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Abstract
Music recommender systems (MRSs) have experienced a boom in recent years, thanks to the emergence and success of online
streaming services, which nowadays make available almost all music in the world at the user’s fingertip. While today’s MRSs
considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges.
In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond
simple user–item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences,
and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and
survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research
is facing, from both academic and industry perspectives. We review the state of the art toward solving these challenges and
discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of
the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in
MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in
the field.
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1 Introduction

Research inmusic recommender systems (MRSs) has recently
experienced a substantial gain in interest both in academia
and in industry [162]. Thanks to music streaming services
like Spotify, Pandora, or Apple Music, music aficionados
are nowadays given access to tens of millions music pieces.
By filtering this abundance of music items, thereby limiting
choice overload [20], MRSs are often very successful to sug-
gest songs that fit their users’ preferences. However, such
systems are still far from being perfect and frequently pro-
duce unsatisfactory recommendations. This is partly because
of the fact that users’ tastes and musical needs are highly
dependent on amultitude of factors, which are not considered
in sufficient depth in currentMRS approaches, which are typ-
ically centered on the core concept of user–item interactions,
or sometimes content-based item descriptors. In contrast, we
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argue that satisfying the users’ musical entertainment needs
requires taking into account intrinsic, extrinsic, and con-
textual aspects of the listeners [2], as well as more decent
interaction information. For instance, personality and emo-
tional state of the listeners (intrinsic) [71,147] as well as
their activity (extrinsic) [75,184] are known to influence
musical tastes and needs. So are users’ contextual factors
including weather conditions, social surrounding, or places
of interest [2,100]. Also the composition and annotation of a
music playlist or a listening session reveal information about
which songs go well together or are suited for a certain occa-
sion [126,194]. Therefore, researchers and designers ofMRS
should reconsider their users in a holisticway in order to build
systems tailored to the specificities of each user.

Against this background, in this trends and survey arti-
cle, we elaborate on what we believe to be among the most
pressing current challenges in MRS research, by discussing
the respective state of the art and its restrictions (Sect. 2). Not
being able to touch all challenges exhaustively, we focus on
cold start, automatic playlist continuation, and evaluation of
MRS. While these problems are to some extent prevalent in
other recommendation domains too, certain characteristics of
music pose particular challenges in these contexts. Among
them are the short duration of items (compared to movies),
the high emotional connotation of music, and the acceptance
of users for duplicate recommendations. In the second part,
we present our visions for future directions in MRS research
(Sect. 3). More precisely, we elaborate on the topics of
psychologically inspired music recommendation (consider-
ing human personality and emotion), situation-aware music
recommendation, and culture-awaremusic recommendation.
We conclude this article with a summary and identification of
possible starting points for the interested researcher to face
the discussed challenges (Sect. 4).

The composition of the authors allows to take academic
as well as industrial perspectives, which are both reflected
in this article. Furthermore, we would like to highlight that
particularly the ideas presented as Challenge 2: Automatic
playlist continuation in Sect. 2 play an important role in the
task definition, organization, and execution of the ACMRec-
ommender Systems Challenge 20181 which focuses on this
use case. This article may therefore also serve as an entry
point for potential participants in this challenge.

2 Grand challenges

In the following, we identify and detail a selection of
the grand challenges, which we believe the research field
of music recommender systems is currently facing, i.e.,
overcoming the cold start problem, automatic playlist contin-

1 http://www.recsyschallenge.com/2018.

uation, and properly evaluatingmusic recommender systems.
We review the state of the art of the respective tasks and its
current limitations.

2.1 Particularities of music recommendation

Before we start digging deeper into these challenges, we
wouldfirst like to highlight themajor aspects thatmakemusic
recommendation a particular endeavor and distinguishes it
from recommending other items, such as movies, books, or
products. These aspects have been adapted and extended
from a tutorial on music recommender systems [161], co-
presented by one of the authors at the ACM Recommender
Systems 2017 conference.2

Duration of items In traditional movie recommendation, the
items of interest have a typical duration of 90min or more. In
book recommendation, the consumption time is commonly
even much longer. In contrast, the duration of music items
usually ranges between 3 and 5min (except maybe for clas-
sical music). Because of this, music itemsmay be considered
more disposable.

Magnitude of items The size of common commercial music
catalogs is in the range of tens ofmillionsmusic pieces, while
movie streaming services have to deal with much smaller
catalog sizes, typically thousands up to tens of thousands
of movies and series.3 Scalability is therefore a much more
important issue in music recommendation than in movie rec-
ommendation.

Sequential consumption Unlike movies, music pieces are
most frequently consumed sequentially, more than one at
a time, i.e., in a listening session or playlist. This yields a
number of challenges for a MRS, which relate to identifying
the right arrangement of items in a recommendation list.

Recommendation of previously recommended items Recom-
mending the same music piece again, at a later point in time,
may be appreciated by the user of a MRS, in contrast to a
movie or product recommender, where repeated recommen-
dations are usually not preferred.

Consumption behavior Music is often consumed passively,
in the background. While this is not a problem per se, it
can affect preference elicitation. In particular when using
implicit feedback to infer listener preferences, the fact that

2 http://www.cp.jku.at/tutorials/mrs_recsys_2017.
3 Spotify reports about 30 million songs in 2017 (https://press.spotify.
com/at/about); Amazon’s advanced search for books reports 10 mil-
lion hardcover and 30 million paperback books in 2017 (https://www.
amazon.com/Advanced-Search-Books/b?node=241582011), whereas
Netflix, in contrast, offers about 5,500 movies and TV series as
of 2016 (http://time.com/4272360/the-number-of-movies-on-netflix-
is-dropping-fast).
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a listener is not paying attention to the music (therefore,
e.g., not skipping a song) might be wrongly interpreted as
a positive signal.

Listening intent and purposeMusic serves various purposes
for people and hence shapes their intent to listen to it. This
should be taken into account when building aMRS. In exten-
sive literature and empirical studies, Schäfer et al. [155]
distilled three fundamental intents of music listening out of
129 distinct music uses and functions: self-awareness, social
relatedness, and arousal andmood regulation.Self-awareness
is considered as a very private relationship with music listen-
ing. The self-awareness dimension “helps people think about
who they are, who they would like to be, and how to cut their
own path” [154]. Social relatedness [153] describes the use
of music to feel close to friends and to express identity and
values to others.Mood regulation is concerned with manag-
ing emotions, which is a critical issue when it comes to the
well-being of humans [77,110,176]. In fact, several studies
found that mood and emotion regulation is the most impor-
tant purpose why people listen to music [18,96,122,155], for
which reason we discuss the particular role emotions play
when listening to music separately below.

Emotions Music is known to evoke very strong emotions.4

This is a mutual relationship, though, since also the emo-
tions of users affect musical preferences [17,77,144]. Due
to this strong relationship between music and emotions, the
problem of automatically describing music in terms of emo-
tion words is an active research area, commonly refereed
to as music emotion recognition (MER), e.g., [14,103,187].
Even though MER can be used to tag music by emotion
terms, how to integrate this information intoMRS is a highly
complicated task, for three reasons. First, MER approaches
commonly neglect the distinction between intended emotion
(i.e., the emotion the composer, songwriter, or performer
had in mind when creating or performing the piece), per-
ceived emotion (i.e., the emotion recognizedwhile listening),
and induced emotion that is felt by the listener. Second, the
preference for a certain kind of emotionally laden music
piece depends on whether the user wants to enhance or to
modulate her mood. Third, emotional changes often occur
within the same music piece, whereas tags are commonly
extracted for the whole piece. Matching music and lis-
teners in terms of emotions therefore requires to model
the listener’s musical preference as a time-dependent func-
tion of their emotional experiences, also considering the
intended purpose (mood enhancement or regulation). This

4 Please note that the terms “emotion” and “mood” have differentmean-
ings in psychology, whereas they are commonly used as synonyms in
music information retrieval (MIR) and recommender systems research.
In psychology, in contrast, “emotion” refers to a short-time reaction to
a particular stimulus, whereas “mood” refers to a longer-lasting state
without relation to a specific stimulus.

is a highly challenging task and usually neglected in cur-
rent MRS, for which reason we discuss emotion-aware MRS
as one of the main future directions in MRS research,
cf. Sect. 3.1.

