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Abstract Given the deluge of multimedia content that is
becoming available over the Internet, it is increasingly impor-
tant to be able to effectively examine and organize these large
stores of information in ways that go beyond browsing or col-
laborative filtering. In this paper, we review previous work
on audio and video processing, and define the task of topic-
oriented multimedia summarization (TOMS) using natural
language generation (NLG): given a set of automatically
extracted features from a video, a TOMS system will auto-
matically generate a paragraph of natural language, which
summarizes the important information in a video belong-
ing to a certain topic, and for example provides explanations
for why a video was matched and retrieved. Possible fea-
tures include visual semantic concepts, objects, and actions,
environmental sounds, and transcripts from automatic speech
recognition (ASR). We see this as a first step towards sys-
tems that will be able to discriminate visually similar, but
semantically different videos, compare two videos and pro-
vide textual output or summarize a large number of videos at
once. In this paper, we introduce our approach of solving the
TOMS problem. We extract various visual concept features,
environmental sounds and ASR transcription features from
a given video, and develop a template-based NLG system to
produce a textual recounting based on the extracted features.
We also propose possible experimental designs for continu-
ously evaluating and improving TOMS systems, and present
results of a pilot evaluation of our initial system.
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1 Introduction

Consumer-grade video is becoming abundant on the Inter-
net, and it is now easier than ever to download multimedia
material of any kind and quality. With cell phones now featur-
ing video recording capability along with broadband connec-
tivity, multimedia material can be recorded and distributed
across the world just as easily as text could just a couple
of years ago. The easy availability of vast amounts of text
gave a huge boost to the natural language processing (NLP)
research community, which was critical in order to organize
the amount of information that was suddenly available. The
above-mentioned multimedia material is set to do the same
for multi-modal audio and video analysis and generation, and
in this paper we will argue that natural language can play a
big role in organizing this information.

State-of-the-art techniques for accessing audio and video
material are mainly designed to facilitate browsing of a video,
and generate recommendations based on collaborative filter-
ing. In our vision, a good textual summary will help the user
obtain maximal information from the video, without hav-
ing to watch the video from beginning to the end. When
placed in mouse-over “tooltips”, or similar context-sensitive
elements of a graphical user interface, text can enhance
the browsing process. A single summary could for exam-
ple describe a whole set of similar videos, or a summary
could describe why a specific video is different from other,
related videos. This will be particularly useful to quickly
spot “false positives” in retrieval applications at a semantic
level, rather than a low-level feature level. Finally, a sum-
mary could compare two videos, and explain how these
videos are different. When broadcast on Twitter (which is
text oriented for efficiency), RSS feeds, or placed on ban-
ners, a good text summary could elicit interest, which will
then lead to a browsing session. In addition to facilitating
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browsing and analyzing of a video, another important goal
of our proposed summarization approach is to help the user
understand why, with respect to some external information,
a video was classified into a certain category, or why the
video was retrieved in response to a certain query. In the
process, information from audio and video modalities will
be fused, and temporal aspects will be taken into account,
which can give users a unified, coherent explanation of what
is happening in a video. Because it not just returns a list of
audio/video concepts matching the query, the advantage of
topic-oriented multimedia summarization (TOMS) lies in its
ability to merge evidence from various modalities, includ-
ing visual semantic concepts, optical character recognition
(OCR), automatic speech recognition (ASR), and semantic
audio concepts, to present the systems’ results in a natural,
intuitive format.

In order to develop TOMS, we start by building a sys-
tem capable of generating a passage of human readable text
to describe (recount) the objects, people, and activities, the
“features”, that can be observed in a video. We do this on
a dataset of videos with topic labels [26] (both manually
assigned and automatically derived labels are available), so
that the recounting is geared towards discussing the evidence
and reasoning with respect to the observations that define the
topic. These observations can eventually also be defined as
plain text, by giving a textual description of important objects
and actions that make up each topic. An earlier version of this
system was described in [8].

Given a series of features extracted from the video, the first
step of the TOMS system is to select the features that contain
the most salient information about the video, and its topic.
For example, if a video is showing a wedding ceremony, a
good recounting system should extract the important features
from the video and generate a passage that talks about the
objects, the people and the sound (speech and music) in the
video. A brief example would be:

The video is about a wedding ceremony. We saw a
crowd, people in black and white, and flowers in the
video. In the beginning, we heard wedding music, and
later people talking about the beautiful bride.

Our TOMS system uses the same features we also use for
automatically classifying videos into these topics, or events
[3,17], and was first demonstrated in [7]. In this paper, we first
present a set of exploratory experiments to generate text from
detected features, and to select salient features and feature
groups. We are currently focusing on text generation for the
two most salient semantic types of features, out of four, which
our group currently uses for video classification:

– 346 “SIN” [28] video semantic concepts (“vehicle”, “ani-
mal”, “body parts”, etc.) and ObjectBank [27] features
describe visual information, while

– English ASR output [14] captures the information in the
audio signal.

– Audio semantic concepts (“noisemes” [14], such as
“engine”, “noise”, or “music”) describe more general
audio scenes, and were added to analyze the saliency
of different feature types. In future work, we plan to also
integrate

– OCR features into the summarization process.

Eventually “actions” and other complex semantic temporal
and spatial constructs will be included in the summaries. It
should be emphasized that we are not attempting to extract
specific identities of people or objects in this work at this
point.

After feature extraction and selection, a template-based
natural language generation (NLG) system produces recount-
ing passages for the video. A topic-independent planner mod-
ule creates the summary by suitably concatenating the output
of multiple, specialized NLG modules, which are each using
a unique, manually written natural language template, to
generate a sentence about observed evidence, and its impor-
tance. While the NLG module is entirely rule-based for now,
we envision a system in which mappings from multimedia
evidence to natural language summaries are automatically
learned from data, e.g. by adapting techniques developed
for machine translation (MT), as used in the MOUNTAIN
system [16].

