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Abstract We investigate general concept classification in
unconstrained videos by joint audio-visual analysis. An
audio-visual grouplet (AVG) representation is proposed
based on analyzing the statistical temporal audio-visual inter-
actions. Each AVG contains a set of audio and visual code-
words that are grouped together according to their strong
temporal correlations in videos, and the AVG carries unique
audio-visual cues to represent the video content. By using
the entire AVGs as building elements, video concepts can
be more robustly classified than using traditional vocabu-
laries with discrete audio or visual codewords. Specifically,
we conduct coarse-level foreground/background separation
in both audio and visual channels, and discover four types
of AVGs by exploring mixed-and-matched temporal audio-
visual correlations among the following factors: visual fore-
ground, visual background, audio foreground, and audio
background. All of these types of AVGs provide discrimi-
native audio-visual patterns for classifying various semantic
concepts. To effectively use the AVGs for improved con-
cept classification, a distance metric learning algorithm is
further developed. Based on the AVG structure, the algo-
rithm uses an iterative quadratic programming formulation
to learn the optimal distances between data points according
to the large-margin nearest-neighbor setting. Various types
of grouplet-based distances can be computed using individ-
ual AVGs, and through our distance metric learning algo-
rithm these grouplet-based distances can be aggregated for
final classification. We extensively evaluate our method over
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the large-scale Columbia consumer video set. Experiments
demonstrate that the AVG-based audio-visual representation
can achieve consistent and significant performance improve-
ments compared wth other state-of-the-art approaches.

Keywords Video concept detection · Audio-visual
grouplet

1 Introduction

This paper investigates the problem of automatic classifica-
tion of semantic concepts in generic, unconstrained videos,
by joint analysis of audio and visual content. These concepts
include general categories, such as scene (e.g., beach), event
(e.g., birthday, graduation), location (e.g., playground) and
object (e.g., dog, bird). Generic videos are captured in an
unrestricted manner, like those videos taken by consumers
on YouTube. This is a difficult problem due to the diverse
video content as well as the challenging conditions such as
uneven lighting, clutter, occlusions, and complicated motions
of both objects and camera.

Large efforts have been devoted to classify general con-
cepts in generic videos, such as the TRECVID high-level
feature extraction or multimedia event detection [34], the
human action recognition in Hollywood movies [22], and
the Columbia consumer video (CCV) concept detection
[19]. Most previous works classify videos in the same
way they classify images, using mainly visual information.
Specifically, visual features are extracted from either 2D
keyframes or 3D local volumes, and these features are treated
as individual static descriptors to train concept classifiers.
Among these methods, the ones using the Bag-of-Words
(BoW) representation over 2D or 3D local descriptors (e.g.,
SIFT [24] or HOG [8]) are considered state-of-the-art. In a
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Fig. 1 Discovery of audio-visual patterns through temporal audio-
visual interactions. wvisual

i and waudio
j are discrete codewords in visual

and audio vocabularies, respectively. By analyzing correlations between
the temporal histograms of audio and visual codewords, we can dis-
cover salient audio-visual cues to represent videos from different con-
cepts. For example, the highly correlated visual basketball patches and

audio basketball bouncing sounds provide a unique pattern to classify
“basketball.” The correlated visual stadium patches and audio back-
ground music are helpful to classify “non-music performance.” In com-
parison, discrete audio and visual codewords are less discriminative than
such audio-visual cues

BoW-based approach, local descriptors are vector-quantized
against a vocabulary of prototypical descriptors to generate
a histogram-like representation.

The importance of incorporating audio information to
facilitate semantic concept classification has been discov-
ered by several previous works [5,19,43]. They generally
use a multi-modal fusion strategy, i.e., early fusion [5,19,43]
to train classifiers with concatenated audio and visual fea-
tures, or late fusion [5,43] to combine judgments from clas-
sifiers built over individual modalities. Different from such
fusion approaches that avoid studying temporal audio-visual
synchrony, the work in [17] pursues a coarse-level audio-
visual synchronization through learning a joint audio-visual
codebook based on atomic representations in both audio and
visual channels. However, the temporal audio-visual interac-
tion is not explored in previous video concept classification
methods. The temporal audio-visual dependencies can reveal
unique audio-visual patterns to assist concept classification.
For example, as illustrated in Fig. 1, by studying correlations
between temporal patterns of visual and audio codewords,
we can discover discriminative audio-visual cues, such as the
encapsulation of visual basketball patches and audio basket-
ball bouncing sounds for classifying “basketball,” and the
encapsulation of visual stadium patches and audio music
sounds for classifying “non-music performance”. To the best
of our knowledge, such audio-visual cues have not been stud-
ied before in previous literature.

From another perspective, beyond the traditional BoW
representation, structured visual features have been recently
found to be effective in many computer vision tasks. In addi-
tion to the local feature appearance, spatial relations among
the local patches are incorporated to increase the robust-
ness of the visual representation. The rationale behind this
is that individual local visual patterns tend to be sensitive
to variations such as changes of illumination, views, scales,

and occlusions. In comparison, a set of co-occurrent local
patterns can be less ambiguous. Along this direction, pair-
wise spatial constraints among local interest points have been
used to enhance image registration [13]; various types of spa-
tial contextual information have been used for object detec-
tion [11,41] and action classification [25]; and a grouplet
representation has been developed to capture discriminative
visual features and their spatial configurations for detecting
the human-object-interaction scenes in images [45].

Motivated by the importance of incorporating audio infor-
mation to help video concept classification, as well as the
success of using structured visual features for image classi-
fication, in this paper, we propose an audio-visual grouplet
(AVG) representation. Each AVG contains a set of audio and
visual codewords that have strong temporal correlations in
videos. An audio-visual dictionary can be constructed to clas-
sify concepts using AVGs as building blocks. The AVGs cap-
ture not only the individual audio and visual features carried
by the discrete audio and visual codewords, but also the tem-
poral relations between audio and visual channels. By using
the entire AVGs as building elements to represent videos,
various concepts can be more robustly classified than using
discrete audio and visual codewords. For example, as illus-
trated in Fig. 2, The AVG that captures the visual bride and
audio speech gives a strong audio-visual cue to classify the
“wedding ceremony” concept, and the AVG that captures the
visual bride and audio dancing music is quite discriminative
to classify the “wedding dance” concept.

In addition, we develop a distance metric learning algo-
rithm to effectively use the extracted AVGs for classifying
concepts. Based on the AVGs, an iterative Quadratic Pro-
gramming (QP) problem is formulated to learn the optimal
distance metric between data points based on the large-
margin nearest neighbor (LMNN) setting [40]. Our distance
metric learning framework is quite flexible, where various
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Fig. 2 An example of
AVG-based audio-visual
dictionary. Each AVG is
composed of a set of audio
and visual codewords that have
strong temporal correlations in
videos. The AVG that captures
the visual bride and audio
speech (AVG: wvisual
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1 ) gives a unique

audio-visual cue to classify
“wedding ceremony,” and the
AVG that captures the visual
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“wedding dance.” In
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types of grouplet-based distances can be computed using
individual AVGs, and these grouplet-based distances can be
fed into the same distance metric learning algorithm for con-
cept classification. Specifically, we propose a grouplet-based
distance based on the chi-square distance and word speci-
ficity [26], and through our distance metric learning such a
grouplet-based distance can achieve consistent and signifi-
cant classification performance gain.

