is merely the weighted sums of the outputs given by the
component classifiers:

g(x) =
[kmax∑

k=1

αkhk(x)

]
. (8)

The classification decision for this binary case is then
sgn[g(x)], where the sign function is defined as sgn[g(x)] =
−1, when g(x) < 0, sgn[g(x)] = 1 when g(x) > 0.
AdaBoost provides a good way for us to assign proper weights
to these different features. In our case, it is entirely possi-
ble that the image that has less occlusion is heavily blurred.
The weak classifiers used are constructed from single fea-
tures using a Bayesian classifier based on a unitary Gaussian
model. Figure 7 shows the performance when using
AdaBoost with two and three features. It can be seen from
Fig. 7 that by incorporating more features, the classification
based on the AdaBoost algorithm is able to improve the clas-
sification accuracy significantly.
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Fig. 8 Comparison of classification accuracy with single feature for
indoor and outdoor event

4.3 Classification tree-based approach

Another classifier that can be used in this problem is a rule-
based classification tree [3]. We adapt the widely used CART
(classification and regression trees) method. CART provides
a general framework that can be instantiated in various ways
to produce different decision trees. The fundamental princi-
ple underlying tree creation is that decisions that lead to a
simple, compact tree with few nodes is preferred. Therefore,
we seek a property query T at each node that makes the data
reaching the immediate descendent nodes as “pure” as pos-
sible. There are various mathematical measures of impurity;
in this paper we define the impurity as the entropy impurity
(information impurity):

i(N ) = −
∑

j

P(ω j ) log2 P(ω j ), (9)

where P(ω j ) is the fraction of patterns at node N that are in
category ω j . By the property of entropy, if all the patterns are
of the same category, the impurity is 0. Given a partial tree
down to node N , we choose the value for the property test
T , which decreases the impurity as much as possible. The
decrease in impurity is defined by

Δi(N ) = i(N ) − PLi(NL) − (1 − PL)i(NR), (10)

where NL and NR are the left and right descendent nodes,
i(NL) and i(NR) are their impurities, and PL is the frac-
tion of patterns at node N that will go to NL when property
query T is used. Therefore, the “best” query value s is the
choice for T that maximizes �i(T ). For simplicity, in this
paper, we generally restrict our discussion to the monothetic
tree where each query is based on a single property. Figure 8
shows the relative strengths of the features when applied to
indoor and outdoor images. It is not surprising that the occlu-
sion extent plays the most important role for indoor events
(as shown in Fig. 8). For outdoor events, blur extent dom-
inates over other features, which can be mainly attributed

Fig. 9 Classification tree used for identifying good candidate images
for scene matching

to moving objects in the outdoor events. Figure 9 shows
the structure of the classification tree constructed based on
experiments using 2,200 images. The thresholds in Fig. 9 are
determined by maximization of the drop in impurity. There-
fore, this method can save significant computational time
by eliminating bad candidates early while maintaining high
classification accuracy.

5 Experimental results

5.1 Selection of ground truth

We collected the training and test data by using the soft-
ware described in [5], which performs the core step of deter-
mining whether there is a scene match between two images.
The matching is based on SIFT features, subject to a set
of constraints that reduce false matches. Positive examples
for our application are images that match at least one other
image captured at the same scene, and negative examples
are images that could not be matched to any other image
from the same scene as the negative example. We selected
3,000 positive example images (images producing matches)
and 3,000 negative example images (images that could not
be matched with other images). The testing database con-
tains images from consumer collections, mainly depicting
different people-based activities such as family get-togethers,
playing ballgames, etc., where there are around 35% blurred
images and around 80% images with complex edges from
people or unique objects such as building, or pictures on the
wall. For the testing stage, fivefold cross validation is used.
For each test, 20% of the images are used as test images and
the other 80% serve as training images. In the naive Bayesian
framework, we assume each feature has a Gaussian distribu-
tion and the mean and variance can be computed during the
training stage.
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Fig. 10 Comparison of the classification accuracy of naive Bayesian
classifier, adaptive boosting, and classification tree for the combination
of different features