The paper is organized as follows. Section 2 reviews
related work in the area of audio and video summarization.
In Sect. 3, we briefly present the multimedia features that
we extract, and use for classification. Section 4 describes the
NLG system. Our exploratory user study on text generation
is described in Sect. 5, while Sect. 6 describes our initial
experiments on the salience of various feature types, and
ways to select the information that needs to be presented.
Finally, Sect. 7 concludes the paper, summarizing findings
and outlining future work.

2 Related work

2.1 Audio summarization

Automatic audio summarization is an ongoing research pur-
suit, which relies either on algorithms to identify and remove
redundancy, for example in music or noise, or first turn speech
into text, and then employ text summarization methods. The
peculiarities and potential ambiguities of decoded audio such
as high recognition error rates, lack of syntactic boundaries,
etc., need to be addressed specifically for extracting sum-
mary information from audio for content-based browsing
and skimming. Valenza et al. [35] were one of the first to
present a method combining acoustic confidence measures
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with information retrieval and extraction techniques, in order
to obtain accurate and readable summaries of broadcast news
programs. They also demonstrated how extracted summaries,
full-text speech recognizer output and audio files can be
linked together usefully with a graphical user interface. Gen-
erally, speech summarization can be performed by simply
extracting salient words [13] or sentences from the original
data, or by synthesizing new representations from the origi-
nal data [20]. The second case is of course more difficult and
harder to evaluate, but also potentially more useful, because
the information representation cannot only be compact, but
also targeted, clean, and easy to understand. It is our goal for
multimedia summarization to achieve similar progress with
respect to video retrieval. Other relevant work investigates
how “noteworthy utterances” can be extracted from meet-
ings [1], and how speech summarization is possible based
on non-textual features alone [4,11]. In all works, evaluation
(i.e. how much information is retained at a given compression
ratio, and how easy is it to comprehend) has played a major
role in the development, with the consideration and fusion of
multiple information sources proving helpful [18,24].

Of course all audio summarization work is tied closely
to progress in our understanding of basic speech-to-text and
speaker diarization algorithms, as well as audio event recog-
nition or “acoustic scene analysis” [21].

2.2 Video summarization

The large amount of multimedia data available on the Internet
is making video content summarization methods increasingly
important. Truong et al.’s article [33] about video abstraction
describes the techniques targeting video data from various
domains (e.g. online videos, movies, critiques, documen-
taries, news, home recordings, etc.) that were developed to
summarize information from the video and to present to the
user as surrogates. Some services use a single keyframe to
represent the video (like Yahoo and Alta Vista), while some
provide a context-sensitive keyframe list of the video (like
Google). Christel et al. [5,6,12] in the Informedia group at
Carnegie Mellon University have conducted research in user
interface designs for video browsing and summarization.
In their experiments, Christel et al. use single thumbnails,
thumbnail storyboards, playable video skims, and complex
“video collages” featuring multiple synchronized informa-
tion perspectives as summarization tools. They describe the
merits of discount usability techniques for iterative improve-
ment and evaluation. Christel et al. also discuss the structure
of formal empirical investigations with end users that have
ecological validity while addressing the human computer
interaction metrics of efficiency, effectiveness, and satisfac-
tion. Interestingly, most work finds no correlation between
performance and satisfaction measures [37]. Summaries
were evaluated as either informative summaries providing

succinct descriptions of the original videos, or as indicative
summaries for judging relevance given a particular search
query. In shot-based retrieval experiments, visually dense
storyboard presentations worked best, but recounting for jus-
tifying event-based retrieval was not investigated. Previously,
summarization of a video typically meant a graphical rep-
resentation such as visually rich (context sensitive) story-
boards, which were being used to help the browsing process,
for example in the Open Video Archive [22]. Video sum-
maries had a temporal aspect in terms of playable audio-
visual material [12,22], or were even seen as new “narratives”
[38], a form of storytelling, without conversions of modality.
The informative summary for a video exploiting both audio
and video information was improved with a maximal mar-
ginal relevance algorithm working across video genres [18].
Work has been performed towards automating content-based
evaluation of summaries, particularly of BBC rushes, in the
context of TrecVID [10]. The similarity to work in text sum-
marization is recognized by naming a proposed evaluation
metric for video summaries VERT [19]. Work continues to
understand and improve the user interface to video summa-
rization, for example by providing an opportunity to create
videos that match a story given in text [29], or by transform-
ing 2D videos into a 3D cube, which can be navigated [25].

In this work, our focus is on static presentation, empha-
sizing textual summaries as done by Ushiku et al. [34]. In
the evaluation we present later in this paper, we will inves-
tigate an indicative approach to summarization (providing
evidence for membership in a topical class), as well as an
informative summarization. Recently, Tan et al. [32] have
proposed utilizing audio-visual concept classifiers to gener-
ate textual descriptions of video content. In their approach,
2D static SIFT, 3D spatial-temporal interest points (STIPs)
and MFCC audio descriptors have been used to extract audio-
visual concept features from the videos. Then a rule-based
approach generated textual descriptions after manually defin-
ing a template for each concept. To evaluate, they conducted
a user study by asking 43 human evaluators to rate each text
description on a one (negative) to five (positive) scale. One-
third of the ratings were three to four, while half of them
were five. Since the evaluation was completely subjective,
the informative conclusion of the result was limited (efficacy
and efficiency were not addressed). Also, ASR and OCR fea-
tures were not applied in this work. The template approach,
which is directly linked to complete events, appears to not
scale well to large amounts of video. Our work attempts to
address some of these limitations.