Listening context Situational or contextual aspects [15,48]
have a strong influence on music preference, consump-
tion, and interaction behavior. For instance, a listener will
likely create a different playlist when preparing for a roman-
tic dinner than when warming-up with friends to go out
on a Friday night [75]. The most frequently considered
types of context include location (e.g., listening at work-
place, when commuting, or relaxing at home) [100] and
time (typically categorized into, for example, morning, after-
noon, and evening) [31]. Context may, in addition, also
relate to the listener’s activity [184], weather [140], or
the use of different listening devices, e.g., earplugs on
a smartphone vs. hi-fi stereo at home [75], to name a
few. Since music listening is also a highly social activ-
ity, investigating the social context of the listeners is
crucial to understand their listening preferences and behav-
ior [45,134]. The importance of considering such con-
textual factors in MRS research is acknowledged by dis-
cussing situation-aware MRS as a trending research direc-
tion, cf. Sect. 3.2.

2.2 Challenge 1: Cold start problem

Problem definition One of the major problems of recom-
mender systems in general [64,151], andmusic recommender
systems in particular [99,119] is the cold start problem, i.e.,
when a new user registers to the system or a new item is
added to the catalog and the system does not have sufficient
data associated with these items/users. In such a case, the
system cannot properly recommend existing items to a new
user (new user problem) or recommend a new item to the
existing users (new item problem) [3,62,99,164].

Another subproblem of cold start is the sparsity problem
which refers to the fact that the number of given ratings is
much lower than the number of possible ratings, which is
particularly likely when the number of users and items is
large. The inverse of the ratio between given and possible rat-
ings is called sparsity. High sparsity translates into low rating
coverage, since most users tend to rate only a tiny fraction
of items. The effect is that recommendations often become
unreliable [99]. Typical values of sparsity are quite close to
100% inmost real-world recommender systems. In themusic
domain, this is a particularly substantial problem. Dror et
al. [51], for instance, analyzed the Yahoo! Music dataset,
which as of time of writing represents the largest music rec-
ommendation dataset. They report a sparsity of 99.96%. For

123



98 International Journal of Multimedia Information Retrieval (2018) 7:95–116

comparison, the Netflix dataset of movies has a sparsity of
“only” 98.82%.5

State of the art

A number of approaches have already been proposed to
tackle the cold start problem in the music recommendation
domain, foremost content-based approaches, hybridization,
cross-domain recommendation, and active learning.

Content-based recommendation (CB) algorithms do not
require ratings of users other than the target user. Therefore,
as long as some pieces of information about the user’s own
preferences are available, such techniques can be used in cold
start scenarios. Furthermore, in the most severe case, when
a new item is added to the catalog, content-based methods
enable recommendations, because they can extract features
from the new item and use them to make recommendations.
It is noteworthy that while collaborative filtering (CF) sys-
tems have cold start problems both for new users and new
items, content-based systems have only cold start problems
for new users [5].

As for the new item problem, a standard approach is to
extract a number of features that define the acoustic prop-
erties of the audio signal and use content-based learning
of the user interest (user profile learning) in order to effect
recommendations. Feature extraction is typically done auto-
matically, but can also be effected manually by musical
experts, as in the case of Pandora’s Music Genome Project.6

Pandora uses up to 450 specific descriptors per song, such
as “aggressive female vocalist,” “prominent backup vocals,”
“abstract lyrics,” or “use of unusual harmonies.”7 Regard-
less of whether the feature extraction process is performed
automatically or manually, this approach is advantageous
not only to address the new item problem but also because
an accurate feature representation can be highly predicative
of users’ tastes and interests which can be leveraged in the
subsequent information filtering stage [5]. An advantage of
music to video is that features in music are limited to a sin-
gle audio channel, compared to audio and visual channels
for videos adding a level complexity to the content analysis
of videos explored individually or multimodal in different
research works [46,47,59,128].

Automatic feature extraction from audio signals can be
done in two main manners: (1) by extracting a feature vec-
tor from each item individually, independent of other items,
or (2) by considering the cross-relation between items in the
training dataset. The difference is that in (1) the same process

5 Note that Dror et al.’s analysis was conducted in 2011. Even though
the general character (ratingmatrices for music items being sparser than
those ofmovie items) remained the same, the actual numbers for today’s
catalogs are likely slightly different.
6 http://www.pandora.com/about/mgp.
7 http://enacademic.com/dic.nsf/enwiki/3224302.

is performed in the training and testing phases of the system,
and the extracted feature vectors can be used off-the-shelf
in the subsequent processing stage; for example, they can be
used to compute similarities between items in a one-to-one
fashion at testing time. In contrast, in (2) first a model is built
from all features extracted in the training phase, whose main
role is to map the features into a new (acoustic) space in
which the similarities between items are better represented
and exploited. An example of approach (1) is the block-level
feature framework [167,168], which creates a feature vec-
tor of about 10,000 dimensions, independently for each song
in the given music collection. This vector describes aspects
such as spectral patterns, recurring beats, and correlations
between frequency bands. An example of strategy (2) is to
create a low-dimensional i-vector representation from the
Mel-frequency cepstral coefficients (MFCCs), which model
musical timbre to some extent [56]. To this end, a univer-
sal background model is created from the MFCC vectors of
the whole music collection, using a Gaussian mixture model
(GMM). Performing factor analysis on a representation of
the GMM eventually yields i-vectors.

In scenarios where some form of semantic labels, e.g.,
genres or musical instruments, are available, it is possi-
ble to build models that learn the intermediate mapping
between low-level audio features and semantic representa-
tions using machine learning techniques, and subsequently
use the learned models for prediction. A good point of ref-
erence for such semantic-inferred approaches can be found
in [19,36].

An alternative technique to tackle the new item problem
is hybridization. A review of different hybrid and ensemble
recommender systems can be found in [6,26]. In [50], the
authors propose a music recommender system which com-
bines an acoustic CB and an item-based CF recommender.
For the content-based component, it computes acoustic fea-
tures including spectral properties, timbre, rhythm, and pitch.
The content-based component then assists the collaborative
filtering recommender in tackling the cold start problemsince
the features of the former are automatically derived via audio
content analysis.

The solution proposed in [189] is a hybrid recommender
system that combines CF and acoustic CB strategies also by
feature hybridization. However, in this work the feature-level
hybridization is not performed in the original feature domain.
Instead, a set of latent variables referred to as conceptual
genre are introduced, whose role is to provide a common
shared feature space for the two recommenders and enable
hybridization. The weights associated with the latent vari-
ables reflect themusical taste of the target user and are learned
during the training stage.

In [169], the authors propose a hybrid recommender sys-
tem incorporating item–item CF and acoustic CB based on
similarity metric learning. The proposed metric learning is
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an optimization model that aims to learn the weights asso-
ciated with the audio content features (when combined in a
linear fashion) so that a degree of consistency between CF-
based similarity and the acoustic CB similarity measure is
established. The optimization problem can be solved using
quadratic programming techniques.

Another solution to cold start is cross-domain recommen-
dation techniques,which aimat improving recommendations
in one domain (here music) by making use of information
about the user preferences in an auxiliary domain [28,67].
Hence, the knowledge of the preferences of the user is
transferred from an auxiliary domain to the music domain,
resulting in a more complete and accurate user model. Sim-
ilarly, it is also possible to integrate additional pieces of
information about the (new) users, which are not directly
related tomusic, such as their personality, in order to improve
the estimation of the user’s music preferences. Several stud-
ies conducted on user personality characteristics support the
conjecture that it may be useful to exploit this information in
music recommender systems [69,73,86,130,147]. For amore
detailed literature review of cross-domain recommendation,
we refer to [29,68,102].

In addition to the aforementioned approaches, active
learning has shown promising results in dealingwith the cold
start problem in single domain [60,146] or cross-domain rec-
ommendation scenario [136,192]. Active learning addresses
this problem at its origin by identifying and eliciting (high
quality) data that can represent the preferences of users bet-
ter than by what they provide themselves. Such a system
therefore interactively demands specific user feedback to
maximize the improvement of system performance.