5.2 Simulation results and comparison

Figure 10 shows the classification performance with the naive
Bayesian classifier, adaptive boosting, and classification tree
for the combination of the three features. From Fig. 10, it can
be seen that the AdaBoost algorithm with Bayesian classifiers
provides the best performance when the prior information is
known. When specific prior information about the appropri-
ate form of classifier is lacking, the tree-based approach can
yield classifiers with accuracy comparable to other meth-
ods. Figure 11 shows the precision and recall curves for the
matching process, where the blue curve is the result of match-
ing using all the images and the red curve represents the
matching result with our method. Figure 12 provides visual
illustrations of the SIFT-based scene-matching results using
selected good representative images with our system, which
demonstrates the effectiveness of our approach. Figure 13
shows more examples of good representative images with the
proposed approaches. In the 25 good representative images
chosen by our system, only 2 are false positives. The ones
with bounding boxes in Fig. 13 are false positives. These false
positives are mainly due to the presence of non-frontal faces,
since the face detector is not very effective in this situation.
We also show some of the images that are not suitable for
scene matching with SIFT features in Fig. 14. All of them
are classified as bad candidates by our algorithm.

In Table 1, we show the distribution of good and bad can-
didate images among the different scene classes using the
classification tree, naive Bayesian classifier, and AdaBoost
for classification, respectively. As shown in Table 1, the scene
“BeachFun” has the largest percentage of bad images for
matching purposes since it contains large areas of water. We
compare the performance of our framework with SIFT [15],
PCA-SIFT [11], and SURF [1] in terms of computational
time. Like SIFT, PCA-SIFT [11] descriptors encode the

Fig. 11 Precision and recall curves for the matching process using all
images (blue), and using the selected good candidate images with the
proposed AdaBoost classifier

Fig. 12 Examples of successful scene matching with our selected can-
didate images

Fig. 13 Good representative images for fast scene matching with SIFT
features, with false positives labeled
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Fig. 14 Some of the images that are not suitable for fast scene matching
with SIFT features, detected by our algorithm

salient aspects of the image gradient in the feature point’s
neighborhood. Instead of using SIFT’s smoothed weighted
histograms, PCA-SIFT applies Principal Components
Analysis (PCA) to the normalized gradient patch. It is demon-
strated that the PCA-based local descriptors are more distinc-
tive, more robust to image deformations, and more compact
than the standard SIFT representation. SURF (Speeded Up
Robust Features) [1] is a faster performing scale- and
rotation-invariant interest point detector and descriptor.
SURF approximates or even outperforms previously pro-
posed schemes with respect to repeatability, distinctiveness,
and robustness, yet can be computed and compared much
faster, which is achieved by (1) relying on integral images

for image convolutions; (2) building on the strengths of the
leading existing detectors and descriptors (using a Hessian
matrix-based measure for the detector, and a distribution-
based descriptor); and (3) simplifying these methods to the
essential steps.

Table 2 shows the experimental results for finding scene
matches for a collection of 3,000 images covering 46 events
from consumer image collections. The precision and recall
curves are evaluated in Fig. 15 with the proposed methods
and other methods (SIFT, PCA-SIFT and SURF), where we
demonstrate that the proposed methods significantly outper-
form other methods. We decompose the total computational
time Ttotal of our methods into two terms:

Ttotal = Tselect + Tmatch, (11)

where Tselect denotes the computational time of selecting
good candidates and Tmatch denotes the computational time
of SIFT matching of selected images. We utilize the soft-
ware developed in [5] to evaluate the performance of this
method using actual consumer images where using a novel
clustering algorithm with intelligent filtering steps, consumer
images with cluttered background and common objects can
be matched effectively. The details for the software can be
found in [5].