2 Overview of our approach

Figure 3 summarizes the framework of our system. We dis-
cover four types of AVGs by exploring four types of temporal
audio-visual correlations: correlations between visual fore-
ground and audio foreground; correlations between visual
background and audio background; correlations between
visual foreground and audio background; and correlations
between visual background and audio foreground. All of
these types of AVGs are useful for video concept classifi-
cation. For example, as illustrated in Fig. 3, to effectively
classify the “birthday” concept, all of the following factors
are important: the visual foreground people (e.g., baby and
child), the visual background setting (e.g., cake and table),
the audio foreground sound (e.g., cheering, birthday song,
and hand clapping), and the audio background sound (e.g.,
music). By studying the temporal audio-visual correlations
among these factors, we can identify unique audio-visual
patterns that are discriminative for “birthday” classification.

To enable the exploration of the foreground and back-
ground audio-visual correlations, coarse-level separation of
the foreground and background is needed in both visual and
audio channels. It is worth mentioning that due to the diverse
video content and the challenging conditions (e.g., uneven
lighting, clutter, occlusions, complicated objects and camera
motions, and the unstructured audio sounds with overlapping
acoustic sources), precise separation of visual or audio fore-
ground and background is infeasible in generic videos. In
addition, exact audio-visual synchronization can be unreli-
able most of the time. Multiple moving objects usually make
sounds together, and often the object making sounds does
not synchronically appear in video. To accommodate these
issues, different from most previous audio-visual analysis
methods [3,7,16,32] that rely on precisely separated visual
foreground objects and/or audio foreground sounds, our pro-
posed approach has the following characteristics.

– We explore statistical temporal audio-visual correlations
over a set of videos instead of exact audio-visual synchro-
nization in individual videos. By representing the tem-
poral sequences of visual and audio codewords as multi-
variate point processes, the statistical pairwise nonpara-
metric Granger causality [15] between audio and visual
codewords is analyzed. Based on the audio-visual causal
matrix, salient AVGs are identified, which encapsulate
strongly correlated visual and audio codewords as build-
ing blocks to classify videos.
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Fig. 3 The overall framework of the proposed joint audio-visual analy-
sis system. The example shows a “birthday” video, where four types
of audio-visual patterns are useful for classifying the “birthday” con-
cept: (1) the visual foreground baby with the audio foreground events
such as singing the happy birthday song or people cheering, since a

major portion of birthday videos have babies or children involved; (2)
the visual foreground baby with the audio background music; (3) the
visual background setting such as the cake, with the audio foreground
singing/cheering; and (4) the visual background cake with the audio
background music

– We do not pursue precise visual foreground/background
separation. We aim to build foreground-oriented and
background-oriented visual vocabularies. Specifically,
consistent local points are tracked throughout each video.
Based on both local motion vectors and spatiotemporal
analysis of whole images, the point tracks are separated
into foreground tracks and background tracks. Due to the
challenging conditions of generic videos, such a separa-
tion is not precise. The target is to maintain a majority of
foreground (background) tracks so that the constructed
visual foreground (background) vocabulary can capture
mainly visual foreground (background) information.

– Similar to the visual aspect, we aim to build foreground-
oriented and background-oriented audio vocabularies,
instead of pursuing precisely separated audio foreground
or background acoustic sources. In generic videos, the
foreground sound events are usually distributed unevenly
and sparsely. Therefore, the local representation that
focuses on short-term transient sound events [6] can
be used to capture the foreground audio information.
Also, the mel-frequency cepstral coefficients (MFCCs)
extracted from uniformly spaced audio windows roughly
capture the overall information of the environmental
sound. Based on the local representation and MFCCs,
audio foreground and background vocabularies can be
built, respectively.

After obtaining various types of AVGs, a distance metric
learning algorithm is further developed to effectively use the
AVGs for concept classification. Based on the AVGs, we
learn the optimal distance metric between data points under
the LMNN setting. LMNN is used because of its resemblance
to SVMs, i.e., the role of large margin in LMNN is inspired by
its role in SVMs, and LMNN should inherit various strengths

of SVMs [33]. Therefore, the final learned distance metric
can provide reasonably good performance for SVM concept
classifiers.

We extensively evaluate our approach over the large-
scale CCV set [19], containing 9317 consumer videos from
YouTube. The consumer videos are captured by ordinary
users under uncontrolled challenging conditions, without
post-editing. The original audio soundtracks are preserved,
which allows us to study legitimate audio-visual interactions.
Experiments show that compared with the state-of-the-art
multi-modal fusion methods using BoW representations, our
AVG-based dictionaries can capture useful audio-visual cues
and significantly improve the classification performance.

3 Brief review of related work

3.1 Audio-visual concept classification

Audio-visual analysis has been largely studied for speech
recognition [16], speaker identification [32], and object local-
ization [4]. For example, with multiple cameras and audio
sensors, by using audio spatialization and multi-camera
tracking, moving sound sources (e.g., people) can be located.
In videos captured by a single sensor, objects are usu-
ally located by studying the audio-visual synchronization
along the temporal dimension. A common approach, for
instance, is to project each of the audio and visual modal-
ities into a 1D subspace and then correlate the 1D rep-
resentations [3,7]. These methods have shown interesting
results in analyzing videos in a controlled or simple envi-
ronment, where good sound source separation and visual
foreground/background separation can be obtained. How-
ever, they can not be easily applied to generic videos due to
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the difficulties in both acoustic source separation and visual
object detection.

Most existing approaches for general video concept clas-
sification exploit the multi-modal fusion strategy instead of
using direct correlation or synchronization across audio and
visual modalities. For example, early fusion is used [5,43]
to concatenate features from different modalities into long
vectors. This approach usually suffers from the “curse of
dimensionality,” as the concatenated multi-modal feature can
be very long. Also, it remains an open issue how to con-
struct suitable joint feature vectors comprising features from
different modalities with different time scales and differ-
ent distance metrics. In late fusion, individual classifiers are
built for each modality separately, and their judgments are
combined to make the final decision. Several combination
strategies have been used, such as the majority voting, linear
combination, super-kernel nonlinear fusion [43], or SVM-
based meta-classification combination [23]. However, effec-
tive classifier combination remains a basic machine learning
problem. Recently, an audio-visual atom (AVA) representa-
tion has been developed in [17]. Visual regions are tracked
within short-term video slices to generate visual atoms, and
audio energy onsets are located to generate audio atoms.
Regional visual features extracted from visual atoms and
spectrogram features extracted from audio atoms are con-
catenated to form the AVA representation. The audio-visual
synchrony is found through learning an audio-visual code-
book based on the AVAs. However, the temporal audio-visual
interaction remains unstudied. As illustrated in Fig. 1, the
temporal audio-visual dependencies can reveal unique audio-
visual patterns to assist concept classification. In addition, the
work of [17] requires segmenting image frames into visual
regions, which is too expensive to be practical.