Again, work in basic video retrieval contributes to video
summarization, see for example [30] or the NIST’s TrecVID
evaluation campaign [28] for discussion of the state-of-the-
art. Given that information to be included in the summary
can typically be drawn from the large pool of data gener-
ated during retrieval, feature selection strategies become a
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pressing problem: what to include in a summary, and why?
This questions has also been recognized by other researchers,
for example [37], who investigated different ways to present
visual information. Our work is different by using text as
the only, “unified” presentation modality. A similar approach
was taken by Song et al. [31], who investigated “eye-catching
and ear-catching” content of instructional videos, but had
humans create summaries, while our process is fully auto-
matic. Their evaluators judged for example that a segment
in which a single person speaks is a good candidate to be
included in a summary, which seems reasonable for a tutor-
ial video.

Another avenue that we believe text-based video summa-
rization lends itself well to, even though we do not explicit
this aspect in this paper, is multi-document summariza-
tion [36].

3 Multi-media feature definition and extraction

In this paper, each video is labeled as one of ten events
(topics) from the TRECVID 2011 Multimedia Event Detec-
tion (MED) task and database [26]:

1. Birthday_Party,
2. Changing_a_Vehicle_Tire,
3. Flash_Mob_Gathering,
4. Getting_a_Vehicle_Unstuck,
5. Grooming_an_Animal,
6. Parade,
7. Making_a_Sandwich,
8. Parkour,
9. Repairing_an_Appliance,

10. Working_on_a_Sewing_Project

In more recent work, we have extended our system to cover
five more events from the 2012 task [23]. Currently, about
1,000 videos have manual (reference) topic labels, while
about 150,000 videos are available, and have automatically
generated topic labels from the MED systems. TOMS is
designed to provide first an indicative summary that provides
evidence for membership in one of the 15 MED events, and
second to generate a recounting summary passage to present
the features and concepts that have been detected in the video.
A TOMS system can therefore create text not only for refer-
ence topic labels but also for automatically generated topic
labels, which might well be wrong.

3.1 Video-level SIN feature

We employ the visual concept detector to index all extracted
keyframes from a given video. For each keyframe, we cal-
culate scores for each of the 346 visual concepts. These

visual concept detectors are SVM classifiers trained over
the SIN task in TRECVID 2011 using MOSIFT and CSIFT
features to describe keyframes [3]. To determine the video-
level semantic indexing, we simply take the average of the
keyframe-level SIN for all keyframes within a video. We
evaluated different ways to determine the video-level SIN
representation such as taking the max, median and mean of
the keyframe-level SIN. Our experimental results show the
superiority of taking the average to merge the keyframe-level
SIN to generate video-level representations.

3.2 Ranking visual concepts

As an example for our approach to compute as many aspects
of the re-counting automatically, rather than manually coding
it in (ad-hoc) rules, we present the way in which we extract
the list of features to mention in a recounting, using a bipartite
graph:

For each video, we aim to rank the detected visual con-
cepts, in order to mention the most important ones in the
recounting. If we rank the videos according to their deter-
mined probabilities, in some cases general concepts such as
“human” and “indoor” which generally have higher prob-
abilities than others, are placed in high-ranked positions,
while they might not be discriminative and informative for
the event of interest. As the trained concept detectors gener-
ally have low precision (often around 0.17), many of them are
essentially unreasonable, and should not be used for sorting
directly.

To cope with this problem and provide a more accu-
rate visual concept-ranking list, we take both discrim-
ination and relatedness of visual concepts into account
through two steps. Considering the machine capability to
detect different visual concepts, first we remove less dis-
criminative visual concepts. Second, we take the human
perception into account and re-rank the remaining visual
concepts with respect to the manually determined ground
truth for each event. We briefly explain each step in the
following.

3.2.1 Visual concept discrimination analysis

First we determine the global rank list of visual concepts
considering their distinguishing power based on which less
discriminative concepts can be removed. To do so, we explore
pair-wise relationship between training videos and concepts
using graph propagation methods [2] to rank visual concepts
for each event in the descending order of their discriminative
power.

Let G = (V, C, E, W ) be a bipartite graph between train-
ing videos and concepts, where V is the node set for training
videos, C is the node set for concept, E is the edge set and the
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edge is weighted by Wi j . Wi j is the concept c j ’s prediction
score on video v j . The propagation process in the graph can
be written as:

f c
t+1 = αW̃ T f v

t + (1 − α)yc

f v
t+1 = αW̃ T f c

t+1 + (1 − α)yv

yv represents the initial scores of the video nodes. For each
event, we initialized its positive video nodes with wv = 1,
and its negative video nodes with wv = −1. yc represents
the initial scores of concepts nodes and we initialized all the
346 concept nodes with yc = 0. f v

t and f c
t are the updated

scores for video and concept nodes. W̃ = D−0.5
r W D−0.5

c is
the normalized weight matrix, and Dr and Dc are the diagonal
matrices with the row and column sums of W in the diagonal.
The propagation weight α was set to 0.5.

The propagation is stable once f c
t has converged. The

score of each concept node then indicates its relevance to the
event. The concept node with strong connections to positive
training video nodes will get high scores and the concept
node with strong connections to negative training video nodes
will get low scores. Table 1 shows three topic-specific visual
concept signatures. The left column is event name. The right
column lists the Top-8 concepts for this event (we ranked the
concepts according to its score in f c

t ).
Taking the minimum of determined ranks in different

events for a particular visual concept, we determine its global
rank. For instance, “car” is ranked as the Top-1 visual con-
cept since it is Top-1 for the second and the fourth event. We
observe that by using only the top 65 of 346 visual concepts,
we can still achieve 90 % performance in the MED task, so
we restrict ourselves to these concepts, prune less discrim-
inative concepts for recounting, and call the ranking result
the event “signature”, because it shows which concepts are
important.