Limitations The state-of-the-art approaches elaborated on
above are restricted by certain limitations. When using
content-based filtering, for instance, almost all existing
approaches rely on a number of predefined audio features
that have been used over and over again, including spectral
features, MFCCs, and a great number of derivatives [106].
However, doing so assumes that (all) these features are pre-
dictive of the user’s music taste, while in practice it has been
shown that the acoustic properties that are important for the
perceptionofmusic are highly subjective [132]. Furthermore,
listeners’ different tastes and levels of interest in different
pieces of music influence perception of item similarity [158].
This subjectiveness demands for CB recommenders that
incorporate personalization in their mathematical model. For
example, in [65] the authors propose a hybrid (CB+CF)
recommender model, namely regression-based latent factor
models (RLFM). In [4], the authors propose a user-specific
feature-based similaritymodel (UFSM),which defines a sim-
ilarity function for each user, leading to a high degree of
personalization. Although not designed specifically for the

music domain, the authors of [4] provide an interesting liter-
ature review of similar user-specific models.

While hybridization can therefore alleviate the cold start
problem to a certain extent, as seen in the examples above,
respective approaches are often complex, computationally
expensive, and lack transparency [27]. In particular, results
of hybrids employing latent factor models are typically hard
to understand for humans.

A major problem with cross-domain recommender sys-
tems is their need for data that connects two or more target
domains, e.g., books, movies, and music [29]. In order for
such approaches towork properly, items, users, or both there-
fore need to overlap to a certain degree [40]. In the absence
of such overlap, relationships between the domains must be
established otherwise, e.g., by inferring semantic relation-
ships between items in different domains or assuming similar
rating patterns of users in the involved domains. However,
whether respective approaches are capable of transferring
knowledge between domains is disputed [39]. A related issue
in cross-domain recommendation is that there is a lack of
established datasets with clear definitions of domains and
recommendation scenarios [102]. Because of this, the major-
ity of existing work on cross-domain RS uses some type of
conventional recommendation dataset transformation to suit
it for their need.

Finally, also active learning techniques suffer from a
number of issues. First of all, the typical active learning tech-
niques propose to a user to rate the items that the system
has predicted to be interesting for them, i.e., the items with
highest predicted ratings. This indeed is a default strategy in
recommender systems for eliciting ratings since users tend to
rate what has been recommended to them. Even when users
browse the item catalog, they are more likely to rate items
which they like or are interested in, rather than those items
that they dislike or are indifferent to. Indeed, it has been
shown that doing so creates a strong bias in the collected
rating data as the database gets populated disproportionately
with high ratings. This in turn may substantially influence
the prediction algorithm and decrease the recommendation
accuracy [63].

Moreover, not all the active learning strategies are neces-
sarily personalized. The users differ verymuch in the amount
of information they have about the items, their preferences,
and the way they make decisions. Hence, it is clearly inef-
ficient to request all the users to rate the same set of items,
because many users may have a very limited knowledge,
ignore many items, and will therefore not provide ratings
for these items. Properly designed active learning techniques
should take this into account and propose different items
to different users to rate. This can be highly beneficial and
increase the chance of acquiring ratings of higher quality
[57].
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Moreover, the traditional interaction model designed for
active learning in recommender systems can support build-
ing the initial profile of a user mainly in the sign-up process.
This is done by generating a user profile by requesting the
user to rate a set of selected items [30]. On the other hand,
the users must be able to also update their profile by provid-
ing more ratings anytime they are willing to. This requires
the system to adopt a conversational interaction model [30],
e.g., by exploiting novel interactive design elements in the
user interface [38], such as explanations that can describe the
benefits of providing more ratings and motivating the user to
do so.

Finally, it is important to note that in an up-and-running
recommender system, the ratings are given by users not
only when requested by the system (active learning) but
also when a user voluntarily explores the item catalog and
rates some familiar items (natural acquisition of ratings)
[30,61,63,127,146]. While this could have a huge impact on
the performance of the system, it has been mostly ignored by
the majority of the research works in the field of active learn-
ing for recommender systems. Indeed, almost all research
works have been based on a rather non-realistic assumption
that the only source for collecting new ratings is through the
system requests. Therefore, it is crucial to take into account
a more realistic scenario when studying the active learning
techniques in recommender systems,which can better picture
how the system evolves over time when ratings are provided
by users [143,146].

2.3 Challenge 2: Automatic playlist continuation

Problem definition In its most generic definition, a playlist
is simply a sequence of tracks intended to be listened to
together. The task of automatic playlist generation (APG)
then refers to the automated creation of these sequences of
tracks. In this context, the ordering of songs in a playlist to
generate is often highlighted as a characteristics of APG,
which is a highly complex endeavor. Some authors have
therefore proposed approaches based on Markov chains to
model the transitions between songs in playlists, e.g., [32,
125]. While these approaches have been shown to outper-
form approaches agnostic of the song order in terms of
log-likelihood, recent research has found little evidence that
the exact order of songs actually matters to users [177], while
the ensemble of songs in a playlist [181] and direct song-
to-song transitions [92] do matter.

Considered a variation of APG, the task of automatic
playlist continuation (APC) consists of adding one or more
tracks to a playlist in a way that fits the same target charac-
teristics of the original playlist. This has benefits in both the
listening and creation of playlists: users can enjoy listening to
continuous sessions beyond the end of a finite-length playlist,
while also finding it easier to create longer, more com-

pelling playlists without needing to have extensive musical
familiarity.

A large part of the APC task is to accurately infer the
intended purpose of a given playlist. This is challenging not
only because of the broad range of these intended purposes
(when they even exist), but also because of the diversity in the
underlying features or characteristics that might be needed
to infer those purposes.

Related to Challenge 1, an extreme cold start scenario for
this task is where a playlist is created with some metadata
(e.g., the title of a playlist), but no song has been added to the
playlist. This problem can be cast as an ad hoc information
retrieval task, where the task is to rank songs in response to
a user-provided metadata query.

TheAPC task can also potentially benefit from user profil-
ing, e.g., making use of previous playlists and the long-term
listening history of the user.We call this personalized playlist
continuation.

According to a study carried out in 2016 by the Music
Business Association8 as part of their Music Biz Consumer
Insights program,9 playlists accounted for 31% of music lis-
tening time among listeners in the USA, more than albums
(22%), but less than single tracks (46%). Other studies, con-
ducted by MIDiA,10 show that 55% of streaming music
service subscribers create music playlists, with some stream-
ing services such as Spotify currently hosting over 2 billion
playlists.11 In a 2017 study conducted by Nielsen,12 it was
found that 58%of users in theUSA create their own playlists,
32% share them with others. Studies like these suggest a
growing importance of playlists as a mode of music con-
sumption, and as such, the study of APG and APC has never
been more relevant.

State of the art APG has been studied ever since digi-
tal multimedia transmission made huge catalogs of music
available to users. Bonnin and Jannach provide a compre-
hensive survey of this field in [21]. In it, the authors frame
the APG task as the creation of a sequence of tracks that
fulfill some “target characteristics” of a playlist, given some
“background knowledge” of the characteristics of the catalog
of tracks from which the playlist tracks are drawn. Existing
APG systems tackle both of these problems inmany different
ways.

8 https://musicbiz.org/news/playlists-overtake-albums-listenership-
says-loop-study.
9 https://musicbiz.org/resources/tools/music-biz-consumer-insights/
consumer-insights-portal.
10 https://www.midiaresearch.com/blog/announcing-midias-state-of-
the-streaming-nation-2-report.
11 https://press.spotify.com/us/about.
12 http://www.nielsen.com/us/en/insights/reports/2017/music-360-
2017-highlights.html.
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In early approaches [9,10,135] the target characteristics
of the playlist are specified as multiple explicit constraints,
which include musical attributes or metadata such as artist,
tempo, and style. In others, the target characteristics are a
single seed track [121] or a start and an end track [9,32,74].
Other approaches create a circular playlist that comprises
all tracks in a given music collection, in such a way that
consecutive songs are as similar as possible [105,142]. In
other works, playlists are created based on the context of the
listener, either as single source [157] or in combination with
content-based similarity [35,149].