3.2 Visual foreground/background separation

One most commonly used technique for separating fore-
ground moving objects and the static background is back-
ground subtraction, where foreground objects are detected
as the difference between the current frame and a reference
image of the static background [12]. Various threshold adap-
tation methods [1] and adaptive background models [35] have
been developed. However, these approaches require a rela-
tively static camera, small illumination change, simple and
stable background scene, and relatively slow object motion.
Their performances over generic videos are still not satisfac-
tory.

Motion-based segmentation methods have also been used
to separate moving foreground and static background in
videos [21]. The dense optical flow is usually computed to
capture pixel-level motions. Due to the sensitivity to large
camera/object motion and the computation intensity, such
methods cannot be easily applied to generic videos either.

3.3 Audio source separation

Real-world audio signals are combinations of a number of
independent sound sources, such as various human voices,
instrumental sounds, natural sounds, etc. Ideally, one would
like to recover each source signal. However, this task is very
challenging in generic videos, because only a single audio
channel is available, and realistic soundtracks have unre-
stricted content from an unknown number of unstructured,
overlapping acoustic sources.

Early blind audio source separation (BASS) methods
separate audio sources that are recorded with multiple
microphones [29]. Later on, several approaches have been
developed to separate single-channel audio, such as the fac-
torial HMM methods [31] and the spectral decomposition
methods [38]. Recently, the visual information has been
incorporated to assist BASS [39], where the audio-video syn-
chrony is used as side information. However, soundtracks
studied by these methods are mostly mixtures of human
voices or instrumental sounds with very limited background
noise. When applied to generic videos, existing BASS meth-
ods cannot perform satisfactorily.

3.4 Distance metric learning

Distance metric learning is an important machine learning
technique of adapting the underlying distance metric accord-
ing to the available data for improved classification. The most
popular distance metric learning algorithms are based on
the Mahalanobis distance metric, such as the LMNN [40]
method, the maximally collapsing metric learning approach
[14], the information-theoretic metric learning method [9],
and the semantic preserving BoW method [42]. However, it
is non-trivial to incorporate the grouplet structure into the
existing distance metric learning algorithms.

4 Visual process

We conduct SIFT point tracking within each video, based on
which foreground-oriented and background-oriented tempo-
ral visual patterns are generated. The following details the
processing stages.

4.1 Excluding bad video segments

Video shot boundary detection and bad video segment elim-
ination are general preprocessing steps for video analysis.
Each raw video is segmented into several parts according to
the detected shot boundaries with a single shot in each part.
Next, segments with very large camera motion are excluded
from analysis. It is worth mentioning that in our case, these
steps can actually be skipped, because we process consumer
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videos that have a single long shot per video, and the SIFT
point tracking can automatically exclude bad segments by
generating few tracks over such segments. However, we still
recommend these preprocessing steps to accommodate a
large variety of generic videos.

4.2 SIFT-based point tracking

We use Lowe’s 128-dim SIFT descriptor with the DoG inter-
est point detector [24]. SIFT features are first extracted from
a set of uniformly sampled image frames with a sampling
rate of 6 fps (frames per second).1 Then for adjacent image
frames, pairs of matching SIFT features are found based
on the Euclidean distance of their feature vectors, by also
using Lowe’s method to discard ambiguous matches [24].
After that, along the temporal dimension, the matching pairs
are connected into a set of SIFT point tracks, where differ-
ent point tracks can start from different image frames and
last variable lengths. This 6 fps sampling rate is empirically
determined by considering both the computation cost and the
ability of SIFT matching. In general, increasing the sampling
rate will decrease the chance of missing point tracks, with the
price of increased computation.

Each SIFT point track is represented by a 136-dim feature
vector. This feature vector is composed by a 128-dim SIFT
vector concatenated with an 8-dim motion vector. The SIFT
vector is the averaged SIFT features of all SIFT points in
the track. The motion vector is the averaged histogram of
oriented motion (HOM) along the track. That is, for each
adjacent matching pair in the track, we compute the speed
and direction of the local motion vector. By quantizing the
2D motion space into 8 bins (corresponding to 8 directions),
an 8-dim HOM feature is computed where the value over
each bin is the averaged speed of the motion vectors from
the track moving along this direction.

4.3 Foreground/background separation

Once the set of SIFT point tracks are obtained, we separate
them as foreground or background with the following two
steps, as illustrated in Fig. 4. First, for two adjacent frames
Ii and Ii+1, we roughly separate their matching SIFT pairs
into candidate foreground and background pairs based on
the motion vectors. Specifically, we group these matching
pairs by hierarchical clustering, where the grouping criterion
is that pairs within a cluster have roughly the same moving
direction and speed. Those SIFT pairs in the biggest cluster
are treated as candidate background pairs, and all other pairs
are treated as candidate foreground pairs. The rationale is that
foreground moving objects usually occupy less than half of

1 In our experiment, the typical frame rate of videos is 30 fps. Typically
we sample 1 frame from every 5 frames.

Step 1: rough foreground/background separation by motion vector

. . .

. . .

foreground

background

Step 2: refined separation by spatiotemporal representation

. . .

. . .

foreground

background

Fig. 4 Example of separating foreground/background SIFT tracks.
A rough separation is obtained by analyzing local motion vectors.
The result is further refined by spatiotemporal analysis over entire
images

the entire screen, and points on the foreground objects do not
have a very consistent moving pattern. In comparison, points
on the static background generally have consistent motion
and this motion is caused by camera motion. This first step
can distinguish background tracks fairly well for videos with
moderate planar camera motions that occur most commonly
in generic videos.

In the second step, we further refine the candidate fore-
ground and background SIFT tracks by using the spatiotem-
poral representation of videos. A spatiotemporal X-ray image
representation has been proposed by Akutsu and Tonomura
for camera work identification [2], where the average of each
line and each column in successive images are computed.
The distribution of the angles of edges in the X-ray images
can be matched to camera work models, from which camera
motion classification and temporal video segmentation can
be obtained directly [20]. When used alone, such methods
cannot generate satisfactory segmentation results in many
generic videos where large motions from multiple objects
cannot be easily discriminated from the noisy background
motion. The performance drops even more for small reso-
lutions, e.g., 320×240 for most videos in our experiments.
Therefore, instead of pursuing precise spatiotemporal object
segmentation, we use such a spatiotemporal analysis to refine
the candidate foreground and background SIFT tracks. The
spatiotemporal image representation is able to capture cam-
era zoom and tilt, which can be used to rectify those candi-
date tracks that are mistakenly labeled as foreground due to
camera zoom and tilt. Figure 4 shows an example of visual
foreground/background separation by using the above two
steps.

4.4 Vocabularies and feature representations

Based on the foreground and background SIFT point tracks,
we build a visual foreground vocabulary and a visual back-
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ground vocabulary, respectively. The BoW features can be
computed using the vocabularies, which can be used directly
to classify concepts. Also, temporal patterns of codeword
occurrences can be computed to study correlations between
audio and visual signals in Sect. 6.

From Sect. 4.2, each SIFT track is represented by a 136-
dim feature vector. All foreground tracks from the training
videos are collected together, based on which the hierar-
chical K-means technique is used to construct a D-word
foreground visual vocabulary V f −v . Similarly, a D-word
background visual vocabulary Vb−v is constructed with all
of the training background tracks. In our experiments, we
use relatively large vocabularies, D = 4000. Based on
findings from the previous literature [44] that when the
vocabulary size exceeds 2000 the classification performance
tends to saturate, we can alleviate the influence of the
vocabulary size on the final classification performance. This
size is also a tradeoff between accuracy and computational
complexity.