Table 1 Topic-specific visual concept signatures computed by bipartite
graph propagation (ranked according to f c

t )

Event Top-8 concepts in signature

Flash mob gathering Crowd, People_Marching,

3_or_More_People,

Demonstration_or_Protest,

Meeting, Cheering,

Urban_Scenes, Walking

Parkour Urban_Scenes, Building, Windows,

Outdoor, Streets, Road,

Walking_Running, Cityscape

Getting a vehicle unstuck Car, Snow, Motorcycle,

Outdoor, Landscape, Vehicle,

Boat_Ship, Ground_Vehicles

3.2.2 Re-ranking using human-generated list of relevant
concepts

In addition to the extracted SIN feature, we also know the
event that the video belongs to. We can take this a priori
knowledge into account and refine the ranked list of visual
concepts, so that concepts that humans think are relevant are
preferred over other concepts. In our case, the list of rele-
vant concepts for the “Parade” event is “People_Marching,
Demonstration_or_protest, 3_or_More_People, Crowd,
Adult, Cheering, Dancing, Walking, Joy, US_Flags,
Urban_Scenes, Outdoor, Daytime_Outdoor, City, Streets,
Vehicle, Road, Traffic, Meeting, Building, Politicians,
Cityscape, Urban_Park, Trees, Road_Block”. This list was
manually derived from a textual description of the “Parade”
event, provided together with the videos. It could also be
extracted automatically in the future, by using techniques
similar to those discussed in the previous section. Visual con-
cepts are re-ranked with respect to

ScoreV (c) = 1

R(c)/65 + RM (c)

where c and R(c) refer to the remaining visual concepts in
the signature, determined in the previous section, and their
rank, respectively. RM (c) is the rank of c in the human-
generated list of relevant concepts. After the re-ranking of
visual concepts, for visualization, we determine a represen-
tative keyframe for each visual concept to be the one that has
the maximum score for the corresponding visual concept.

3.3 ASR transcript feature

We extract the words spoken in a video using ASR, as
described in [3]. We aim to identify the most relevant
and informative words in the transcript with respect to the
detected event. Conventionally, words with higher TFIDF
score are considered more important. However, as we are
observing around 60 % word error rate, some words, which
occurred only once in a video and have relatively low TFIDF
scores, can be highly related to the event and quite useful
for TOMS. In addition, due to the presence of the ambient
noises in the videos, many ASR transcripts include frequent
words, which are incorrectly recognized and consequently
they are not related to the event while they have relatively high
TFIDF scores. To tackle this problem, we put more weights
on words which are semantically related to the description of
the detected event. We utilize the integration of WordNet [9]
and Wikipedia-based [15] similarities to measure the relat-
edness of each word to the event kit description of interest.
Moreover, we determine unique words for each event (i.e.
words occurred more frequently in a particular event) based
on the given positive samples in the development data. Using
the list of unique words for the event of interest, we assign
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Fig. 1 TOMS system architecture: while the features vary for each
video, the planner contains code that is specific for each topic

higher weights on these unique words if they appear in the
ASR transcript.

In conclusion, we can determine the score for each word in
the ASR transcript as shown below, and ranked them using:

ScoreT (ti ) = TF(ti )

∗
(

1

max j=1,...,n TF(t j )
+ WNSIM(ti ) + UNQ(ti )

)

where ti and t j are the i th and the j th terms in the ASR tran-
script of a video, respectively. TF(ti ) is the term frequency of
ti . WNSIM(ti ) is the maximum of the semantic similarities
between ti and all words in the description of detected event.
n is the number of terms in the ASR transcript of the video.
Note that we remove stop words and use the stemmer to con-
vert every term to its original form before semantic similarity
calculation. UNQ(ti ) is 1 if ti is included in the unique word
list of detected event. Otherwise it equals zero.

4 Natural language generator

We have implemented a template-based NLG system to gen-
erate written text about a given video. Figure 1 shows the
general system architecture.

The Recounting Planner’s “Generator” receives the fea-
tures extracted from the video (i.e. visual concepts with prob-
abilities, ASR transcripts, etc.), and triggers several NLG
modules to generate text using pre-defined, static templates.
Currently, we have NLG modules that can deal with ASR
output and visual concepts, generating one or more sentences
each time they are called. A “generic” module generates text
that does not directly refer to specific evidence. The planner
calls other modules, such as the “activity” module and the
“constrain” module, in order to generate high-level obser-
vations, which are technically generic, but are often called
for one or very few topics only. We are using the YAML

markup language to abstract the recounting module from the
user interface, and also for the communication between the
individual modules. The user interface currently creates web
pages, which can be shown in any browser, and also includes
references to the original videos and keyframes, although we
have so far allowed internal access only. In the following sub-
sections we explain how each module works and what kind
of result it will return.

4.1 Generic module

The first module is the general module. It generates a general
sentence talking about which topic this given video belongs
to. Currently there are three natural language templates in
the generic module:

– This is a <Topic_Name> event.
– The video shows the event of <Topic_Name>.
– This video is about <Topic_Name>.

Using the label given by the detection part, we fill in the
blank with the name of the event. For example, if the label
is “Birthday_Party”, we just fit this event name in one of the
three templates (randomly picked) and compose a sentence
like: “This is a Birthday_Party event.” The use of several
templates reduces the monotonicity of the recounting, while
preserving accuracy.

