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Abstract A critical issue in shape retrieval systems is that
when a user submits a query shape, some shapes in the data-
base are returned relatively often, while some are returned
only when submitting specific queries. Intuitively, this phe-
nomenon yields suboptimal retrieval accuracy. In this paper,
we address the shape retrieval problem by casting it into
the task of identifying “authority” nodes in an inferred sim-
ilarity graph and also by re-ranking the shapes. The main
idea is that the average similarity between a node and its
neighboring nodes takes into account the local distribution,
and therefore, helps modify the neighborhood edge weight,
which guides the re-ranking. The proposed approach is eval-
uated on both 2D and 3D shape datasets, and the experi-
mental results show that the proposed neighborhood induced
similarity measure significantly improves the shape retrieval
performance. Moreover, the computational speed of the
proposed method is extremely fast.
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1 Introduction

Searching shapes more accurately and faster is one of the
most important goals in computer vision. In recent years,
several approaches have been proposed to optimize shape
retrieval systems, from designing smart descriptors [1-4], to
explore suitable similarity measure methods [5]. However, in
almost all these systems, the following phenomenon exists:
when a user submits a query, some shapes in the database
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are returned relatively often, while some are returned only
given certain special queries. For example, in Fig. 1, the sta-
tistics of retrieval results using shape contexts (SC) [1] on
the MPEG-7 dataset [4] are depicted. There are 70 classes
with 20 shapes for each. The frequency of a given shape is
displayed as the sum of appearing times in the top 40 rank-
ings when each shape takes the role of query. In Fig. la,
the appearing frequency is shown, where the red points dis-
play the proper rate and the blue points represent the shapes
that are returned too often or too rare. Obviously, there is
a considerable number of shapes appearing with abnormal
times. In particular, it can be observed that the ‘device’ shape
shown in Fig. 1b is returned 156 times, but the ‘glass’ shape
shown in Fig. lc is returned only four times. This observa-
tion strongly suggests that shapes appearing with too many
or very few times will damage the overall retrieval result.

To tackle this problem, we propose the Neighborhood
Induced Similarity (NIS), which updates the original sim-
ilarity based on the neighborhood of a shape before the
final ranking. Traditional shape retrieval systems compute
the pair-wise similarity among shapes, from which a global
ordering can be derived. By separating ranking from similar-
ity measurement, one can leverage ranking algorithms to gen-
erate a global ordering. Just like existing re-ranking algorithm
for web page [6], image [7] and video [8] retrieval, our pro-
posed method also takes the similarity/dissimilarity/distance
matrix as the input, and outputs an optimized similarity
matrix for the final ranking.

However, the difference in our setting is that we aim
at eliminating the undesired phenomenon stated above. We
present an approach from the perspective of a graph repre-
sentation, where shapes are represented as nodes, and edges
encode the similarity between shapes. In this way, search-
ing shapes is formulated as label propagation on the graph.
Therefore, the edge value is very critical, since it guides the
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propagation behavior. In our method, we consider all the
nodes on the graph as a whole, and update the edge value
by the average similarity of nodes; further improving the
retrieval accuracy.

Extensive experiments on two standard 2D shape datasets,
one trademark image dataset and one 3D shape dataset show
that the returned frequency of shapes using our method is
more sound and logical than that of existing re-ranking algo-
rithms. Furthermore, our method provides an improved per-
formance accuracy and it is extremely fast. For example,
after the adoption of NIS with SC on the MPEG-7 dataset,
the returned frequency of the ‘device’ shape drops from 156
to 60, and the ‘glass’ shape rises from 4 to 44, leading to
improved retrieval rates from 86.79 to 90.49 %. The main
advantages of our proposed method may be summarized as
follows:

e It eliminates the abnormal frequency phenomenon for
shape retrieval with a graph representation.

e It provides an improved accuracy and offers a very com-
petitive time complexity.

e Itisuniversal to arbitrary shapes, both 2D and 3D shapes.