For each video Vj , all of its foreground SIFT point tracks
are matched to the foreground codewords. A soft weighting
scheme is used to alleviate the quantization effects [18], and
a D-dim foreground BoW feature F f −v

j is generated. Simi-
larly, all of the background SIFT point tracks are matched to
the background codewords to generate a D-dim background
BoW feature Fb−v

j . In general, both F f −v
j and Fb−v

j have their
impacts in classifying concepts, e.g., both the foreground
people with caps and gowns and the background stadium
setting are useful to classify “graduation” videos.

To study the temporal audio-visual interactions, the fol-
lowing histogram feature is computed over time for each of
the foreground and background visual vocabularies. Given a
video Vj , we have a set of foreground SIFT point tracks. Each
track is labeled to one codeword in vocabulary V f −v that is
closest to the track in the visual feature space. Next, for each
frame I ji in the video, we count the occurring frequency of
each foreground codeword labeled to the foreground SIFT
point tracks that have a SIFT point falling in this frame, and
a D-dim histogram H f −v

j i can be generated. Similarly, we

can generate a D-dim histogram Hb−v
j i for each image frame

I ji based on vocabulary Vb−v . After this computation, for
the foreground V f −v (or background Vb−v), we have a tem-
poral sequence {H f −v

j1 , H f −v
j2 , . . .} (or {Hb−v

j1 , Hb−v
j2 , . . .})

over each video Vj .

5 Audio process

Instead of pursuing precisely separated audio sound sources,
we extract background-oriented and foreground-oriented
audio features. The temporal interactions of these features
with their visual counterparts can be studied to generate use-
ful audio-visual patterns for concept classification.

5.1 Audio background

Various descriptors have been developed to represent audio
signals in both temporal and spectral domains. Among these
features, the MFCCs feature is one of the most popular
choices for many different audio recognition systems [5,32].
MFCCs represent the shape of the overall spectrum with a few
coefficients, and have been shown to work well for both struc-
tured sounds (e.g., speech) and unstructured environmental
sounds. In soundtracks of generic videos, the foreground
sound events (e.g., an occasional dog barking or hand clap-
ping) are distributed unevenly and sparsely. In such a case,
the MFCCs extracted from uniformly spaced audio windows
capture the overall characteristics of the background envi-
ronmental sound, since the statistical impact of the sparse
foreground sound events is quite small. Therefore, we use
the MFCCs as the background audio feature.

For each given video Vj , we extract the 13-dim MFCCs
from the corresponding soundtrack using 25 ms windows
with a hop size of 10 ms. Next, we put all of the MFCCs
from all training videos together, on top of which the hier-
archical K-means technique is used to construct a D-word
background audio vocabulary Vb−a . Similar to visual-based
processing, we compute two different histogram-like features
based on Vb−a . First, we generate a BoW feature Fb−a

j for
each video Vj by matching the MFCCs in the video to code-
words in the vocabulary and conducting soft weighting. This
BoW feature can be used directly for classifying concepts.
Second, to study the audio-visual correlation, a temporal
audio histogram sequence {Hb−a

j1 , Hb−a
j2 , . . .} is generated

for each video Vj as follows. Each MFCC vector is labeled
to one codeword in the audio background vocabulary Vb−a

that is closest to the MFCC vector. Next, for each sampled
image frame I ji in the video, we take a 200 ms window cen-
tered on this frame. Then we count the occurring frequency
of the codewords labeled to the MFCCs that fall into this win-
dow, and a D-dim histogram Hb−a

j i can be generated. This

Hb−a
j i can be considered as temporally synchronized with the

visual-based histograms H f −v
j i or Hb−v

j i .

5.2 Audio foreground

As mentioned above, the soundtrack of a generic video usu-
ally has unevenly and sparsely distributed foreground sound
events. To capture such foreground information, local rep-
resentations that focus on short-term local sound events
should be used. In [6], Cotton et al. have developed a local
event-based representation, where a set of salient points in
the soundtrack are located based on time-frequency energy
analysis and multi-scale spectrum analysis. These salient
points contain distinct event onsets, i.e., transient events. By
modeling the local temporal structure around each transient
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event, an audio feature reflecting the foreground of the sound-
track can be computed. In this work, we follow the recipe of
[6] to generate the foreground audio feature.

Specifically, the automatic gain control (AGC) is first
applied to equalize the audio energy in both time and
frequency domains. Next, the spectrogram of the AGC-
equalized signal is taken for a number of different time-
frequency tradeoffs, corresponding to window length
between 2 and 80 ms. Multiple scales enable the localization
of events of different durations. High-magnitude bins in any
spectrogram indicate a candidate transient event at the cor-
responding time. A limit is empirically set on the minimum
distance between successive events to produce four events
per second on average. A 250 ms window of the audio sig-
nal is extracted centered on each transient event time, which
captures the temporal structure of the transient event. Within
each 250 ms window, a 40-dim spectrogram-based feature is
computed for short-term signals over 25 ms windows with
10 ms hops, which results in 23 successive features for each
event. These features are concatenated together to form a
920-dim representation for each transient event. After that,
PCA is performed over all transient events from all training
videos, and the top 20 bases are used to project the original
920-dim event representation to 20 dimensions.

By putting all the projected transient features from all
training videos together, the hierarchical K-means technique
is used again to construct a D-word foreground audio vocab-
ulary V f −a . We also compute two different histogram-like
features based on V f −a . First, we generate a BoW feature
F f −a

j for each video Vj by matching the transient features
in the video to codewords in the vocabulary and conducting
soft weighting. Second, a temporal audio histogram sequence
{H f −a

j1 , H f −a
j2 , . . .} is generated for each video Vj as fol-

lows. Each transient event is labeled to one codeword in the
audio foreground vocabulary V f −a that is closest to the tran-
sient event feature. Next, for each sampled image frame I ji in
the video, we take a 200 ms window centered on this frame.
Then we count the occurring frequency of the codewords
labeled to the transient events whose centers fall into this
window, and a D-dim histogram H f −a

j i can be generated.

Similar to Hb−a
j i , H f −a

j i can be considered as synchronized

with H f −v
j i or Hb−v

j i .

6 AVGs from temporal causality

Recently, Prabhakar et al. [30] have shown that the sequence
of visual codewords produced by a space–time vocabulary
representation of a video sequence can be interpreted as a
multivariate point process. The pairwise temporal causal rela-
tions between visual codewords are computed within a video
sequence, and visual codewords are grouped into causal

sets. Evaluations over social game videos show promising
results that the manually selected causal sets can capture
the dyadic interactions. However, the work in [30] relies on
nicely separated foreground objects, and causal sets are man-
ually selected for each individual video. The method cannot
be used for general concept classification.

We propose to investigate the temporal causal relations
between audio and visual codewords. The rough separation
of foreground and background for both temporal SIFT tracks
and audio sounds enables a meaningful study of such tem-
poral relations. For the purpose of classifying general con-
cepts in generic videos, all of the following factors have their
contributions: foreground visual objects, foreground audio
transient events, background visual scenes, and background
environmental sounds. Therefore, we explore their mixed-
and-matched temporal relations to find salient AVGs that can
assist the final classification.