A common approach to build the background knowledge
of the music catalog for playlist generation is using machine
learning techniques to extract that knowledge frommanually
curatedplaylists. The assumptionhere is that curators of these
playlists are encoding rich latent information about which
tracks go together to create a satisfying listening experience
for an intended purpose. Some proposed APG and APC sys-
tems are trained on playlists from sources such as online
radio stations [32,123], online playlist websites [126,181],
and music streaming services [141]. In the study by Pichl et
al. [141], the names of playlists on Spotify were analyzed to
create contextual clusters, which were then used to improve
recommendations.

An approach to specifically address song ordering within
playlists is the use of generative models that are trained on
hand-curated playlists. McFee and Lanckriet [125] represent
songs by metadata, familiarity, and audio content features,
adopting ideas from statistical natural language process-
ing. They train various Markov chains to model transitions
between songs. Similarly, Chen et al. [32] propose a logistic
Markov embedding to model song transitions. This is similar
to matrix decomposition methods and results in an embed-
ding of songs in Euclidean space. In contrast to McFee and
Lanckriet’smodel, Chen et al.’smodel does not use any audio
features.

Limitations While some work on automated playlist con-
tinuation highlights the special characteristics of playlists,
i.e., their sequential order, it is not well understood to which
extent and in which cases taking into account the order of
tracks in playlists helps create better models for recommen-
dation. For instance, in [181]Vall et al. recently demonstrated
on two datasets of hand-curated playlists that the song order
seems to benegligible for accurate playlist continuationwhen
a lot of popular songs are present. On the other hand, the
authors argue that order does matter when creating playlists
with tracks from the long tail. Another study by McFee and
Lanckriet [126] also suggests that transition effects play an
important role in modeling playlist continuity. This is in line
with a study presented byKamehkhosh et al. in [92], inwhich
users identified song order as being the second but last impor-

tant criterion for playlist quality.13 In another recent user
study [177] conductedbyTintarev et al. the authors found that
many participants did not care about the order of tracks in rec-
ommended playlists, sometimes they did not even notice that
there is a particular order. However, this study was restricted
to 20 participants who used the Discover Weekly service of
Spotify.14

Another challenge for APC is evaluation: in other words,
how to assess the quality of a playlist. Evaluation in gen-
eral is discussed in more detail in the next section, but there
are specific questions around evaluation of playlists that
should be pointed out here. As Bonnin and Jannach [21]
put it, the ultimate criterion for this is user satisfaction, but
that is not easy to measure. In [125], McFee and Lanck-
riet categorize the main approaches to APG evaluation as
human evaluation, semantic cohesion, and sequence pre-
diction. Human evaluation comes closest to measuring user
satisfaction directly, but suffers from problems of scale and
reproducibility. Semantic cohesion as a quality metric is
easily measurable and reproducible, but assumes that users
prefer playlists where tracks are similar along a particu-
lar semantic dimension, which may not always be true,
see, for instance, the studies carried out by Slaney and
White [172] and by Lee [115]. Sequence prediction casts
APC as an information retrieval task, but in the domain of
music, an inaccurate prediction needs not be a bad recom-
mendation, and this again leads to a potential disconnect
between this metric and the ultimate criterion of user sat-
isfaction.

Investigating which factors are potentially important for
a positive user perception of a playlist, Lee conducted a
qualitative user study [115], investigating playlists that had
been automatically created based on content-based similar-
ity. They made several interesting observations. A concern
frequently raised by participants was that of consecutive
songs being too similar, and a general lack of variety.
However, different people had different interpretations of
variety, e.g., variety in genres or styles vs. different artists
in the playlist. Similarly, different criteria were mentioned
when listeners judged the coherence of songs in a playlist,
including lyrical content, tempo, and mood. When cre-
ating playlists, participants mentioned that similar lyrics,
a common theme (e.g., music to listen to in the train),
story (e.g., music for the Independence Day), or era (e.g.,
rock music from the 1980s) are important and that tracks
not complying negatively effect the flow of the playlist.
These aspects can be extended by responses of partici-
pants in a study conducted by Cunningham et al. [42],

13 The ranking of criteria (from most to least important) was: homo-
geneity, artist diversity, transition, popularity, lyrics, order, and fresh-
ness.
14 https://www.spotify.com/discoverweekly.
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who further identified the following categories of playlists:
same artist, genre, style, or orchestration, playlists for a
certain event or activity (e.g., party or holiday), romance
(e.g., love songs or breakup songs), playlists intended to
send a message to their recipient (e.g., protest songs),
and challenges or puzzles (e.g., cover songs liked more
than the original or songs whose title contains a question
mark).

Lee also found that personal preferences play a major
role. In fact, already a single song that is very much liked
or hated by a listener can have a strong influence on how
they judge the entire playlist [115]. This seems particularly
true if it is a highly disliked song [44]. Furthermore, a good
mix of familiar and unknown songs was often mentioned as
an important requirement for a good playlist. Supporting the
discovery of interesting new songs, still contextualized by
familiar ones, increases the likelihood of realizing a serendip-
itous encounter in a playlist [160,193]. Finally, participants
also reported that their familiarity with a playlist’s genre or
theme influenced their judgment of its quality. In general,
listeners were more picky about playlists whose tracks they
were familiar with or they liked a lot.

Supported by the studies summarized above, we argue
that the question of what makes a great playlist is highly
subjective and further depends on the intent of the creator
or listener. Important criteria when creating or judging a
playlist include track similarity/coherence, variety/diversity,
but also the user’s personal preferences and familiarity with
the tracks, as well as the intention of the playlist cre-
ator. Unfortunately, current automatic approaches to playlist
continuation are agnostic of the underlying psychologi-
cal and sociological factors that influence the decision of
which songs users choose to include in a playlist. Since
knowing about such factors is vital to understand the
intent of the playlist creator, we believe that algorithmic
methods for APC need to holistically learn such aspects
from manually created playlists and integrate respective
intent models. However, we are aware that in today’s era
where billions of playlists are shared by users of online
streaming services,15 a large-scale analysis of psycholog-
ical and sociological background factors is impossible.
Nevertheless, in the absence of explicit information about
user intent, a possible starting point to create intent mod-
els might be the metadata associated with user-generated
playlists, such as title or description. To foster this kind of
research, the playlists provided in the dataset for the ACM
Recommender Systems Challenge 2018 include playlist
titles.16

15 https://press.spotify.com/us/about.
16 https://recsys-challenge.spotify.com.

2.4 Challenge 3: Evaluatingmusic recommender
systems

Problem definition Having its roots in machine learning
(cf. rating prediction) and information retrieval (cf. “retriev-
ing” items based on implicit “queries” given by user prefer-
ences), the field of recommender systems originally adopted
evaluation metrics from these neighboring fields. In fact,
accuracy and related quantitative measures, such as preci-
sion, recall, or error measures (between predicted and true
ratings), are still the most commonly employed criteria to
judge the recommendation quality of a recommender sys-
tem [11,78]. In addition, novel measures that are tailored to
the recommendation problem have emerged in recent years.
These so-called beyond-accuracy measures [98] address
the particularities of recommender systems and gauge, for
instance, the utility, novelty, or serendipity of an item. How-
ever, a major problem with these kinds of measures is that
they integrate factors that are hard to describe mathemati-
cally, for instance, the aspect of surprise in case of serendipity
measures. For this reason, there sometimes exist a variety of
different definitions to quantify the same beyond-accuracy
aspect.

State of the art In the following, we discuss performance
measures which are most frequently reported when evalu-
ating recommender systems. An overview of these is given
in Table 1. They can be roughly categorized into accuracy-
related measures, such as prediction error (e.g., MAE and
RMSE) or standard IR measures (e.g., precision and recall),
and beyond-accuracy measures, such as diversity, novelty,
and serendipity. Furthermore, while some of the metrics
quantify the ability of recommender systems to find good
items, e.g., precision and recall, others consider the ranking
of items and therefore assess the system’s ability to position
good recommendations at the top of the recommendation list,
e.g., MAP, NDCG, or MPR.