2 Previous work

Shape retrieval techniques may be broadly classified into two
main categories: traditional matching/retrieval methods and
similarity learning methods [5]. Belongie et al. [1] introduced
shape contest, which is a 2D histogram representation of a
shape. Ling and Jacobs [2] proposed the inner distance which
modifies shape contexts by considering the geodesic distance
between contour points instead of the Euclidean distance, and
thus significantly improves the retrieval and classification of
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articulated shapes. Wei et al. [11] extracted Zernike features
to describe trademark shapes. Trademark images are very
complex 2D shapes, and obtaining a high performance of
trademark retrieval is of paramount importance to the indus-
try. On the other hand, the Light Field Descriptor (LFD) [12]
has been reported in the literature as one of the most efficient
techniques for the retrieval of 3D rigid models [13]. Our
method is, however, general and not limited to any particular
similarity measure or representation.

Our work is partly motivated by Bai et al.’s work [5],
which adopts a graph-based transductive learning algorithm
to improve the shape retrieval results. The key idea of this
distance learning algorithm is to replace the original shape
distance with a distance induced by geodesic paths in the
manifold of known shapes. In other words, each shape is
considered in the context of other shapes in its class, and
the class need not be known. In this paper, we propose NIS
instead of Graph Transduction in a sense of improving the
shape retrieval results.

There has been a significant body of work on similar-
ity measures-based methods. Cheng et al. [14] proposed the
sparsity induced similarity measure to improve the label
propagation performance [15]. Jegou et al. [16] proposed
the Contextual Dissimilarity Measure (CDM) to improve
the image search accuracy through improving the symme-
try of the k-neighborhood relationship. Our work reassigns
edge weight in a fully connected graph by the average neigh-
borhood weight, which is in a similar spirit as CDM. Other
related works on similarity measure-based methods can be
found in [17]. More recently, Bronstein et al. [9] proposed
a non-rigid shape retrieval approach using bags of features
based on the heat kernel signature (HKS) [10], which is
defined as the diagonal of the heat kernel of the Laplace—
Beltrami operator on a manifold. HKS is a local shape
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descriptor that enjoys nice properties, including robustness
to small perturbations of the shape, efficiency, and invari-
ance to isometric transformations. However, HKS depends
on the time parameter, which needs to be set a priori. In addi-
tion, the discrete heat kernel requires eigendecomposition
of a typically large Laplace—Beltrami matrix. Thus, finding
the eigenvalues and eigenfunctions of such a large matrix is
often computationally expensive. In addition, the choice of
the vocabulary size, the time parameter, and the number of
eigenvalues/eigenfunctions can have an impact on the per-
formance of the HKS-based retrieval algorithm.

3 Neighborhood induced similarity measure

In traditional shape retrieval systems, a user usually employs
some distance function to compute the pair-wise similarity
between two shape features, and assumes that the more simi-
lar two shapes are, the smaller their difference is. For a given
query, these systems rank the shapes in the dataset as a list
according to the pair-wise similarity, and present to the user
several top rankings in the returned list.

3.1 Problem formulation

To measure the number of returned times of a shape in a given
dataset, we first introduce the concept of appearing frequency
of a shape. Suppose there are N shapes in a dataset, and let
us consider the top ¢ ranking shapes R;(n) in the returned
list L(n) of a query shape Q,,, 1 < n < N. Obviously, the
cardinality |R;(n)| = t of the set R;(n) is constant within
the ¢-highest ranking framework. The appearing frequency
of Q, is then defined as follows:

N
fay=>>" &, (1

i=1 jeR:(n)
where
1, if Q, is the j-th returned shape
8i,j = of the query Q; 2)

0, otherwise

We can observe that some shapes have high frequency
rate, while others are returned only when submitting specific
queries. These shapes are referred to as over-returned shapes
and never-returned shapes, respectively, which are defined
for a given neighborhood size. Both of them are considered
abnormal shapes or ‘bad shapes’ in a shape retrieval system.
Our goal is to decrease the number of these abnormal shapes.
In other words, we hope that the frequency rates of each shape
in the dataset would be the same constant which is relative
to |R;(n)|.

The main idea of our proposed method is that we would
like the k-neighborhoods to have a similar distance in order
to approach the same frequency rate.

3.2 Proposed neighborhood induced similarity algorithm

Let D = (d;;) be a distance matrix computed by some shape
function. We formulate the shape retrieval problem as a form
of propagation on a graph, where a node’s label propagates
to the neighboring nodes according to their proximity. In this
process, we fix the label on the query shape. Thus, the query
shape acts like a source that pushes out the label to other
shapes. Intuitively, we want shapes that are similar to have
the same label.