6.1 Point-process representation of codewords

From the previous sections, for each video Vj , we have 4 tem-

poral sequences: {H f −v
j1 , H f −v

j2 , . . .}, {H f −a
j1 , H f −a

j2 , . . .},
{Hb−v

j1 , Hb−v
j2 , . . .}, and {Hb−a

j1 , Hb−a
j2 , . . .}, according to

vocabularies V f −v,V f −a,Vb−v, and Vb−a , respectively.
For each vocabulary, e.g., the foreground visual vocabulary
V f −v , each codeword wk in the vocabulary can be treated
as a point process, N f −v

k (t), which counts the number of
occurrences of wk in the interval (0, t]. The number of
occurrences of wk in a small interval dt is d N f −v

k (t) =
N f −v

k (t + dt) − N f −v
k (t), and E{d N f −v

k (t)/dt} = λ
f −v
k

is the mean intensity. For theoretical and practical conve-
nience, the zero-mean process is considered, and N f −v

k (t) is
assumed as wide-sense stationary, mixing, and orderly [27].
Point processes generated by all D codewords of vocabulary
V f −v form a D-dim multivariate point process N f −v(t) =
(N f −v

1 (t), . . . , N f −v
D (t))T . Each video Vj gives one trial of

N f −v(t) with counting vector (h f −v
j1 (t), h f −v

j2 (t), . . . , h f −v
j D

(t))T , where h f −v
jk (t) is the value over the k-th bin of the

histogram H f −v
j t .

Similarly, D-dim multivariate point processes N f −a(t),
Nb−v(t), and Nb−a(t) can be generated for vocabularies
V f −a , Vb−v , and Vb−a , respectively.

6.2 Temporal causality among codewords

Granger causality [15] is a statistical measure based on the
concept of time series forecasting, where a time series Y1

is considered to causally influence a time series Y2 if pre-
dictions of future values of Y2 based on the joint history of
Y1 and Y2 are more accurate than predictions based on Y2

alone. The estimation of Granger causality usually relies on
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autoregressive models, and for continuous-valued data like
electroencephalogram, such model fitting is straightforward.

In [27], a nonparametric method that bypasses the autore-
gressive model fitting has been developed to estimate
Granger causality for point processes. The theoretical basis
lies in the spectral representation of point processes, the
factorization of spectral matrices, and the formulation of
Granger causality in the spectral domain. In the following, we
describe the details of using the method of [27] to compute
the temporal causality between audio and visual codewords.
For simplicity, we temporarily omit indexes f − v, b − v,
f − a, and b − a, w.l.o.g., since Granger causality can be
computed for any two codewords from any vocabularies.

6.2.1 Spectral representation of point processes

The pairwise statistical relation between two point processes
Nk(t) and Nl(t) can be captured by the cross-covariance den-
sity function Rkl(u) at lag u:

Rkl(u)= E{d Nk(t + u)d Nl(t)}
dudt

− I [Nk(t)= Nl(t)] λkδ(u),

where δ(u) is the classical Kronecker delta function, and I [·]
is the indicator function. By taking the Fourier transform of
Rkl(u), we obtain the cross-spectrum Skl( f ). Specifically,
the multitaper method [37] can be used to compute the spec-
trum, where M data tapers {qm}M

m=1 are applied successively
to point process Nk(t) (with length T ):

Skl( f ) = 1

2π MT

∑M

m=1
Ñk( f, m)Ñl( f, m)∗,

Ñk( f, m) =
∑T

tp=1
qm(tp)Nk(tp)exp(−2π i f tp).

(1)

The symbol ∗ is the complex conjugate transpose. Equa-
tion (1) gives an estimation of the cross-spectrum using one
realization, and such estimations of multiple realizations are
averaged to give the final estimation of the cross-spectrum.

6.2.2 Granger causality in spectral domain

For multivariate continuous-valued time series Y1 and Y2 with
joint autoregressive representations:

Y1(t) =
∑∞

p=1
apY1(t − p) +

∑∞
p=1

bpY2(t − p) + ε(t),

Y2(t) =
∑∞

p=1
cpY2(t − p) +

∑∞
p=1

dpY1(t − p) + η(t),

their noise terms are uncorrelated over time and their con-
temporaneous covariance matrix is:

� =
[

�2ϒ2

ϒ2	2

]
, �2 = var(ε(t)), 	2 = var(η(t)), ϒ2

= cov(ε(t), η(t)).

We can compute the spectral matrix as [10]:

S( f ) =
[

S11( f ) S12( f )

S21( f ) S22( f )

]
= H( f )�H( f )∗, (2)

where H( f ) =
[

H11( f )H12( f )

H21( f )H22( f )

]
is the transfer function

depending on coefficients of the autoregressive model. The
spectral matrix S( f ) of two point processes Nk(t) and Nl(t)
can be estimated using Eq. (1). By spectral matrix factor-
ization we can decompose S( f ) into a unique correspond-
ing transfer function H̃( f ) and noise processes �̃2 and 	̃2.
Next, the Granger causality at frequency f can be estimated
according to the algorithm developed in [10]:

G Nl→Nk ( f ) = ln

(
Skk( f )

H̃kk( f )�̃2 H̃kk( f )∗

)
, (3)

G Nk→Nl ( f ) = ln

(
Sll( f )

H̃ll( f )	̃2 H̃ll( f )∗

)
. (4)

The Granger causality scores over all frequencies are then
summed together to obtain a single time-domain causal influ-
ence, i.e., CNk→Nl = ∑

f G Nk→Nl ( f ), and CNl→Nk =∑
f G Nl→Nk ( f ). In general, CNk→Nl �= CNl→Nk , due to

the directionality of the causal relations.

6.3 AVGs from the causal matrix

Our target of studying temporal causality between audio and
visual codewords is to identify strongly correlated AVGs,
where the direction of the relations is usually not impor-
tant. For example, a dog can start barking at any time during
the video, and we would like to find the AVG that contains
correlated codewords describing the foreground dog bark-
ing sound and the visual dog point tracks. The direction of
whether the barking sound is captured before or after the
visual tracks is irrelevant. Therefore, for a pair of codewords
represented by point processes N sk

k (t) and N sl
l (t) (where sk

or sl is one of the following f − v, f − a, b − v, and b − a,
indicating the vocabularies the codeword comes from), the
nonparametric Granger causality scores from both directions
CN

sk
k →N

sl
l

and CN
sl
l →N

sk
k

are summed together to generate

the final similarity between these two codewords:

C(N sk
k , N sl

l ) = CN
sk
k →N

sl
l

+ CN
sl
l →N

sk
k

. (5)

Then, for a pair of audio and visual vocabularies, e.g., V f −v

and V f −a , we have a 2D × 2D symmetric causal matrix:
[

C f −v, f −v C f −v, f −a

C f −a, f −v C f −a, f −a

]
, (6)

where C f −v, f −v , C f −a, f −a , and C f −v, f −a are D × D
matrices with entries C(N f −v

k , N f −v
l ), C(N f −a

k , N f −a
l ),

and C(N f −v
k , N f −a

l ), respectively.
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Fig. 5 An example of the aggregated BoW feature based on an AVG.
In the example, assume that all codewords have equal weights, data
points x1, x2, and x3 have the same aggregated BoW features for the
given AVG (value 5 by taking summation). However, data points x1 and

x3 should be more similar to each other than data points x1 and x2. This
is because x1 and x3 have the same feature values over visual codeword
#1 and visual codeword #3, while x1 and x2 only have the same feature
value over audio codeword #2

Spectral clustering can be applied directly based on this
causal matrix to identify groups of codewords that have high
correlations. Here we use the algorithm developed in [28]
where the number of clusters can be determined automati-
cally by analyzing the eigenvalues of the causal matrix. Each
cluster is called an AVG, and codewords in an AVG can come
from both audio and visual vocabularies. The AVGs capture
temporally correlated audio and visual codewords that sta-
tistically interact over time. Each AVG can be treated as an
audio-visual pattern, and all AVGs form an audio-visual dic-
tionary.