In Table 2, the first three rows are the computational time
and accuracy with the traditional approaches such as SIFT,
PCA-SIFT, and SURF. The fourth row represents the com-
putational time and accuracy obtained using SIFT with the
modified matching process described in [5]. The last three
rows are the computational time and accuracy with our selec-

Table 1 The distribution of good and bad candidate images among different scene classes using the classification tree, naive Bayesian classifier,
and AdaBoost classifiers, respectively

Event classes BeachFun Graduation Wedding Birthday party

Percentage of good images 3%/5%/5% 7%/8%/7% 11%/16%/15% 9%/11%/9%

Event classes Urban tour YardPark Family time Dining

Percentage of good images 26%/30%/27% 16%/19%/18% 9%/11%/11% 19%/21%/21%

Table 2 Comparison of search time and matching accuracy for traditional methods and our methods

Total time (s) Selection time (s) Matching time (s) Accuracy (%)

SIFT 7.425 × 104 0 7.425 × 104 75.2

PCA-SIFT 4.35 × 104 0 4.35 × 104 72.5

SURF 2.37 × 104 0 2.37 × 104 68.3

SIFT with modified matching process [5] 1.56 × 104 0 1.56 × 104 79.7

Classification Tree+SIFT 1,288.6 732.5 556.1 85.9

Bayesian Classifier+SIFT 2,536.5 1,952.6 583.9 83.5

AdaBoost+SIFT 2,876.2 2,234.9 641.3 92.6
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Fig. 15 Comparison of precision and recall curves for traditional meth-
ods and our methods

tion strategy using different classification methods. With the
classification tree, 376 representative images are selected out
of the 3,000 images, 457 representative images are selected
using naive Bayesian classifiers, and 429 representative
images are selected using AdaBoost, which corresponds to an
average reduction 86, 82, and 83% in SIFT features, respec-
tively. It can be seen that our approach can save computational
time by an order of magnitude for scene matching. Compared
with the result using modified matching process [5], the pro-
posed approach achieves significant improvement which can
be mainly attributed to the selection of representative images.
Moreover, the proposed approach can achieve high accuracy
with average precision 92.6% in matching with AdaBoost,
which is significantly better than using SIFT (75.2%), PCA-
SIFT (72.5%), SURF (68.3%), and the modified matching
process [5] (79.7%), where we compute the classification
accuracy by comparing the selected good candidates to the
ground truth (example images that produced correct scene
matches). Since human segments are deleted from the good
matching candidates before the actual SIFT matching, the
matching time reduction of the methods utilizing the pro-
posed pre-processing comes from two source: (1) reduced
number of matching candidate, and (2) reduced amount of
image pixels after human deleted. In the experiment, we iden-
tified that 78% of time savings comes from the reduced num-
ber of candidates to be matched, and 22% of the time savings
comes from the reduced number of image pixels remain-
ing after deleting the pixels corresponding to humans in the
image.

5.3 Further speed improvements using sub-images

In order to further speed up the process of scene match-
ing, we propose to use sub-images for scene matching as

the last step of the proposed algorithm. Since the computa-
tional time of SIFT feature matching depends on the size of
the input images, down-sampling could be one way to further
speed up the scene matching with SIFT features. However,
down-sampling might affect the quality of the images and
therefore performance accuracy cannot be guaranteed. Here
we propose to use the idea of sub-images for scene match-
ing with SIFT features. If we could use only a portion of
the image that contains the most important information for
scene matching, we could reduce the search space and further
reduce the computational time for scene matching. However,
in practice, not every candidate is suitable for segmentation
into sub-images. For example, images with features that are
spatially concentrated tend to be easier to segment. On the
contrary, images with the features that are distributed may not
be easy to segment. The computational savings due to the use
of sub-images is reported separately since the extent of sav-
ings is data dependant. We propose the following scheme to
evaluate whether an image is suitable for segmentation or
not:

1. Once we obtain the edge map from the Canny detector
from the previous feature extraction process, we compute
the histogram of the edges in each image horizontally and
vertically. In each dimension, we use N = 20 bins for
computing the histogram, where the horizontal or ver-
tical axis of the histogram represents the value of the
summation of edge map in rows or columns.

2. For each image, we record the size of the smallest window
that covers 80% edges from 20 bins both horizontally and
vertically. We denote them as L1 and L2.