We create a graph G = (V, £) where the node set V rep-
resent all the shapes in the dataset, both query and the others.
The element of the edge set £ represent the similarity between
nodes. We propagate the labels through the edges. Larger
edge weights allow labels to travel through more easily. The
propagation process stops when a user-specified number of
nodes are labeled. Likewise, the frequency of anode v; € Vis
defined as the sum of the labeled times after each node in the
graph propagates its label to its neighborhood. Interestingly,
we find that the frequency of a node is equal to the degree of
the node if we cut off the edges that no label travels. A sub-
graph of the newly obtained graph Gy includes some dense
graph Ggense and sparse graph Ggparse. Obviously, Ggense
consists of nodes with high frequency (or degree) Vhgn, and
G sparse consists of nodes with low frequency Viow. Viewed in
this fashion, our target is to obtain a well-distributed graph.

Now assume that the graph is fully connected with the
following weights computed by a Gaussian kernel:

dij
w(vi, v;) = exp (—a—;) A3)

where « is a bandwidth hyper-parameter and it is determined
empirically. In the sequel, we set « to 100.

The k-nearest neighbors of a given node v; are the nodes
NNk (i), in which the nodes v and v; are connected by an
e.g., if the edge weight between v and v; is among the k-th
largest from v; to other nodes, i.e.

NN;(@) ={v: ml?x w(v;, v)} “4)

The above-mentioned problem of frequency rate suggests
a solution which reassigns weight. Intuitively, we would like
the k-neighborhoods to have similar weights in order to elim-
inate ‘bad shapes’.

Let us consider the neighborhood of a given node defined
by its [NN (i)| nearest neighbors. The value k is a compro-
mise between computation cost and quality of retrieval result.
The larger the value of k, the more expensive the computa-
tion. In general, k needs to be greater than 20 to prevent the
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system from being over constrained due to possible noise in
the original measure.

We define the neighborhood weight or similarity s(i) as
the mean weight of a given node v; to the nodes of its neigh-
borhood:

1
s =7 2, wi,x) ©)

xeNNg ()
and it is computed for each node. Subsequently, we define a
new weight between two nodes as follows:

(6)

N s

v, =w;, Up) —————7
where 5 is the geometric mean neighborhood similarity
obtained by

s=]]s@"". @)

Thus, we reassign the graph weight and propagate the query
label according to the new weight. Note that the terms 5 and
s(i) do not impact the nearest neighbors of a given node.

3.3 Relation to contextual dissimilarity measure

Given the visual word vector & ; of a query, similar images
in the database are represented by vector(s) & ; minimizing
dé; & ;) where the relation d (-, -) is a distance on the visual
word vector space. Note that the weighting scheme previ-
ously described can be seen as part of the distance defin-
ition. The contextual dissimilarity measure (CDM) updates
the given distance d (-, -) (e.g., Manhattan distance) by apply-
ing two weighting factors n; and n; that depend on the vectors
and between which the distance is computed:

CDM(§;. &) = d(&;. & nin,.- ®)

Our proposed NIS approach is a graph representation. We
encode the edge weights as similarity between shapes, and
the retrieval is a one-step label propagation from the query to
other shapes. Our goal is to update the edge weight instead
of distance. It is worth pointing out that CDM is iterative,
whereas the proposed method is non-iterative. Moreover, we
aim at re-ranking the shape retrieval result, though the edge
weighting factor is learned in a similar fashion as CDM.

4 Applying neighborhood-induced similarity

The goal of shape retrieval is to recall shapes that are relevant
to the query. In this section, we explain the intuition behind
the use of NIS to improve the relevancy of shape ranking
results.

@ Springer

4.1 Distance measure

A reliable measurement of shape similarity is critical to
the performance of NIS since it determines the underlying
graph structure. Measuring pair-wise similarity can be cat-
egorized into two main classes: (1) compute direct differ-
ence in features extracted from shapes, which are invariant
to rotation and robust to certain degree of deformation, such
as skeletons, moments, and Fourier descriptors; (2) perform
matching to find the detailed point-wise correspondences to
compute these differences [1,2]. Our algorithm is, however,
general and not limited to any particular similarity measure
or representation.

4.2 Nodes with high or low frequency

In the weighted similarity graph, NIS works on nodes with
high or low frequency to improve the shape re-ranking
results. We illustrate the process in Fig. 2. In a dense graph,
for Vhign, there are relatively more query nodes that can
propagate their label to it, which indicates that edge weights
between Vhigh and other nodes are larger. However, we could
obtain several reduced weights by NIS since the overall aver-
age weight is smaller. Thus, a more concise and relevant set
of query candidate shapes is searched. In a sparse graph, for
Viow, in the opposite way, we increase the candidate set by
promoting the edge weight.