Mean absolute error (MAE) is one of the most commonmet-
rics for evaluating the prediction power of recommender
algorithms. It computes the average absolute deviation
between the predicted ratings and the actual ratings provided
by users [81]. Indeed, MAE indicates how close the rating
predictions generated by an MRS are to the real user ratings.
MAE is computed as follows:

MAE = 1

|T |
∑

ru,i∈T
|ru,i − r̂u,i | (1)

where ru,i and r̂u,i , respectively, denote the actual and the
predicted ratings of item i for user u. MAE sums over the
absolute prediction errors for all ratings in a test set T .

123

https://press.spotify.com/us/about
https://recsys-challenge.spotify.com


International Journal of Multimedia Information Retrieval (2018) 7:95–116 103

Table 1 Evaluation measures
commonly used for
recommender systems

Measure Abbreviation Type Ranking-aware

Mean absolute error MAE Error/accuracy No

Root-mean-square error RMSE Error/accuracy No

Precision at top K recommendations P@K Accuracy No

Recall at top K recommendations R@K Accuracy No

Mean average precision at top K recommendations MAP@K Accuracy Yes

Normalized discounted cumulative gain NDCG Accuracy Yes

Half-life utility HLU Accuracy Yes

Mean percentile rank MPR Accuracy Yes

Spread – Beyond No

Coverage – Beyond No

Novelty – Beyond No

Serendipity – Beyond No

Diversity – Beyond No

Root-mean-square error (RMSE) is another similar metric
that is computed as:

RMSE =
√√√√ 1

|T |
∑

ru,i∈T
(ru,i − r̂u,i )2. (2)

It is an extension to MAE in that the error term is squared,
which penalizes larger differences between predicted and
true ratings more than smaller ones. This is motivated by the
assumption that, for instance, a rating prediction of 1 when
the true rating is 4 is much more severe than a prediction of
3 for the same item.

Precision at top K recommendations (P@K) is a common
metric thatmeasures the accuracy of the system in command-
ing relevant items. In order to compute P@K , for each user,
the top K recommended items whose ratings also appear
in the test set T are considered. This metric was originally
designed for binary relevance judgments. Therefore, in case
of availability of relevance information at different levels,
such as a five-point Likert scale, the labels should be bina-
rized, e.g., considering the ratings greater than or equal to 4
(out of 5) as relevant. For each user u, Pu@K is computed
as follows:

Pu@K = |Lu ∩ L̂u |
|L̂u |

(3)

where Lu is the set of relevant items for user u in the test
set T and L̂u denotes the recommended set containing the
K items in T with the highest predicted ratings for the user

u. The overall P@K is then computed by averaging Pu@K
values for all users in the test set.

Meanaverageprecisionat topKrecommendations (MAP@K)
is a rank-based metric that computes the overall precision of
the system at different lengths of recommendation lists.MAP
is computed as the arithmetic mean of the average precision
over the entire set of users in the test set. Average precision
for the top K recommendations (AP@K ) is defined as fol-
lows:

AP@K = 1

N

K∑

i=1

P@i · rel(i) (4)

where rel(i) is an indicator signaling if the i th recommended
item is relevant, i.e., rel(i) = 1, or not, i.e., rel(i) = 0; N
is the total number of relevant items. Note that MAP implic-
itly incorporates recall, because it also considers the relevant
items not in the recommendation list.17

Recall at top K recommendations (R@K) is presented here
for the sake of completeness, even though it is not a crucial
measure from a consumer’s perspective. Indeed, the listener
is typically not interested in being recommended all or a large
number of relevant items, rather in having good recommen-
dations at the top of the recommendation list. For a user u,
Ru@K is defined as:

17 We should note that in the recommender systems community, another
variation of average precision is gaining popularity recently, formally
defined by: AP@K = 1

min(K ,N )

∑K
i=1 P@i · rel(k) in which N is the

total number of relevant items and K is the size of recommendation
list. The motivation behind the minimization term is to prevent the AP
scores to be unfairly suppressed when the number of recommendations
is too low to capture all the relevant items. This variation of MAP was
popularized by Kaggle competitions [97] about recommender systems
and has been used in several other research works, consider for exam-
ple [8,124].
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Ru@K = |Lu ∩ L̂u |
|Lu | (5)

where Lu is the set of relevant items of user u in the test set
T and L̂u denotes the recommended set containing the K
items in T with the highest predicted ratings for the user u.
The overall R@K is calculated by averaging Ru@K values
for all the users in the test set.

Normalized discounted cumulative gain (NDCG) is a mea-
sure for the ranking quality of the recommendations. This
metric has originally been proposed to evaluate the effec-
tiveness of information retrieval systems [93]. It is nowadays
also frequently used for evaluating music recommender sys-
tems [120,139,185]. Assuming that the recommendations for
user u are sorted according to the predicted rating values in
descending order. DCGu is defined as follows:

DCGu =
N∑

i=1

ru,i
log2(i + 1)

(6)

where ru,i is the true rating (as found in test set T ) for the item
ranked at position i for user u, and N is the length of the rec-
ommendation list. Since the rating distribution depends on
the users’ behavior, the DCG values for different users are
not directly comparable. Therefore, the cumulative gain for
each user should be normalized. This is done by computing
the ideal DCG for user u, denoted as I DCGu , which is the
DCGu value for the best possible ranking, obtained by order-
ing the items by true ratings in descending order. Normalized
discounted cumulative gain for user u is then calculated as:

NDCGu = DCGu

IDCGu
. (7)

Finally, the overall normalized discounted cumulative gain
NDCG is computed by averaging NDCGu over the entire
set of users.

In the following, we present common quantitative eval-
uation metrics, which have been particularly designed or
adopted to assess recommender systems performance, even
though someof themhave their origin in information retrieval
and machine learning. The first two (HLU and MRR) still
belong to the category of accuracy-related measures, while
the subsequent ones capture beyond-accuracy aspects

Half-life utility (HLU) measures the utility of a recommenda-
tion list for a user with the assumption that the likelihood of
viewing/choosing a recommended item by the user exponen-
tially decays with the item’s position in the ranking [24,137].
Formally written, HLU for user u is defined as:

HLUu =
N∑

i=1

max (ru,i − d, 0)

2(ranku,i−1)/(h−1)
(8)

where ru,i and ranku,i denote the rating and the rank of item
i for user u, respectively, in the recommendation list of length
N ; d represents a default rating (e.g., average rating); and h
is the half-time, calculated as the rank of a music item in the
list, such that the user can eventually listen to it with a 50%
chance. HLUu can be further normalized by the maximum
utility (similar to NDCG), and the final HLU is the average
over the half-time utilities obtained for all users in the test set.
A larger HLUmay correspond to a superior recommendation
performance.

Mean percentile rank (MPR) estimates the users’ satisfaction
with items in the recommendation list and is computed as the
average of the percentile rank for each test item within the
ranked list of recommended items for each user [89]. The
percentile rank of an item is the percentage of items whose
position in the recommendation list is equal to or lower than
the position of the item itself. Formally, the percentile rank
PRu for user u is defined as:

PRu =
∑

ru,i∈T ru,i · ranku,i
∑

ru,i∈T ru,i
(9)

where ru,i is the true rating (as found in test set T ) for item
i rated by user u and ranku,i is the percentile rank of item i
within the ordered list of recommendations for useru.MPR is
then the arithmetic mean of the individual PRu values over
all users. A randomly ordered recommendation list has an
expected MPR value of 50%. A smaller MPR value is there-
fore assumed to correspond to a superior recommendation
performance.