A total of four audio-visual dictionaries are generated in
this work, by studying the temporal causal relations between
different types of audio and visual codewords. They are: dic-
tionary D f −v, f −a by correlating V f −v and V f −a , Db−v,b−a

by correlating Vb−v and Vb−a , D f −v,b−a by correlating
V f −v and Vb−a , and Db−v, f −a by correlating Vb−v and
V f −a . As illustrated in Fig. 3, all of these correlations reveal
useful audio-visual patterns for classifying concepts.

One intuitive way of using the AVGs for concept classi-
fication is to generate a feature value corresponding to each
AVG for a given video. For instance, for the audio and/or
visual codewords associated with an AVG, the values over
the corresponding bins in the original visual-based and/or
audio-based BoW features can be aggregated together (e.g.,
by taking summation or average) as the feature for the AVG.
However, as illustrated in Fig. 5, such aggregated BoW fea-
tures can be problematic and cannot fully utilize the advan-
tage of the grouplet structure. In the next Sect. 7, we develop
a distance metric learning algorithm to better use the AVGs
for classifying concepts.

7 Grouplet-based distance metric learning

Assume that we have K AVGs Gk , k = 1, . . . , K in an
audio-visual dictionary D, where we temporarily omit upper
indexes ( f − v, f − a), ( f − v, b − a), (b − v, f − a), and
(b−v, b−a) w.o.l.g., since the grouplet-based distance met-
ric learning algorithm will be applied to each dictionary indi-
vidually. Let DG

k (xi , x j ) denote the distance between data xi

and x j computed based on the AVG Gk . The overall distance
D(xi , x j ) between data xi and x j is given by:

D(xi , x j ) =
∑K

k=1
vk DG

k (xi , x j ). (7)

The SVM classifiers with RBF-like kernels (Eq. 8) are found
to provide state-of-the-art performances in several semantic
concept classification tasks [19,34],

K (xi , x j ) = exp
{−γ D(xi , x j )

}
. (8)

For example, the chi-square RBF kernel usually performs
well with histogram-like features [18,19], where distance
D(xi , x j ) in Eq. (8) is the chi-square distance.

It is not trivial, however, to directly learn the optimal
weights vk (k = 1, . . . , K ) in the SVM optimization setting,
due to the exponential function in RBF-like kernels.

In this work, we formulate an iterative QP problem to
learn optimal weights vk (k = 1, . . . , K ). The basic idea is
to incorporate the LMNN setting for distance metric learning
[40]. The rationale is that the role of large margin in LMNN
is inspired by its role in SVMs, and LMNN should inherit
various strengths of SVMs [33]. Therefore, although we do
not directly optimize vk (k = 1, . . . , K ) in the SVM opti-
mization setting, the final optimal weights can still provide
reasonably good performance for SVM concept classifiers.

7.1 The LMNN formulation

Let d2
M(xi , x j ) denote the Mahalanobis distance metric

between two data points xi and x j :

d2
M(xi , x j ) = (xi − x j )

T M(xi − x j ), (9)

where M ≥ 0 is a positive semi-definite matrix. LMNN
learns an optimal M over a set of training data (xi , yi ),
i = 1, . . . , N , where yi ∈ {1, . . . , c} and c is the num-
ber of classes. For LMNN classification, the training process
has two steps. First, nk similarly labeled target neighbors
are identified for each input training datum xi . The target
neighbors are selected by using prior knowledge or by sim-
ply computing nk nearest (similarly labeled) neighbors using
the Euclidean distance. Let ηi j = 1 (or 0) denote that x j

is a target neighbor of xi (or not). In the second step, the
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Mahalanobis distance metric is adapted so that these target
neighbors are closer to xi than all other differently labeled
inputs. The Mahalanobis distance metric can be estimated by
solving the following problem:

min
M

∑
i j

ηi j

[
d2

M(xi , x j ) + C
∑

l
(1 − yil)εi jl

]
,

s.t. d2
M(xi , xl) − d2

M(xi , x j ) ≥ 1 − εi jl , εi jl ≥ 0, M ≥ 0.

yil ∈ {0, 1} indicates whether inputs xi and xl have the same
class label. εi jl is the amount by which a differently labeled
input xl invades the “perimeter” around xi defined by its
target neighbor x j .

7.2 Our approach

By defining v = [v1, . . . , vK ]T , D(xi , x j ) = [DG
1 (xi , x j ),

. . . , DG
K (xi , x j )]T , we obtain the following problem:

min
v

⎧
⎨

⎩
||v||22

2
+C0

∑

i j

ηi j vT D(xi , x j )+C
∑

i jl

ηi j (1−yil)εi jl

⎫
⎬

⎭ ,

s.t. vT D(xi , xl) − vT D(xi , x j ) ≥ 1 − εi jl , εi jl ≥ 0, vk ≥ 0.

||v||22 is the L2 regularization that controls the complexity
of v. By introducing Lagrangian multipliers μi jl ≥ 0, γi jl ≥
0, andσk ≥ 0, we have:

min
v

{
||v||22

2
+ C0

∑
i j

ηi j vT D(xi , x j )

−
∑

i jl
μi jlηi j

[
vT D(xi , xl) − vT D(xi , x j ) − 1 + εi jl

]

−
∑

i jl
γi jlηi jεi jl −

∑
k
σkvk +C

∑
i jl

ηi j (1−yil)εi jl

}
.