5 Experimental results

In this section, we conduct extensive experiments to validate
the performance of the proposed method. We first investi-
gate the impact of the neighborhood size and then show the
improved shape retrieval results by handling the frequency
problem on 2D shapes. Then, we conduct more experiments
on complex 2D shapes from a trademark image dataset, and
also on a 3D shape dataset. In our experiments, we used
SC, IDSC for 2D shapes, Zernike features for the trademark
images, and LFD for 3D models to generate the distance mea-
sure and construct the similarity graph. Finally, we show that
our method is computationally fast by deriving the overall
computational cost.

5.1 Results on 2D shapes

Datasets: The experiments are performed on two shape data
sets, the MPEG-7 dataset and Tarri dataset. The former con-
sists of 1,400 silhouette images grouped into 70 categories.
Each category contains 20 different shapes. The latter is com-
prised of 50 object categories, 20 shapes per category; so
there are 1,000 images in total.
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Fig. 2 Two nodes in the similarity graph, e.g., ‘device’ and ‘glass’
shapes. By updating the edge weight, NIS identifies a highly relevant
set of candidate query shapes. a 156 query shapes for ‘device’, 15 shapes

Evaluation criterion: The performance is measured using
the so-called bull’s eye score to evaluate the accuracy of the
proposed method. Every shape in the dataset is compared
to all other shapes, and the number of shapes from the same
class among the 40 most similar shapes is reported. The bull’s
eye retrieval rate is the ratio of the total number of shapes
from the same class to the highest possible number (which
is 20 x 1,400 on MPEG-7). Thus, the best possible rate is
100 %.

5.1.1 Neighborhood size of NIS

One important parameter of the proposed method is the
neighborhood size, k. We evaluate the accuracy of the method
for different values of k. It results in disparate accuracy when
the size is relatively small. Figure 3 shows the percentage of
correct results on MPEG-7 dataset. We observe that the accu-
racy surges significantly when the size of neighborhood is
small, namely 7 or 8 in this case, then slightly decreases as the
neighborhood enlarges. The peak accuracy is obtained when
the neighborhood size is equal to 30. Considering that a small
neighborhood contributes to lower computational cost, while
alarger one provides a better accuracy in a limited range. We
set the size k to 30 in the experiments as a trade-off value.

5.1.2 Improving 2D shape retrieval

We evaluate the NIS performance for shape retrieval on
MPEG-7 dataset and Tarri dataset. The proposed method
is able to improve the shape contexts retrieval rates from

®
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are shown, b 60 query shapes for ‘device’ with NIS, 8 shapes are shown;
¢ 4 query shapes for ‘glass’, d 44 query shapes for ‘glass’ with NIS, 8
shapes are shown

Percentage of Correct Results

—— NIS with SC
—e— NIS with IDSC
40 60 80 100
Size of Neighborhood

Fig. 3 Impact of neighborhood size for the MPEG-7 dataset

86.79 to 90.49 %, and the IDSC from 84.68 to 88.05 % on
the MPEG-7 dataset. It also improves shape contexts retrieval
rates from 94.17 to 97 % on Tarri dataset.

In order to visualize the gain in retrieval rates by our
method, we conduct a series of experiments on the MPEG-7
dataset. Here we vary the neighborhood size k£ from 1 to
40 instead of setting it to 40 as in the bull’s eye evalua-
tion. Figure 4 shows that our similarity measure outperforms
the Shape Contexts and IDSC on both MPEG-7 and Tarri
datasets. Note that each class has 20 shapes, so the curve
increases for k > 20.
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Fig. 4 a A comparison of retrieval rates between IDSC (blue circle)
and by the proposed method (red asterisk) for MPEG-7 dataset. b A
comparison of retrieval rates between SC (blue circle) and by the pro-