Spread is a metric of how well the recommender algorithm
can spread its attention across a larger set of items [104]. In
more detail, spread is the entropy of the distribution of the
items recommended to the users in the test set. It is formally
defined as:

spread = −
∑

i∈I
P(i) log P(i) (10)

where I represents the entirety of items in the dataset
and P(i) = count(i)/

∑
i ′∈I count(i ′), such that count(i)

denotes the total number of times that a given item i showed
up in the recommendation lists. It may be infeasible to expect
an algorithm to achieve the perfect spread (i.e., recommend-
ing each item an equal number of times) without avoiding
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irrelevant recommendations or unfulfillable rating requests.
Accordingly, moderate spread values are usually preferable.

Coverage of a recommender system is defined as the propor-
tion of items over which the system is capable of generating
recommendations [81]:

coverage = |T̂ |
|T | (11)

where |T | is the size of the test set and |T̂ | is the number of
ratings in T for which the system can predict a value. This is
particularly important in cold start situations, when recom-
mender systems are not able to accurately predict the ratings
of new users or new items and hence obtain low coverage.
Recommender systems with lower coverage are therefore
limited in the number of items they can recommend. A sim-
ple remedy to improve low coverage is to implement some
default recommendation strategy for an unknown user–item
entry. For example, we can consider the average rating of
users for an item as an estimate of its rating. This may come
at the price of accuracy, and therefore, the trade-off between
coverage and accuracy needs to be considered in the evalua-
tion process [7].

Novelty measures the ability of a recommender system to
recommend new items that the user did not know about
before [1]. A recommendation list may be accurate, but if
it contains a lot of items that are not novel to a user, it is not
necessarily a useful list [193].

While novelty should be defined on an individual user
level, considering the actual freshness of the recommended
items, it is common to use the self-information of the recom-
mended items relative to their global popularity:

novelty = 1

|U |
∑

u∈U

∑

i∈Lu

− log2 popi
N

(12)

where popi is the popularity of item i measured as percent-
age of users who rated i , Lu is the recommendation list of
the top N recommendations for user u [193,195]. The above
definition assumes that the likelihood of the user selecting a
previously unknown item is proportional to its global popu-
larity and is used as an approximation of novelty. In order to
obtain more accurate information about novelty or freshness,
explicit user feedback is needed, in particular since the user
might have listened to an item through other channels before.

It is often assumed that the users prefer recommendation
lists with more novel items. However, if the presented items
are too novel, then the user is unlikely to have any knowledge

of them, nor to be able to understand or rate them. Therefore,
moderate values indicate better performances [104].

Serendipity aims at evaluatingMRSbasedon the relevant and
surprising recommendations. While the need for serendip-
ity is commonly agreed upon [82], the question of how to
measure the degree of serendipity for a recommendation list
is controversial. This particularly holds for the question of
whether the factor of surprise implies that items must be
novel to the user [98]. On a general level, serendipity of a
recommendation list Lu provided to a user u can be defined
as:

serendipi ty(Lu) =
∣∣∣Lunexp

u ∩ Luse f ul
u

∣∣∣
|Lu | (13)

where Lunexp
u and Luse f ul

u denote subsets of L that contain,
respectively, recommendations unexpected to and useful for
the user. The usefulness of an item is commonly assessed by
explicitly asking users or taking user ratings as proxy [98].
The unexpectedness of an item is typically quantified by
somemeasure of distance fromexpected items, i.e., items that
are similar to the items already rated by the user. In the context
of MRS, Zhang et al. [193] propose an “unserendipity” mea-
sure that is defined as the average similarity between the items
in the user’s listening history and the new recommendations.
Similarity between two items in this case is calculated by
an adapted cosine measure that integrates co-liking informa-
tion, i.e., number of users who like both items. It is assumed
that lower values correspond to more surprising recommen-
dations, since lower values indicate that recommendations
deviate from the user’s traditional behavior [193].

Diversity is another beyond-accuracymeasure as already dis-
cussed in the limitations part of Challenge 1. It gauges the
extent to which recommended items are different from each
other, where difference can relate to various aspects, e.g.,
musical style, artist, lyrics, or instrumentation, just to name
a few. Similar to serendipity, diversity can be defined in sev-
eral ways. One of the most common is to compute pairwise
distance between all items in the recommendation set, either
averaged [196] or summed [173]. In the former case, the
diversity of a recommendation list L is calculated as follows:

diversi t y(L) =
∑

i∈L
∑

j∈L\i disti, j
|L| · (|L| − 1)

(14)

where disti, j is the some distance function defined between
items i and j . Common choices are inverse cosine similar-
ity [150], inverse Pearson correlation [183], or Hamming
distance [101].

When it comes to the task of evaluating playlist recom-
mendation, where the goal is to assess the capability of the
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recommender in providing proper transitions between subse-
quent songs, the conventional error or accuracy metrics may
not be able to capture this property. There is hence a need for
sequence-aware evaluationmeasures. For example, consider
the scenario where a user who likes both classical and rock
music is recommended a rock music right after she has lis-
tened to a classic piece. Even though both music styles are in
agreement with her taste, the transition between songs plays
an important role toward user satisfaction. In such a situation,
given a currently played song and in the presence of several
equally likely good options to be played next, a RS may
be inclined to rank songs based on their popularity. Hence,
other metrics such as average log-likelihood have been pro-
posed to better model the transitions [33,34]. In this regard,
when the goal is to suggest a sequence of items, alternative
multi-metric evaluation approaches are required to take into
consideration multiple quality factors. Such evaluation met-
rics can consider the ranking order of the recommendations
or the internal coherence or diversity of the recommended
list as a whole. In many scenarios, adoption of such quality
metrics can lead to a trade-off with accuracy which should
be balanced by the RS algorithm [145].

Limitations As of today, the vast majority of evaluation
approaches in recommender systems research focus on quan-
titative measures, either accuracy-like or beyond-accuracy,
which are often computed in offline studies.

Doing so has the advantage of facilitating the reproducibil-
ity of evaluation results. However, limiting the evaluation to
quantitative measures means to forgo another important fac-
tor, which is user experience. In other words, in the absence
of user-centric evaluations, it is difficult to extend the claims
to the more important objective of the recommender system
under evaluation, i.e., giving users a pleasant and useful per-
sonalized experience [107].

Despite acknowledging the need for more user-centric
evaluation strategies [158], the factor human, user, or, in
the case of MRS, listener is still way too often neglected
or not properly addressed. For instance, while there exist
quantitative objective measures for serendipity and diver-
sity, as discussed above, perceived serendipity and diversity
can be highly different from the measured ones [182] as
they are subjective user-specific concepts. This illustrates
that even beyond-accuracy measures cannot fully capture the
real user satisfaction with a recommender system. On the
other hand, approaches that address user experience (UX)
can be investigated to evaluate recommender systems. For
example, a MRS can be evaluated based on user engage-
ment, which provides a restricted explanation of UX that
concentrates on judgment of product quality during inter-
action [79,118,133]. User satisfaction, user engagement,
and more generally user experience are commonly assessed
through user studies [13,116,117].

Addressing both objective and subjective evaluation cri-
teria, Knijnenburg et al. [108] propose a holistic frame-
work for user-centric evaluation of recommender systems.
Figure 1 provides an overview of the components. The objec-
tive system aspects (OSAs) are considered unbiased factors
of the RS, including aspects of the user interface, comput-
ing time of the algorithm, or number of items shown to the
user. They are typically easy to specify or compute. The
OSAs influence the subjective system aspects (SSAs), which
are caused by momentary, primary evaluative feelings while
interacting with the system [80]. This results in a different
perception of the system by different users. SSAs are there-
fore highly individual aspects and typically assessed by user
questionnaires. Examples of SSA include general appeal of
the system, usability, and perceived recommendation diver-
sity or novelty. The aspect of experience (EXP) describes
the user’s attitude toward the system and is commonly also
investigated by questionnaires. It addresses the user’s per-
ception of the interaction with the system. The experience is
highly influenced by the other components, which means
changing any of the other components likely results in a
change of EXP aspects. Experience can be broken down
into the evaluation of the system, the decision process, and
the final decisions made, i.e., the outcome. The interaction
(INT) aspects describe the observable behavior of the user,
time spent viewing an item, as well as clicking or purchas-
ing behavior. In a music context, examples further include
liking a song or adding it to a playlist. Therefore, interac-
tions aspects belong to the objectivemeasures and are usually
determined via logging by the system. Finally, Knijnenburg
et al.’s framework mentions personal characteristics (PC)
and situational characteristics (SC), which influence the user
experience. PC include aspects that do not exist without the
user, such as user demographics, knowledge, or perceived
control, while SC include aspects of the interaction context,
such as when and where the system is used, or situation-
specific trust or privacy concerns. Knijnenburg et al. [108]
also propose a questionnaire to asses the factors defined in
their framework, for instance, perceived recommendation
quality, perceived system effectiveness, perceived recom-
mendation variety, choice satisfaction, intention to provide
feedback, general trust in technology, and system-specific
privacy concern.