4.2 Visual concept module

The visual concept module generates several sentences talk-
ing about the objects and scenes that are observed in the
video. The input feature is a ranked list of the visual con-
cepts, together with their confidence scores. The visual con-
cept module executes the algorithm described in Sect. 3.2,
to determine which features to mention in the recounting for
this specific video, and this event.

After re-ranking the visual concepts, we pick the top 5
percent concepts as the video’s visual concepts and use them
to generate recounting sentences. These top 5 percent visual
concepts are then compared with the topic signatures (see
Table 1 for examples) and divided into two subsets: the posi-
tive subset and the negative subset. If a concept in this video
can be found in the event’s “most relevant” signatures, which
are the top visual concepts in the event’s signature, then this
concept is assigned to the “positive” subset; if a concept we
detected from the video exists in the event’s “least relevant”
signature list (the last 50 visual concepts in the event’s sig-
nature list), we regard it as a “negative” visual concept. We
use the “positive” subset of visual concepts to generate one
to three recounting sentences, and use the “negative” visual
concepts to generate one to two recounting sentences.
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In the three sentences that address the positive visual con-
cepts, we set two thresholds to separate the “most relevant”
visual concepts according to different confidence values. If
the confidence value is larger than 0.6, we use the following
template to generate a sentence:

We saw <List_of_Visual_Concepts> in the video.

If a visual concept’s confidence value is less than 0.6, we
employ the template:

We <adv> saw <List_of_Visual_Concepts> in the
video.

The adverb here has two different values: “probable” and
“possible”. If the confidence value of a visual concept is
less than 0.6 but higher than 0.3, we choose the preposition
“probable”. If the confidence value is less than 0.3, we just
use the preposition “possible” because our system is not very
sure about this visual concept. We introduced this distinction
in response to initial user tests, as described in the next section
of this paper.

An example recounting text generated from the Visual
Concept Module could be like:

We saw Body_Parts in the video. We probably saw
Indoor and Room in the video. We possibly saw
3_Or_More_People, Food and Joy in the video.

While it is clear that the quality of the text can be improved
(we could for example map “Body_Parts” to “body parts” on
the screen), we retain this format for debugging purposes for
now.

4.3 Module for text concepts

The format of the ASR Transcription features entering the
TOMS system is a list of high-level semantic words (like
“car”, “open”, “tool”, etc.). The scoring and ranking method
for these features have been described in Sect. 3.3.

With the ranked ASR Transcription list, some templates
are generated to express these transcriptions in natural lan-
guage. The template in this module is similar to the visual
concept module:

We<adv> heard the words<List_of_ASR
Transcriptions> in the video.

If one word has very high confidence and is very related to
the event, we just omit the adverb. If the system is not that
sure about whether it heard the word in the video, we put
“probably” as the adverb here to generate a sentence like:

We probably heard the words glass, clean and hand in
the video.

Again, both types of sentences can be produced, if required,
and the confidence values have been set empirically for now.

4.4 Activity module

The “activity” module implements a grammar-based algo-
rithm, which attempts to generate more relevant and complex
sentences from certain, frequently observed combinations of
visual concepts, than the baseline visual concept module.

In order to address “activities” in the video, we man-
ually labeled all 364 visual concepts with a tag, defin-
ing the category of this concept. Currently, we are using
four kinds of tags: Subject, Activity, Object, and Loca-
tion. “Subject” refers to the concepts that can be sub-
jects in the sentence, like “Adult”, “3_Or_More_People”
and “Driver”. “Activity” contains the visual concepts that
explicitly show an activity: “Bicycling”, “Car_Racing” and
“Dancing”. “Object” means concepts that are typically
referred to as an object, such as “Cell_Phones”, “Chair”,
“Factory”. The “Location” tag is given to the visual con-
cepts that are locations or scenes: “Doorway”, “Fields”,
“Forests”. Again, we implemented several templates that can
be used with concepts that are labeled with these tags, for
example:

We detect <Object> <Activity> (<Object>) in
<Location>

to generate sentences about concurrent activities that are hap-
pening in the video. One example result given by the Activity
Module could be:

In this video we detected Adult Talking in Kitchen.

In the future, we plan to employ statistical language models
and parsers to improve the fluency of the output. At present,
we do not require that these concepts be detected at the same
time in the video, as we have not found examples in our
database violating this condition.

4.5 Concept–constrain module

This is an additional module that we only use in some videos
and topics. The activity during events such as “Parade”
and “Flash_Mob_Gathering” is supposed to happen out-
doors rather than indoors. This could be regarded as a con-
straint for this event. Cases where videos that were labeled as
“Parade” or “Flash_Mob_Gathering” events show high con-
fidence measures for “indoor” are addressed by generating a
sentence such as: The Parade event is more likely to be an
outdoor event, but we believe this video is indoors. Similar
to the presentation of unexpected visual concepts in the ini-
tial part of the recounting, this module generates specialized
sentences for unexpected combinations of features, which
can be an important detail for the understanding of a video.
Finally, the interface of the current TOMS System is shown
in Fig. 2.
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Fig. 2 The user interface of our current TOMS system. For diagnostic
purposes, visual and audio concepts are color coded, and the keyframes
related to important concepts can be selected directly. The interface is
realized as a web page

5 Text generation pilot experiments

Using the output of our current TOMS system and demon-
strator, we conducted two pilot studies to investigate the fol-
lowing question:

To what extent can machine-generated recounting
summaries, compared with human-generated ones,
help people recover information from a multimedia
material?

Specifically, we ran a study looking at the indicative effec-
tiveness of a textual recounting: how well can users identify
which event is indicated in the recounting. We also ran a study
looking at informational effectiveness, i.e. can a user identify
which video in the same event class matches the given text
recounting.