Figure 5 illustrates some typical queries for which NIS
significantly improves the results on MPEG-7 dataset. We
place the query in the first column, and the most relevant
returns in a row beside it excluding the query itself. For each
group of comparison, the query with no NIS (upper row) is
often irrelevantly retrieved, whereas the query with NIS (sec-
ond row) returns the most relevant shapes. It shows that only
one result is correct for the query ‘glass’. It instead retrieves
eight elephants as the most similar shapes among the top ten,
since it confuses the glass bottom with the elephant crus and
trunk. However, the proposed method deliberately increases
the distance from a global perspective. It can accurately dis-
tinguish the difference with only one mistake.
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Percentage of Correct Results
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posed method (red asterisk) for MPEG-7 dataset. ¢ A comparison of
retrieval rates between SC (blue circle) and by the proposed method
(red asterisk) for Tarri dataset (color figure online)

The results of the query ‘lizard’ are equally convincing.
No correct shape is returned besides the query itself without
NIS, and our method correctly retrieves seven among top
ten. For the results of the query ‘tree’, it mistakenly retrieves
camel for ‘tree’, since the camel’s hump is more similar to
the serrated shape of the pine tree. Nevertheless, all retrieval
results are correct using the new distance learned via our
method.

The comparison of frequency rate is illustrated in Fig. 6,
where the red squares denote the proposed method and the
blue crosses otherwise. Since each class has 20 shapes and we
consider the top 40 for each query, the optimal frequency rate
ranges from about 20—40 and the ideal dots form a band-like
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Fig. 5 First column shows query shapes. Remaining columns show the most similar shapes retrieved by SC (odd row numbers) and by our method

(even row numbers)
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Fig. 6 Frequency rate without NIS (blue points) and with NIS (red
points) (color figure online)

region which is parallel to the x-axis. The performance is
considered unsatisfactory provided that the deviation of fre-
quency rate from the region is large. After all, a large devi-
ation implies over-returned and never-returned. We observe
that the rate of query shapes gather towards the ideal region
in a considerable number. The most notable improvement of
the proposed method is that the frequency rates seldom fall
below the boundary of 20, unlike the frequency rate with-
out NIS. This clearly demonstrates that NIS can effectively
regulate the overall similarity of each shape and reduce the
disturbance of ‘bad shapes’.

5.2 Results on more complex 2D shapes

In this experiment, we investigate the NIS performance for
improving the retrieval results on Wei’s Trademark Image
dataset with 1,003 images in 14 classes [11]. These include
Apple, Fan, Abstract Circlel, Abstract Circle2, Encircled
Cross, Abstract Saddle, Abstract Saddle, Abstract Sign,
Triangle, Bat, Peacock, Abstract Flowers, Rabbit, Snow
Flake, and Miscellaneous. Figure 7 displays sample images
from the Trademark Image dataset. Traditional descriptor-
based methods applied on these complex shapes still main-
tain a modest performance. However, the industry is in urgent
need for a satisfactory retrieval performance because it will
save human consumption of comparing one by one to avoid
reduplication. In this setting, the neighborhood size is set
to 85.

In our comparative analysis, we used the Precision/Recall
curve to measure the retrieval performance. Ideally, this curve
should be a horizontal line at unit precision. For each query
image, we use the first 108 return trademark images with
descending similarity rankings (i.e., ascending Euclidean
distance ranking), dividing them into 9 groups accordingly.
However, in order to obtain a more objective picture of the
performance, we plot the average performance of 20 query
images of the same class. We show the result in Fig. 8, where
Zernike features [3] are first extracted to calculate the original
distance matrix, and the proposed algorithm is used to obtain
the accuracy-improved matrix. Again, the overall retrieval
performance is improved by NIS.

Based on the above experimental results, our algorithm is
validated to improve shape retrieval in 2D, both on standard
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Fig. 7 Sample images from the trademark shape dataset
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Fig. 8 NIS improves the overall retrieval performance for the trade-
mark image dataset. Blue line is with NIS and red line is without NIS
(color figure online)

datasets and on trademark images with large variation among
individuals.

5.3 Results on 3D shapes

We tested the performance of the proposed matching algo-
rithm using the McGill Shape Benchmark (http://www.
cim.McGill.ca/shape/benchmark). This publicly available
benchmark database provides a 3D shape repository, which
contains 255 objects that are divided into ten categories,
namely, ‘Ants’, ‘Crabs’, ‘Spectacles’, ‘Hands’, ‘Humans’,
‘Octopuses’, ‘Pliers’, ‘Snakes’, ‘Spiders’, and ‘“Teddy Bears’.
Sample models from this database are shown in Fig. 9.