(10)

Next, by taking derivative against εi jl we obtain:

Cηi j (1 − yil) − μi jlηi j − γi jlηi j = 0. (11)

That is, for any pair of xi and its target neighbor x j , since
we only consider xl with yil = 0, 0 ≤ μi jl ≤ C . Based on
Eq. (11), Eq. (10) turns to:

min
v

{
1

2
||v||22 + C0

∑
i j

ηi j vT D(xi , x j )

−
∑

i jl

μi jlηi j

[
vT D(xi , xl)−vT D(xi , x j ) − 1

]
−vT σ

⎫
⎬

⎭ ,

(12)

where σ = [σ1, . . . , σK ]T . Then by taking derivative against
v we get:

v =
∑

i jl
μi jlηi j

[
D(xi , xl) − D(xi , x j )

]

+ σ − C0

∑
i j

ηi j D(xi , x j ). (13)

Define set P as the set of indexes i, j, l that satisfy the con-
ditions of ηi j = 1, yil = 0, and that xl invades the “perime-
ter” around the input xi defined by its target neighbor x j ,
i.e., 0 ≤ D(xi , xl) − D(xi , x j ) ≤ 1. Define set Q as the
set of indexes i, j that satisfy ηi j = 1. Next, we can use μp,
p ∈ P to replace the original notation μi jl , use Dp

P , p ∈ P to
replace the corresponding D(xi , xl)−D(xi , x j ), and use Dq

Q,
q ∈ Q to replace the corresponding D(xi , x j ). Define u =
[μ1, . . . , μ|P |]T , |P| × K matrix DP =

(
D1

P , . . . , D|P |
P

)T
,

and |Q| × K matrix DQ =
(

D1
Q, . . . , D|Q|

Q
)T

. Through

some derivation, we obtain the dual of Eq. (12) as follows:

maxσ,u

{
−1

2
uT DPDT

Pu + C0uT DPDT
Q1Q + uT 1P

−1

2
σ T σ − uT DPσ + C0σ

T DT
Q1Q

}
, (14)

where 1Q (1P ) is a |Q|-dim (|P|-dim) vector whose elements
are all ones.

When σ is fixed, Eq. (14) can be further rewritten to the
following QP problem:

maxu

{
1

2
uT DPDT

Pu+uT
(

C0DPDT
Q1Q+1P −DPσ

)}
,

s.t. ∀p ∈ P, 0 ≤ μp ≤ C. (15)

On the other hand, when u is fixed, Eq. (14) turns into the
following QP problem:

maxσ

{
−1

2
σ T σ + σ T

(
C0DT

Q1Q − DT
Pu

)}
,

s.t. ∀k = 1, . . . , K , σk ≥ 0. (16)

Therefore, we can iteratively solve the QP problems of
Eqs. (15) and (16) and obtain the desired weights v through
Eq. (13).

For each of the QP problems, since we have positive defi-
nite Q (or positive semi-definite Q that can be made positive
definite by using practical tricks), it can be solved efficiently
in polynomial time.

7.3 Grouplet-based kernels

One of the most intuitive kernels that incorporates the AVG
information is the grouplet-based chi-square RBF kernel.
That is, each DG

k (xi , x j ) is a chi-square distance:

DG
k (xi , x j ) =

∑

wm∈Gk

[
fwm (xi ) − fwm (x j )

]2

1
2

[
fwm (xi ) + fwm (x j )

] , (17)

where fwm (xi ) is the feature of xi corresponding to the code-
word wm in AVG Gk . When vk = 1, k = 1, . . . , K ,
Eq. (17) will give the standard chi-square RBF kernel.
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Fig. 6 Comparison of various
BoW representations as well as
their early-fusion combinations
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From another perspective, we can treat each AVG as a
phrase, which consists of the orderless codewords associ-
ated with that AVG. Analogous to measuring the similarity
between two text segments, we should take into account the
word specificity [26] in measuring the similarity between
data points. One popular way of computing the word speci-
ficity is to use the inverse document frequency (idf). There-
fore, we use the following metric to compute DG

k (xi , x j ):

1∑
wm∈Gk

idf(wm)

∑

wm∈Gk

idf(wm)

[
fwm (xi ) − fwm (x j )

]2

1
2

[
fwm (xi ) + fwm (x j )

] .

(18)

idf(wm) is computed as the total number of occurrences of all
codewords in the training corpus divided by the total number
of occurrences of wm in the training corpus. Using either the
chi-square distance Eq. (17) or the idf-weighted chi-square
distance Eq. (18), respectively, the distance metric learning
method developed in the previous Sect. 7.2 can be applied to
find the optimal metric and compute the optimal kernels for
concept classification.

Finally, as described in Sect. 6, we have four types of
audio-visual dictionaries by studying four types of audio-
visual temporal correlations. The distance metric learning
algorithm described in Sect. 7.2 can be applied to each type
of dictionary individually, and four types of optimal kernels
can be computed. After that, the Multiple Kernel Learning
technique [36] is adopted to combine the four types of kernels
for final concept detection.

8 Experiments

We evaluate our algorithm over the large-scale CCV set [19],
containing 9317 consumer videos from YouTube. The videos
are captured by ordinary users under unrestricted challeng-
ing conditions, without post-editing. The original audio sou-
ndtracks are preserved, in contrast to other large-scale news
or movie video sets [22,34]. This allows us to study legitimate
audio-visual interactions. Each video is manually labeled to
20 semantic concepts by using Amazon Mechanical Turk.
More details about the data set and category definitions can
be found in [19]. Our experiments take similar settings as
[19], i.e., we use the same training (4659 videos) and test
(4658 videos) sets, and one-versus-all SVM classifiers. The
performance is measured by Average Precision (AP, the area
under uninterpolated PR curve) and Mean AP (MAP, aver-
aged AP across concepts).

To demonstrate the effectiveness of our method, we first
evaluate the performance of the state-of-the-art BoW rep-
resentations using different types of individual audio and
visual features exploited in this paper, as well as the perfor-
mance of their various early-fusion combinations. The AP
and MAP results are shown in Fig. 6. These BoW represen-
tations are generated using the same method as [19]. The
results show that the individual visual SIFT, audio MFCCs,
and audio transient event feature perform comparably over-
all, each having different advantages over different concepts.
The combinations of audio and visual BoW representations
through multi-modal fusion can consistently and signifi-
cantly improve classification. For example, by combining the
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Fig. 7 Performances comparison of different approaches using individual types of audio-visual dictionaries

three individual features (“SIFT+MFCCs+Trans”), com-
pared with individual features, all concepts get AP improve-
ments, and the MAP is improved by over 33 % on a relative
basis. Readers may notice that our “SIFT” performs differ-
ently than that in [19]. This is because we have only a single
type of SIFT feature (i.e., SIFT over DoG keypoints) and gen-
erate the BoW representation using only the 1 × 1 spatial
layout, while several types of keypoints and spatial layouts
are used in [19]. Actually, our “MFCCs” performs similarly
to that in [19], due to the similar settings for feature extraction
and vocabulary construction.