5.1 Experimental paradigm

We compare the recounting passages generated by our
TOMS System with human created recounting summaries
in information-recovery tasks to show how effective the
system can be in accomplishing the recounting goals of
indicativeness (“is this video an example of an event?”)
and informativeness (“what is in this specific video?”). The
information-recovery tasks include Event Selection and
Video Selection tasks, which allow us to measure summa-
rization quality progress and optimize the system.

5.2 Dataset preparation

We first collect a set of 20 recounting text passages for 20
different videos in the dataset. Among these 20 recounting
passages, 10 passages were automatically generated from
the TOMS system and the other 10 passages were written
by a person. These 20 passages are divided into four groups:

Fig. 3 TOMS event selection task interface

Group 1 and Group 2 were designed for the event selec-
tion task, and Group 3 and Group 4 were defined for the
video selection task. The composition of the four groups is as
follows:

– Group 1 contains five recounting passages, which are
generated by TOMS system. For each of the five recount-
ings exist one label that describes the event correctly,
and two confusing labels that are associated with the
recounting;

– Group 2 contains 5 recounting passages, which are gen-
erated by human editors. For each of the five recountings
exists one label that describes the event correctly, and two
confusing labels that are associated with the recounting;

– Group 3 also contains five recountings, which are gen-
erated by TOMS system. For each recounting, we show
one video that is the correct fit, and two confusing videos
associated with the recounting;

– Group 4 still contains five recounting passages, which
are generated by human editors. For each recounting, we
show one video that is the correct fit, and two confusing
videos associated with the recounting.

For both tasks, we had five samples generated by humans,
and five samples generated by our TOMS system.

5.3 Pilot study 1: event selection

Test subjects see ten recounting passages, five of which are
generated by TOMS and five by human editors. The human
editor generated the text with no knowledge of the events, i.e.,
it was an informational summary only. The TOMS method
generated evidence in favor of the video represented by the
recounting belonging to one of the ten TRECVID 2011 MED
events. Three labels were displayed to the subject with each
recounting, one correct answer event label and two confusing
event labels, as shown in Fig. 3.

5.4 Pilot study 2: video selection

Test subjects see ten recounting passages, five of which are
generated by TOMS and five by human editors. The humans
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were told to generate a summary of a video informing a reader
about what might be in that video, but without any further
limiting or guiding context. The human was not told to write
up why a given video belongs to the birthday party event
(i.e., the human was not told to generate an indicative sum-
mary). The TOMS method generated evidence in favor of
the video represented by the recounting belonging to one of
the ten TRECVID 2011 MED events. So it is set up to do an
indicative summary as to why the video belongs to the class
of videos for a given event kit (i.e., indicate why a video
belongs to a certain class). In this study, event labels are not
used. Rather, the subject is offered three videos, and asked
which of the videos the recounting represents. The task is
made more difficult for an indicative summary in that all
three videos show the same event, e.g., they all show “birth-
day party” for one recounting, and all show “parkour” for
another. This pilot test stresses the capability of an indicative
summary like TOMS being able to also act as an informa-
tional summary representing a specific video.

5.5 Experimental procedure and results

We invited ten subjects to participate in our pilot studies,
mostly students at Carnegie Mellon University, to which we
had easy access. Nine were male, all were experienced com-
puter users who watch computer-delivered video and read
English text well. Each subject was introduced to the recount-
ing idea (represent a video with text), and the two pilot stud-
ies. Each subject completed all twenty judgments (ten each
for the two pilot studies).

The overall result is shown in Fig. 4 for the ten partici-
pants (P1–P10, abscissa), with the maximum number of cor-
rect answers per study being ten. The event selection tasks,
i.e., the indicative aspect of recounting, are much simpler in
that the events are very different from each other, everything
is represented as text (Fig. 3), and TOMS is geared toward
providing evidence in support of membership for one of the
listed event classes. For the video selection problems, the
answer video and the other two videos are always from the
same event class, making it harder to choose the right one.

The performance on the event selection task is shown in
Fig. 5. Both auto-generated and manually generated recount-
ing summaries have excellent performance in the event selec-
tion task. Only one question is answered incorrectly for the
manually generated recounting, while two questions trigger
wrong answers for the auto-generated recountings.

The results for the video selection tasks are shown in
Fig. 6. The manually generated summaries outperform the
auto-generated summaries in the video selection tasks. The
average number of correct answers for the manually gener-
ated recounting per test subject is 4.7, while the number for
auto-generated recountings is 2.1. This is partly because the
current TOMS system can only render quite general features
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Fig. 4 Overall result of pilot user study: it is harder to determine the
actual video belonging to a recounting, rather than just the topic of the
recounting
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Fig. 5 Comparison of performance of automatically and manually
generated summaries in event selection tasks
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Fig. 6 Comparison of performance of automatically and manually
generated summaries in video selection tasks

and concepts of the video, while a human author can describe
more detailed and specific characteristics of the video. The
TOMS system was architected to provide evidence indicat-
ing membership in one of the MED event classes. The human
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summary was completely informational, generated without
regard to any event classes and hence often included unusual
characteristics, e.g. the display of foreign text overlays or par-
ticular noises. These details are often very helpful for users
to choose the right answer.

From the user study we also found that temporal informa-
tion is very helpful for participants. For example, in the video
selection task, one of the human-generated recounting pas-
sages starts with “A movie title with words in red . . .”. The
user can immediately distinguish the “correct” video from
the other two videos based on this information, because it
is the only one that starts with a title screen in red. More-
over, from the human-generated summaries we also found
that specific details of the video can help a lot in making a
choice (e.g. “red hat”, “birthday cake”, “a tall policeman”,
etc.).