The evaluation of the retrieval results is based on the fol-
lowing quantification measures. These measures range from
0 to 100 %, and higher values indicate better performance.

e Nearest neighbor (NN): The percentage of queries where
the closest match belongs to the query’s class.
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o Firsttier (FT): The recall for the (k — 1) closest matches,
where « is the cardinality of the query’s class.

e Second tier (ST): The recall for the 2(k — 1) closest
matches, where « is the cardinality of the query’s class.

e Discounted cumulative gain: A statistic that correct
results near the front of the retrieval list are weighted
more heavily than correct results near the end under
the assumption that a user is most interested in the first
results.

We compare our method with the 3D Light Field Distri-
bution (LFD) method. As in the previous experiments, the
distance matrix calculated via LFD is chosen as the input of
NIS, and the neighborhood size is set to 48. The correspond-
ing scores of each method for each class of the database as
well as the overall scores for the complete database are shown
in Table 1. We render numbers in bold if our method is supe-
rior or equivalent to LFD. Obviously, in most cases, NIS
has a positive effect on 3D shapes re-ranking. Though not
all the entries with NIS outperform LFD in the comparative
results, it is understandable that NIS works in a given statis-
tical range. For example, ‘Hands’, the worst class according
to the result, will still lead to effective shape re-ranking based
upon the First Tier measure.

5.4 Computational cost

We compared the computation time of our method with
the graph transduction approach [5]. Both algorithms are
implemented in MATLAB running on a Pentium Dual
Core 1.73GHz PC. The MATLAB implementation of the
graph transduction is publicly available in (http://happyyxw.
googlepages.com/democodeeccv). The entire retrieval
process of the proposed algorithm takes about 5.05 s, which
is extremely faster than the graph transduction’s 2.18 h.

We also analyzed the computational complexity of the
proposed similarity measure approach. The time to compute
the neighborhood distance is O(kN), to compute geometric
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Fig. 9 Sample shapes from McGill Articulated Shape Database. Only two shapes for each of the 10 classes are shown

Table 1 Quantitative measure scores of the retrieval methods

# Queries Method NN (%) FT (%) ST (%) DCG (%)
Overall database  Ours 84.16 46.26 62.18 83.72
LFD 84.61 44.69  59.28 82.74
Ants Ours 90 53.6 77.78 88.42
LFD 93.33 54.56  76.11 89.33
Crabs Ours 93.33 50.89  65.33 86.33
LFD 93.33 45 60.11 84.08
Spectacles Ours 76 51.52  66.08 88.45
LFD 100 50.56  65.60  88.34
Hands Ours 80 2825  40.50  75.36
LFD 90 28 42.25 75.44
Humans Ours 79.31 40.79 5494  81.26
LFD 79.31 3935  53.03 80.69
Octopuses Ours 60 26.88 41.93 72.30
LFD 48 24 3536  68.47
Pliers Ours 100 75.50  87.25 97.58
LFD 100 75.25 87.25 97.47
Snakes Ours 76 26.14 33.92 71.68
LFD 68 20.64 2528  66.53
Spiders Ours 70.97 4194 6545 81.18
LFD 74.12 4277  65.35 82.35
Teddy bears Ours 100 66.50  86.50  95.64
LFD 100 66.75 82.50  94.59

mean is O(N), and to update the weight is O(N). There is
an additional cost for ranking the scores at the end, which
is O(klog N). Thus, the total complexity of our method
amounts to O(k log N + (k+2)N). since k < N, the overall
time complexity of our algorithm is bounded by O(N?). It
is worth pointing out that the complexity of our approach is
at least one order smaller than the complexity O(T N?3) of
the graph transduction algorithm, where T is the number of
iterations.

6 Conclusions and future work
In this paper, we proposed a novel similarity measure for

eliminating abnormal shapes in shape retrieval systems. The
proposed NIS measure takes into account the hidden local

structure by using the average neighborhood similarity in a
graph representation. We tested the proposed similarity mea-
sure on the commonly used MPEG-7 and Tarri datasets, a
trademark image dataset, and a 3D shape dataset. The exper-
imental results demonstrated the efficiency of the proposed
method both in 2D and 3D, even on shapes with large vari-
ations. In addition, we showed that the proposed method is
computationally fast.

Future research directions include further exploration of
the frequency problem on shape classification as well as clus-
tering. We also plan to combine sparse representation with
the proposed method in order to achieve much better retrieval
results.
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