While this framework is a generic one, tailoring it to MRS
would allow for user-centric evaluation thereof. In partic-
ular, the aspects of personal and situational characteristics
should be adapted to the particularities of music listeners
and listening situations, respectively, cf. Sect. 2.1. To this
end, researchers inMRS should consider the aspects relevant
to the perception and preference of music, and their implica-
tions on MRS, which have been identified in several studies,
e.g., [43,113,114,158,159]. In addition to the general ones
mentioned by Knijnenburg et al., of great importance in the
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music domain seem to be psychological factors, including
affect and personality, social influence, musical training and
experience, and physiological condition.

We believe that carefully and holistically evaluating MRS
by means of accuracy and beyond-accuracy, objective and
subjectivemeasures, in offline andonline experiments,would
lead to a better understanding of the listeners’ needs and
requirements vis-à-vis MRS, and eventually a considerable
improvement of current MRS.

3 Future directions and visions

While the challenges identified in the previous section are
already researched on intensely, in the following, we provide
a more forward-looking analysis and discuss some MRS-
related trending topics, which we assume influential for the
next generation of MRS. All of them have in common that
their aim is to create more personalized recommendations.
More precisely, we first outline howpsychological constructs
such as personality and emotion could be integrated into
MRS. Subsequently, we address situation-aware MRS and
argue for the need of multifaceted user models that describe
contextual and situational preferences. To round off, we
discuss the influence of users’ cultural background on recom-
mendation preferences, which needs to be considered when
building culture-aware MRS.

3.1 Psychologically inspiredmusic recommendation

Personality and emotion are important psychological con-
structs. While personality characteristics of humans are a
predictable and stable measure that shapes human behaviors,
emotions are short-term affective responses to a particular
stimulus [179]. Both have been shown to influence music
tastes [71,154,159] and user requirements for MRS [69,73].
However, in the context of (music) recommender systems,
personality and emotion do not play a major role yet. Given
the strong evidence that both influence listening prefer-
ences [147,159] and the recent emergence of approaches to
accurately predict them from user-generated data [111,170],
we believe that psychologically inspired MRS is an upcom-
ing area.

3.1.1 Personality

In psychology research, personality is oftendefined as a “con-
sistent behavior pattern and interpersonal processes originat-
ing within the individual” [25]. This definition accounts for
the individual differences in people’s emotional, interper-
sonal, experiential, attitudinal, and motivational styles [95].
Several prior works have studied the relation of decision
making and personality factors. In [147], as an example, it

has been shown that personality can influence the human
decision-making process as well as the tastes and interests.
Due to this direct relation, people with similar personality
factors are very likely to share similar interests and tastes.

Earlier studies conducted on the user personality char-
acteristics support the potential benefits that personality
information could have in recommender systems [22,23,58,
85,87,178,180]. As a known example, psychological stud-
ies [147] have shown that extravert people are likely to
prefer the upbeat and conventional music. Accordingly, a
personality-based MRS could use this information to bet-
ter predict which songs are more likely than others to
please extravert people [86]. Another example of poten-
tial usage is to exploit personality information in order to
compute similarity among users and hence identify the like-
minded users [178]. This similarity information could then be
integrated into a neighborhood-based collaborative filtering
approach.

In order to use personality information in a recommender
system, the system first has to elicit this information from
the users, which can be done either explicitly or implicitly.
In the former case, the system can ask the user to com-
plete a personality questionnaire using one of the personality
evaluation inventories, e.g., the ten- item personality inven-
tory [76] or the big five inventory [94]. In the latter case,
the system can learn the personality by tracking and observ-
ing users’ behavioral patterns, for instance, liking behavior
on Facebook [111] or applying filters to images posted on
Instagram [170]. Not too surprisingly, it has shown that sys-
tems that explicitly elicit personality characteristics achieve
superior recommendation outcomes, e.g., in terms of user sat-
isfaction, ease of use, and prediction accuracy [52]. On the
downside, however, many users are not willing to fill in long
questionnaires before being able to use the RS. Away to alle-
viate this problem is to ask users only the most informative
questions of a personality instrument [163].Which questions
are most informative, though, first needs to be determined
based on existing user data and is dependent on the recom-
mendation domain. Other studies showed that users are to
some extent willing to provide further information in return
for a better quality of recommendations [175].

Personality information can be used in various ways,
particularly, to generate recommendations when traditional
rating or consumption data ismissing. Otherwise, the person-
ality traits can be seen as an additional feature that extends the
user profile, that can be used mainly to identify similar users
in neighborhood-based recommender systems or directly fed
into extended matrix factorization models [67].

3.1.2 Emotion

The emotional state of the MRS user has a strong impact on
his or her short-time musical preferences [99]. Vice versa,
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Fig. 1 Evaluation framework of the user experience for recommender systems, according to [108]

music has a strong influence on our emotional state. It there-
fore does not come as a surprise that emotion regulation
was identified as one of the main reasons why people lis-
ten to music [122,155]. As an example, people may listen to
completely different musical genres or styles when they are
sad in comparison with when they are happy. Indeed, prior
research on music psychology discovered that people may
choose the type of music which moderates their emotional
condition [109].More recent findings show that music can be
mainly chosen so as to augment the emotional situation per-
ceived by the listener [131]. In order to build emotion-aware
MRS, it is therefore necessary to (i) infer the emotional state
the listener is in, (ii) infer emotional concepts from the music
itself, and (iii) understand how these two interrelate. These
three tasks are detailed below.

Eliciting the emotional state of the listener Similar to per-
sonality traits, the emotional state of a user can be elicited
explicitly or implicitly. In the former case, the user is typically

presented one of the various categorical models (emotions
are described by distinct emotion words such as happiness,
sadness, anger, or fear) [84,191] or dimensional models
(emotions are described by scores with respect to two or
three dimensions, e.g., valence and arousal) [152]. For a
more detailed elaboration on emotion models in the context
of music, we refer to [159,186]. The implicit acquisition of
emotional states can be effected, for instance, by analyzing
user-generated text [49], speech [66], or facial expressions
in video [55].

Emotion tagging in music The music piece itself can be
regarded as an emotion-laden content and in turn can be
described by emotion words. The task of automatically
assigning such emotion words to a music piece is an active
research area, often refereed to as music emotion recogni-
tion (MER), e.g., [14,91,103,187,188,191]. How to integrate
such emotion terms created by MER tools into a MRS is,
however, not an easy task, for several reasons. First, early
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MER approaches usually neglected the distinction between
intended emotion, perceived emotion, and induced or felt
emotion, cf. Sect. 2.1. Current MER approaches focus on
perceived or induced emotions. However, musical content
still contains various characteristics that affect the emotional
state of the listener, such as lyrics, rhythm, and harmony, and
the way how they affect the emotional state is highly subjec-
tive. This so even though research has detected a few general
rules, for instance, a musical piece that is in major key is
typically perceived brighter and happier than those in minor
key, or a piece in rapid tempo is perceived more exciting or
more tense than slow tempo ones [112].