These observations will help us make improvements to the
TOMS system in the future. In the next section, we present
a pilot study to investigate how information presentation can
be evaluated and improved.

6 Salient feature selection pilot experiments

When designing text-based video summarization, multiple
kinds of features can be taken into account, and need to be
presented suitably in the common text modality. But how
important is each feature for recognizing and describing its
content? Will the users be confused by some of the features?
How many top results (values) for each kind of feature should
be presented? In what order?

Using the features of our current TOMS system and
demonstrator, we conducted a third pilot study to investigate
the following question:

Given a set of different types of features, which of these
will a user pay more attention to, when included in a
text-based summarization of a video?

6.1 Experimental paradigm

The underlying idea is to treat the user’s attention as a lim-
ited resource, and force the participants in the study to take
decisions, in which they prefer one set of values of a cer-
tain feature over another value, or show that a particular fea-
ture goes unnoticed, no matter the feature values. Of course
it would be possible, and ultimately desirable, to evaluate
features directly on their influence on the performance in a
task at hand, but such evaluations are necessarily very nar-
row in their focus, and expensive. The proposed approach
on the other hand is very general, and allows us to extract a
maximum of diagnostic information about the quality of the
extracted features, and the way the features are presented in
text form using a simple unbiased user interface.

Fig. 7 TOMS feature selection task interface

We implemented a web page-based user interface for this
experiment, shown in Fig. 7. Because the focus is on identi-
fying useful features to include in the summarization, rather
than judging the quality of text generation, we did not use
the NLG components described earlier, but present “raw”
feature values instead.

The participants are asked to first watch a video, and then
answer several questions by clicking on radio buttons. The
user’s “mental model” is a need to identify the “best” answer
to each question, in a video selection setting. Each question
represents a certain feature type, i.e. the first question covers
SIN visual concepts, the second question presents different
ASR transcript features, etc. One of the two possible answers
to each question was pre-selected for each participant. Partic-
ipants were “paired” so that one participant had those items
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pre-selected, that another participant did not see pre-selected.
These assignments were done randomly. In this setup, we
expect to be able to categorize the features according to the
following observations:

– “Good” or “important” features: if the participant thinks
the pre-selection is correct, he or she will just leave the
pre-selection untouched. In this case, the “paired” user
will switch the answer, and the “accuracy” of the final
selection will be well above the 50 % chance level.

– “Irrelevant” or “uninformative” features: users will not
switch answers, irrespective of the pre-selection, i.e. both
the “correct” and the “incorrect” answers will tend to
remain selected, when pre-selected, and result in about
50 % of the answers being “correct”.

– “Confusing” features: users tend to switch the “correct”
as well as the “wrong” answer to each question, or select
the “wrong” answer with more than 50 % probability.

While the users do not actively perform a task in this setup,
and we did not enforce any time or other constraints, users
will tend to focus their attention on the feature type they find
most useful, and ignore the others. The experiment should
therefore tell us, which features users care about, which ones
do not interest them, and which ones the current interface
presents well, given the automatic extraction and presentation
of features.

6.2 Dataset preparation

The dataset in the user study includes six videos from
MED12’s “Cleaning_an_appliance” event. For each video,
we extract four different kinds of features: SIN visual con-
cepts, ASR transcripts, ObjectBank results, and “Noiseme”
semantic audio concepts. Two of them are from the “visual”
modality, while the other two features come from the
“acoustic” modality. SIN visual concepts represent people,
actions, or scenes that are observed in the video, for exam-
ple “outdoor”, “road” or “3_or_more_people” (cf. Sect. 3.1).
The ObjectBank detectors output labels such as “cow”, “car”,
or “airplane” [27]. ASR output was segmented and filtered
for noises before printing, and “Noisemes” represented 42
classes such as “music” and “engine noise”.

Similar to the previous experiment, we recruited 16 inter-
nal participants who knew about the overall goal of the TOMS
system, but were not told about the exact goal of this study
before participation. In particular, they did not know what the
“expected” values of the features were for the given event.

The textual values of the answers were automatically gen-
erated using our 2012 TRECVID MED and MER systems.
The “correct” answer to each question was taken from the
actual system output for the corresponding video, while the
“competing” answer came from a randomly selected differ-

Fig. 8 Accuracy of participants’ classification of feature values for the
four feature types. Chance level is at 50 %. Participants can identify the
“correct” ASR feature correctly in 63 % of cases (statistically significant
at the 0.1 % level), while the SIN visual concepts feature is confusing
(also at 0.1 % level)

ent video in the test set for this experiment. In this sense,
the setup is similar to the “Video Selection” task presented
earlier, and the outcome will reflect the suitability of a fea-
ture given the performance of the current feature extraction
and presentation: if a feature cannot be extracted reliably,
or is presented in an unsuitable format, we expect that the
participants will not be able to identify the “correct” answer
reliably.

6.3 Pilot study 3: feature selection experiment and results

From the log files collected during completion of the
web forms, we extracted two types of measurements.
The classification accuracy measures how many questions
the participants answered correctly, i.e. how often the auto-
matically extracted feature extracted from the reference video
was preferred over the feature value extracted from a com-
peting video. The second measurement is the “switch rate”,
which describes the percentage of answers which a partici-
pant switched from the default, pre-selected response.1

Given 16 participants who each labeled 6 videos, we
have 96 data points in total, each describing 4 feature types.
Figure 8 shows the accuracy of the participants’ response,
while Fig. 9 shows the amount and type of switching the
participants exhibited.