Next, we show the classification performance of using
different types of individual audio-visual dictionaries, (i.e.,
D f −v, f −a , D f −v,b−a , Db−v, f −a , and Db−v,b−a). Each
audio-visual dictionary contains about 200 ∼ 300 AVGs on
average. The results are shown in Fig. 7a–d. The goal is
to demonstrate the usefulness of the proposed AVG-based
distance metric learning algorithm. Here we compare 6 dif-
ferent approaches: the standard chi-square RBF kernel (“χ2-
RBF”); the “w-direct” method that uses distance metric
learning to directly combine χ2 distances computed over
individual audio and visual vocabularies; the chi-square RBF
kernel that uses the idf information (“idf-χ2-RBF”); the

“w-idf-direct” method that uses distance metric learning to
directly combine idf-weighted χ2 distances computed over
individual audio and visual vocabularies; the weighted chi-
square RBF kernel with distance metric learning that uses the
AVGs (“w-χ2-RBF”); and the weighted chi-square RBF ker-
nel with distance metric learning that uses both the idf infor-
mation and the AVGs (“w-idf-χ2-RBF”). In other words,
“w-direct”, “w-idf-direct”, “χ2-RBF” and “idf-χ2-RBF” do
not use any AVG information. From the figures we can see
that by finding appropriate weights of AVGs through our
distance metric learning, we can consistently improve the
detection performance. For example, for all four types of
AVGs, “w-χ2-RBF” works better than “χ2-RBF” on aver-
age, and “w-idf-χ2-RBF” outperforms “idf-χ2-RBF.” Also,
the advantages of “w-idf-χ2-RBF” are quite apparent, i.e.,
it performs the most efficiently over almost every concept
across all types of AVGs. In comparison, without generating
the AVGs, by directly applying distance metric learning to
combine individual audio and visual vocabularies, “w-direct”
and “w-idf-direct” cannot bring any overall improvements.
One possible reason is due to the large amount of parame-
ters to learn for distance metric learning in such cases, e.g.,
4000 for each type of vocabulary, one corresponding to each
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Fig. 8 Comparison of individ-
ual foreground/background
audio/visual vocabularies
and audio-visual dictionaries

n

feature dimension. This problem is effectively alleviated by
incorporating the AVG representation, where the amount of
parameters to learn is largely reduced.

Then, we compare the classification performance of using
individual foreground and background audio and visual
vocabularies (i.e., V f −v , V f −a , Vb−v , and Vb−a) via the
BoW representation, as well as using various types of indi-
vidual audio-visual dictionaries via “w-idf-χ2-RBF” kernel.
The results are given in Fig. 8. From the figure, we can see
that for individual vocabularies, visual foreground performs
better than visual background in general, while audio back-
ground performs better than audio foreground. Such results
are within our expectation, because of the importance of
the visual foreground in classifying objects and activities,
as well as the effectiveness of audio background environ-
mental sounds in classifying general concepts as shown by
previous work [5,19]. Compared with the visual foreground,
visual background wins over “wedding ceremony” and “non-
music performance,” because of the importance of the back-
ground settings for these concepts, e.g., the flower boutique
and seated crowd for “wedding ceremony,” and the stadium
or stage setting for “non-music performance.” In the audio
aspect, audio foreground outperforms audio background over
three concepts, “dog,” “birthday,” and “music performance,”
because of the usefulness of capturing consistent foreground
sounds in these concepts. Through exploring temporal audio-
visual interactions, audio-visual dictionaries generally out-
perform the corresponding individual audio or visual vocab-
ularies. For example, the MAP of D f −v, f −a outperforms
those of V f −v and V f −a , on a relative basis, by roughly 40
and 50 %, respectively, and the MAP of Db−v,b−a outper-
forms those of Vb−v and Vb−a by roughly 50 and 40 %,
respectively.

Finally, the four types of audio-visual dictionaries are
combined together to train concept classifiers so that the
advantages of all dictionaries in classifying different con-
cepts can be exploited. Figure 9 shows the final perfor-
mance, where multiple kernel learning is applied to find the
optimal weights to combine kernels computed over individ-
ual audio-visual dictionaries. Here we compare our “MKL-
w-idf-χ2-RBF” approach with three other alternatives: the
early fusion of the BoW representations from multiple types
of features (“SIFT+MFCCs+Trans”), which is considered
the state-of-the-art in the literature; the “MKL-Vocabulary”
method where multiple kernel learning is used to com-
bine standard χ2-RBF kernels computed over the four types
of individual audio and visual foreground and background
vocabularies; and the “MKL-Dictionary” method where mul-
tiple kernel learning is used to combine χ2-RBF kernels
computed over individual audio-visual dictionaries based
on the AVG-based features generated by aggregating BoW
bins, as described in Fig. 5. From the figure we can see that
our “MKL-w-idf-χ2-RBF” can consistently and significantly
outperform other alternatives over all concepts. Compared
with “SIFT+MFCCs+Trans,” “w-idf-χ2-RBF” improves the
overall MAP by more than 20 %, and significant AP gains
(more than 20 %) are obtained over 12 concepts, e.g., roughly
40 % gain over “basketball,” 60 % gain over “biking,” 40 %
gain over “wedding reception,” 40 % gain over “wedding
ceremony,” and 40 % gain over “non-music performance.”
Compared with the “MKL-Dictionary” that uses AVGs in
the naive way and the “MKL-Vocabulary” that does not use
the AVG information, we improve the AP of every concept
by more than 5 %, and over 15 concepts, the improves are
more than 10 %. The results demonstrate the effectiveness
of extracting useful AVGs to represent general videos and
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Fig. 9 Combining different
types of audio-visual
dictionaries

using AVG-based distance metric learning for concept clas-
sification.

The training process of generating AVGs is relatively
expensive in computation, where the most time consuming
part lies in the processes of conducting SIFT tracking and
computing causal matrices. However, once the AVGs are
obtained, the classification process of using such AVGs can
be reasonably fast. Specifically, the complexity of generat-
ing BoW vectors as well as concept classification are similar
to standard acts in the field, and we can reduce the sam-
ple frequency in conducting SIFT tracking to alleviate the
computational overhead. In addition, the number of AVGs
(hundreds) is usually much smaller than the original number
of codewords (thousands) in the audio and visual vocabular-
ies, and the final SVM classification is faster than traditional
BoW approaches. On average, the classification of test videos
can be real-time, i.e., it takes about 1 min to classify 20 con-
cepts over a 1-min long video, using a dual-core machine
with 8G ram.

9 Conclusion

An AVG representation is proposed by studying the statisti-
cal temporal causality between audio and visual codewords.
Each AVG encapsulates inter-related audio and visual code-
words as a whole package, which carries unique audio-visual
patterns to represent the video content. We conduct coarse-
level foreground/background separation in both visual and
audio channels, and extract four types of AVGs based on

four types of temporal audio-visual correlations, correlations
between visual foreground and audio foreground codewords,
between visual foreground and audio background code-
words, between visual background and audio foreground
codewords, and between visual background and audio back-
ground codewords. To use the AVGs for effective concept
classification, a distance metric learning algorithm was fur-
ther developed. Based on the LMNN setting, the algorithm
optimizes an iterative QP problem to find the appropriate
weights of combining individual grouplet-based distances
for optimal classification. Experiments over large-scale con-
sumer videos demonstrate that all four types of AVGs provide
discriminative audio-visual cues to classify various concepts,
and significant performance improvements can be obtained
compared with state-of-the-art multi-modal fusion methods
using BoW representations.

It is worth mentioning that our method has some limita-
tions. For videos that we cannot get meaningful SIFT tracks
or extract meaningful audio transient events, our method will
not work well. Also, the L2 regularization of weights v is used
in our distance metric learning algorithm to prevent sparse
solutions, due to the relatively small number of AVGs in
our experiments. For tasks with a large number of AVGs,
L1-norm that encourages sparsity may be a better choice.
In addition, the spatial relations of visual SIFT tracks can
be incorporated to further help classification. The spatial-
temporal audio-visual correlations can be explored in the
future, e.g., by constructing spatially-correlated visual sig-
natures first and then correlating such visual signatures with
audio codewords.
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