3. We compute L = L1L2 and sort L for all of the images.
We select the images that satisfy L < L0 and consider
them suitable for segmentation into sub-images, where
L0 is the threshold and L0 is set to be 80 in the experiment
due to its best performance.

If an image is good for segmentation, we use the bounding
box (computed from step 3) to split the image into sub-images
after removal of human regions in the image. Otherwise, we
use the whole image for scene matching. We further measure
the accuracy of scene matching by the total number of cor-
responding feature point matches. The accuracy is a number
between 0 and 1, which is computed as the ratio between the
number of corresponding feature points using sub-images
and the number of corresponding feature points when using
the entire images. From our experiments, the value of thresh-
old L0 selected is quite important in determining computa-
tional time. If the threshold is too large, the computational
time savings will be insignificant. If the threshold is too small,
the accuracy of scene matching will decrease due to loss of
meaningful features.
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Fig. 16 Selecting a suitable sub-image for speeding up scene match-
ing: a Segmentation of the image covering 80% edges. b Edge map by
Canny edge detector. c Vertical edge histogram of the image. d Hori-
zontal edge histogram of the image

We experimentally determine the threshold and then use
the sub-images for scene matching to further reduce the com-
putational time. Figure 16 shows an example of a sub-image
selected from an image considered suitable for segmentation,
where Fig. 16 provides the edge map by Canny edge detector,
and Fig. 16c and d illustrates the vertical and horizontal edge
histograms of the image, respectively. Table 3 demonstrates
the tradeoff between accuracy, time savings, and the per-
centage in the number of SIFT features using sub-images for
scene matching with different thresholds. The time taken for
segmentation has been included in the computational time.
The AdaBoost classifier is used to determine good candidate
images. segmentation with a threshold of 80 provides bet-
ter accuracy (0.946) than using the whole image (0.926) as
shown in Table 3. Therefore, we select 80 as the threshold in
our experiments, and we find that using a single sub-image
with this threshold could further save about 16.7% the com-
putational time in processing our database of 3,000 images
when compared with using the entire images for scene match-
ing. Meanwhile, it still maintains high matching accuracy. We
show two examples of using sub-images for scene matching
in Fig. 17.

Fig. 17 Examples of using sub-images for scene matching with
AdaBoost+SIFT

6 Conclusion

In this paper, we present an efficient framework for selecting
good candidate images for scene matching using SIFT-
like features. We propose a set of discriminative image fea-
tures that are relevant to successful scene matching including
occlusion extent, compactness of edges, and blur extent. The
AdaBoost algorithm based on Bayesian classifiers and the
classification tree method are proposed to integrate these fea-
tures, creating a binary classifier to determine if an image is a
good or bad candidate for scene matching. When prior infor-
mation about distribution of images is known, the
AdaBoost algorithm tends to provide better performance.
When the prior information is lacking, the classification based
on a tree structure is able to yield comparable performance.
The proposed approach is an order of magnitude faster than
scene matching using the traditional approach of comparing
images pair-wise on large consumer image databases. Further
improvement in speed is achieved when scene matching is
performed on sub-images extracted from images that contain
compact regions of interest.

The experimental results demonstrate the superiority of
our approach in terms of saving significant computational
time while achieving high accuracy. Future work, designed
to further improve the accuracy of selection of candidate
images, will focus on detection of non-frontal faces for better
accuracy of feature computation and the use of event infor-
mation to guide the choice of candidate images.

Table 3 Tradeoff between accuracy, time savings, and the reduction in the number of SIFT features when using sub-images for scene matching

Threshold 35 40 45 50 55 60 65 70 75 80

Accuracy 0.75 0.78 0.803 0.827 0.851 0.857 0.863 0.892 0.91 0.946

Time savings (%) 36 34.5 31.2 29.7 26.8 24.5 22.3 21.7 18.2 16.7

Reduction in no. of features (%) 23 20.5 17.2 15.8 13.7 11.6 10.3 9.7 8.6 8.2
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