The results show that, in this implementation and presen-
tation, only the ASR features could probably provide useful
information to a user. Given two competing ASR feature val-
ues, participants are able to identify the correct one, and will
typically correct the wrongly pre-selected value, even when
not required to do so. “Noiseme” and “ObjectBank” features

1 Our current experimental setup does not allow us to measure “click
rate”, which could be used to see if participants switched an answer mul-
tiple times, switching back and forth the response, possibly indicating
confusion.
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Fig. 9 Degree and direction of participants’ “switching” of pre-
selected answers. 31 visual concepts (of 48) were switched from the
correctly pre-selected answer to a wrong answer, while only 15 were
switched from the wrong answer to the correct one. The total amount of
switching was also greatest for the SIN visual concepts (46 switches),
while ASR was only switched in 31 cases (effectively correcting 15
answers)

are selected roughly at chance level, and while almost half
the users switch the “ObjectBank” feature, and a third of the
users switch the “noiseme” feature, the resulting accuracy is
not better than chance at the 5 % level. It is interesting to
note that the visual “ObjectBank” feature appears to be less
prominent than the “noiseme” feature, which participants
corrected more often (as often, in fact, as the ASR features).
The “SIN” features, however, with the current confidence-
based selection algorithm, are confusing to the user, because
their accuracy is well below chance. Our work should there-
fore focus on improving the SIN features first, because they
do get a lot of attention from the users.

6.4 Improvements resulting from experiments

The experiments resulted in a number of observations, which
we used to improve the feature extraction and presentation
in a user-centric design process. As feature ranking is easier
to change than feature extraction, we started by exploring
different ways of ranking the extracted SIN concepts.

In the new approach, regardless of the detected or given
topic, for a given video, we aim to rank higher visual con-
cepts that have been detected with a higher confidence. We
expect that these visual concepts can be used to describe a
video’s content. The drawback is that the general concepts
like “Apartments” or “Primate”, which have a higher proba-
bility in general, are ranked at top (cf. Fig. 7). To solve this
problem, we can use Inverse Document Probability (IDP) to
normalize the SIN score as follows

IDP( j) = −log(avgk=1,...,n(SIN(k, j))

SIN1(i, j) = SIN(i, j) ∗ IDP( j)

Table 2 Comparison of naive and improved selection of feature values
for the third pilot study.

Naive selection Improved selection

Man_Made_Thing Room

Eukaryotic_Organism Kitchen

Body_Parts Hand

Room Clearing

Single_Person Adult_Female_Human

where SIN(i, j) refers to the probability of the j th visual con-
cept in the i th video of the development dataset. For further
refinement, we can use average accuracy for each concept
which is calculated on SIN dataset using given labels:

SIN2(i, j) = f (SIN1(i, j), AverageAccuracy( j))

where j ∈ {1, 2, . . . , 346} and f () refers to the product func-
tion, but other functions can also be used.

Looking at examples, SIN1 seems to deliver better results
than the other metrics, so it will be used in an updated user
study. Table 2 shows an example. Besides the event-specific
visual concepts, which refer to the more relevant concepts
for the determined event as explained in Sect. 3.2, we also
have video-specific visual concepts, which are detected with
high confidence in some keyframes of the video. These can
help to identify the video among all the videos in the same
event.

To improve the quality of ASR transcripts, we use TF-IDF
to calculate the relevant of each ASR results to the event kit,
and then rank the ASR transcripts according to its relevance
to the event. For ObjectBank results, we processed them in the
same way as proposed for the visual concepts (see Sect. 3.2),
to make them more understandable to human users and more
relevant to the event. For audio concepts, we use the duration
histogram of each audio concept in the video to mention
that in this video we can mainly hear the sound of music,
singing or noise. We use bipartite graph matching to map the
42 noisemes to the five events, so that some noisemes are
more important for specific events. All the audio concepts
are ranked based on their percentage in the video.

7 Conclusion

In this paper, we first reviewed recent and ongoing research
in the area of multimedia summarization. We motivated the
need to go beyond browsing-based retrieval paradigms, and
defined the task of topic-oriented multimedia summarization
(TOMS). We differentiated our work from prior systems in
that we are investigating static summaries with a text com-
ponent, i.e. ones that can be viewed all at once, rather than
playable video gists or skims that have a dynamic element.
We presented our TOMS system, which is currently capable
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of generating text-based recountings for videos belonging
to one of fifteen multimedia event detection (MED) events
in a database of (currently) 5,000 h. Our automatic system
includes and fuses state-of-the-art audio and video features,
and can be used to explain for example why a certain video
is assigned to a certain topic, or how videos belonging to the
same topic differ.

The aim of the presented pilot user studies is to develop a
method that can be used to evaluate the performance of mul-
timedia summarization systems directed toward indicative
and informative uses. Our work provides preliminary eval-
uation results for text-based multimedia summarization. We
propose to eventually use iterative user test, a method that
can be applied to a broad set of problems, and approaches.
The current demonstrator platform can be adapted for crowd-
sourcing experiments and demonstration purposes on the
web, so our initial experimental results can and will be used
as benchmarks in future work.

In this paper, we proposed and tested methods to mea-
sure the performance of a TOMS system in video selection
and event selection tasks, and compared them with a human
baseline. We analyzed the differences to the baseline at the
level of absolute performance and observations included in
the system output, and showed how these results can be used
to guide future development at the “discourse” level of text
generation. At a more abstract level, we then performed a
study to see which of the automatically extracted features
(e.g. semantic audio or video concepts, speech recognition
transcripts, or objects) users tend to pay attention to, which
will inform future research on which features to present, and
how.

In future work, we will integrate more features to guide the
recounting, further improve our system using a user-centric
design incorporating the evaluation metrics of NIST’s multi-
media event recounting (MER) task [23], and try to scale up
and automate the evaluation process, addressing both indica-
tive and informative aspects of recounting.
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