Connecting listener emotions and music emotion tags Cur-
rent emotion-based MRSs typically consider emotional
scores as contextual factors that characterize the situation
the user is experiencing. Hence, the recommender systems
exploit emotions in order to pre-filter the preferences of users
or post-filter the generated recommendations. Unfortunately,
this neglects the psychological background, in particular
on the subjective and complex interrelationships between
expressed, perceived, and induced emotions [159], which
is of special importance in the music domain as music is
known to evoke stronger emotions than, for instance, prod-
ucts [161]. It has also been shown that personality influences
in which emotional state which kind of emotionally laden
music is preferred by listeners [71]. Therefore, even if auto-
mated MER approaches would be able to accurately predict
the perceived or induced emotion of a given music piece, in
the absence of deep psychological listener profiles, match-
ing emotion annotations of items and listeners may not yield
satisfying recommendations. This is so because how people
judge music and which kind of music they prefer depends
to a large extent on their current psychological and cogni-
tive states. We hence believe that the field of MRS should
embrace psychological theories, elicit the respective user-
specific traits, and integrate them into recommender systems,
in order to build decent emotion-aware MRS.

3.2 Situation-aware music recommendation

Most of the existing music recommender systems make
recommendations solely based on a set of user-specific
and item-specific signals. However, in real-world scenarios,
many other signals are available. These additional signals
can be further used to improve the recommendation perfor-
mance. A large subset of these additional signals includes
situational signals. In more detail, the music preference of
a user depends on the situation at the moment of recom-
mendation.18 Location is an example of situational signals;

18 Please note that music taste is a relatively stable characteristic, while
music preferences vary depending on the context and listening intent.

for instance, the music preference of a user would differ in
libraries and in gyms [35]. Therefore, considering location as
a situation-specific signal could lead to substantial improve-
ments in the recommendation performance. Time of the day
is another situational signal that could be used for recom-
mendation; for instance, the music a user would like to listen
to in mornings differs from those in nights [41]. One situa-
tional signal of particular importance in the music domain is
social context since music tastes and consumption behaviors
are deeply rooted in the users’ social identities and mutually
affect each other [45,134]. For instance, it is very likely that
a user would prefer different music when being alone than
when meeting friends. Such social factors should therefore
be considered when building situation-aware MRS. Other
situational signals that are sometimes exploited include the
user’s current activity [184], the weather [140], the user’s
mood [129], and the day of the week [83]. Regarding time,
there is also another factor to consider, which is that most
music that was considered trendy years ago is now consid-
ered old. This implies that ratings for the same song or artist
might strongly differ, not only between users, but in general
as a function of time. To incorporate such aspects in MRS, it
would be crucial to record a timestamp for all ratings.

It is worth noting that situational features have been
proven to be strong signals in improving retrieval perfor-
mance in search engines [16,190]. Therefore, we believe
that researching and building situation-aware music recom-
mender systems should be one central topic inMRS research.

While several situation-aware MRSs already exist, e.g.,
[12,35,90,100,157,184], they commonly exploit only one or
very few such situational signals, or are restricted to a cer-
tain usage context, e.g., music consumption in a car or in a
tourist scenario. Those systems that try to take a more com-
prehensive view and consider a variety of different signals,
on the other hand, suffer from a low number of data instances
or users, rendering it very hard to build accurate context
models [75]. What is still missing, in our opinion, are (com-
mercial) systems that integrate a variety of situational signals
on a very large scale in order to truly understand the listen-
ers needs and intents in any given situation and recommend
music accordingly. While we are aware that data availability
and privacy concerns counteract the realization of such sys-
tems on a large commercial scale, we believe that MRS will
eventually integrate decentmultifaceted usermodels inferred
from contextual and situational factors.

3.3 Culture-aware music recommendation

While most humans share an inclination to listen to music,
independent on their location or cultural background, theway
music is performed, perceived, and interpreted evolves in a
culture-specific manner. However, research in MRS seems
to be agnostic of this fact. In music information retrieval
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(MIR) research, on the other hand, cultural aspects have
been studied to some extent in recent years, after preceding
(and still ongoing) criticisms of the predominance ofWestern
music in this community. Arguably the most comprehensive
culture-specific research in this domain has been conducted
as part of the CompMusic project,19 in which five non-
Westernmusic traditions have been analyzed in detail in order
to advance automatic description of music by emphasizing
cultural specificity. The analyzed music traditions included
Indian Hindustani and Carnatic [53], Turkish Makam [54],
Arab-Andalusian [174], and Beijing Opera [148]. However,
the project’s focus was on music creation, content analy-
sis, and ethnomusicological aspects rather than on the music
consumption side [37,165,166]. Recently, analyzing content-
based audio features describing rhythm, timbre, harmony,
and melody for a corpus of a larger variety of world and folk
music with given country information, Panteli et al. found
distinct acoustic patterns of the music created in individual
countries [138]. They also identified geographical and cul-
tural proximities that are reflected in music features, looking
at outliers and misclassifications in a classification experi-
ments using country as target class. For instance, Vietnamese
music was often confused with Chinese and Japanese, South
African with Botswanese.

In contrast to this—meanwhile quite extensive—work on
culture-specific analysis of music traditions, little effort has
been made to analyze cultural differences and patterns of
music consumption behavior, which is, as we believe, a cru-
cial step to build culture-awareMRS. The few studies investi-
gating such cultural differences include [88], inwhichHu and
Lee found differences in perception ofmoods betweenAmer-
ican and Chinese listeners. By analyzing the music listening
behavior of users from 49 countries, Ferwerda et al. found
relationships between music listening diversity and Hofst-
ede’s cultural dimensions [70,72]. Skowron et al. used the
same dimensions to predict genre preferences of listeners
with different cultural backgrounds [171]. Schedl analyzed a
large corpus of listening histories created by Last.fm users in
47 countries and identified distinct preference patterns [156].
Further analyses revealed countries closest to what can be
considered the globalmainstream (e.g., theNetherlands, UK,
and Belgium) and countries farthest from it (e.g., China, Iran,
and Slovakia). However, all of these works define culture in
terms of country borders, which often makes sense, but is
sometimes also problematic, for instance, in countries with
large minorities of inhabitants with different cultures.

In our opinion, when building MRS, the analysis of cul-
tural patterns of music consumption behavior, subsequent
creation of respective cultural listener models, and their inte-
gration into recommender systems are vital steps to improve
personalization and serendipity of recommendations.Culture

19 http://compmusic.upf.edu.

should be defined on various levels though, not only coun-
try borders. Other examples include having a joint historical
background, speaking the same language, sharing the same
beliefs or religion, and differences between urban vs. rural
cultures. Another aspect that relates to culture is a temporal
one since certain cultural trends, e.g., what defines the “youth
culture,” are highly dynamic in a temporal and geographical
sense. We believe that MRS which are aware of such cross-
cultural differences and similarities in music perception and
taste, and are able to recommend music a listener in the same
or another culture may like, would substantially benefit both
users and providers of MRS.

4 Conclusions

In this trends and survey paper, we identified several grand
challenges the research field of music recommender systems
(MRS) is facing. These are, among others, in the focus of
current research in the area of MRS. We discussed (1) the
cold start problem of items and users, with its particularities
in the music domain, (2) the challenge of automatic playlist
continuation, which is gaining importance due to the recently
emerged user request of being recommended musical expe-
riences rather than single tracks [161], and (3) the challenge
of holistically evaluating music recommender systems, in
particular, capturing aspects beyond accuracy.

In addition to the grand challenges, which are currently
highly researched, we also presented a visionary outlook of
what we believe to be the most interesting future research
directions inMRS. In particular, we discussed (1) psycholog-
ically inspired MRS, which consider in the recommendation
process factors such as listeners’ emotion and personality,
(2) situation-aware MRS, which holistically model contex-
tual and environmental aspects of the music consumption
process, infer listener needs and intents, and eventually inte-
grate these models at large scale in the recommendation
process, and (3) culture-aware MRS, which exploit the fact
thatmusic taste highly depends on the cultural background of
the listener, where culture can be defined in manifold ways,
including historical, political, linguistic, or religious similar-
ities.

We hope that this article helped pinpointing major chal-
lenges, highlighting recent trends, and identifying interest-
ing research questions in the area of music recommender
systems. Believing that research addressing the discussed
challenges and trends will pave the way for the next genera-
tion of music recommender systems, we are looking forward
to exciting, innovative approaches and systems that improve
user satisfaction and experience, rather than just accuracy
measures.
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