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Abstract

In most Music Emotion Recognition (MER) tasks, researchers tend to use supervised learning models based on music
features and corresponding annotation. However, few researchers have considered applying unsupervised learning approaches
to labeled data except for feature representation. In this paper, we propose a segment-based two-stage model combining
unsupervised learning and supervised learning. In the first stage, we split each music excerpt into contiguous segments
and then utilize an autoencoder to generate segment-level feature representation. In the second stage, we feed these time-
series music segments to a bidirectional long short-term memory deep learning model to achieve the final music emotion
classification. Compared with the whole music excerpts, segments as model inputs could be the proper granularity for model
training and augment the scale of training samples to reduce the risk of overfitting during deep learning. Apart from that,
we also apply frequency and time masking to segment-level inputs in the unsupervised learning part to enhance training
performance. We evaluate our model on two datasets. The results show that our model outperforms state-of-the-art models,
some of which even use multimodal architectures. And the performance comparison also evidences the effectiveness of audio

segmentation and the autoencoder with masking in an unsupervised way.

Keywords Segment-level representation - Unsupervised learning - Music emotion recognition - Autoencoder

1 Introduction

Within the research area of Music Information Retrieval
(MIR), emotion recognition is an important branch and ben-
efits various MER application areas. In recent years, deep
learning models have become primary methods used to
implement emotion prediction [17,20]. With layers of neu-
ral networks, these models are capable of learning music
features automatically from raw audio or low-level audio
features. In Music Emotion Recognition (MER) tasks, much
research is based on music datasets containing emotion anno-
tation, which naturally adopts supervised learning methods
to find patterns between each music input and its correspond-
ing annotation. Few studies take into account unsupervised
learning for labeled data.
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In addition, most researchers keep the duration of each
audio input in accordance with the given annotation, sel-
dom considering the effect of changing that duration. For
dynamic emotion detection, to match the time-varying anno-
tation sampling frequency which is usually 2 Hz or 1 Hz, the
length of each music clip is 0.5 s or 1 s. These audio clips are
fed into a training model [2] and thus implement a one-to-one
mapping with those labels. For static emotion recognition,
each music excerpt (usually the duration of 30s or more)
corresponds to one annotation. According to this approach,
researchers usually extract music features from these music
excerpts without further splitting them into shorter segments.
However, not all music duration are appropriate for emo-
tion analysis and model training [40,41]. Some research even
splits longer-duration music recordings into a series of short
segments but assign presumptive segment-level labels as the
training targets rather than using the original annotation [32].
Few research has paid attention to adjusting the length of
audio input without adding extra annotation.

In this paper, we focus on static emotion recognition and
propose an architecture that uses music segments split from
each music excerpt as model inputs, while only using the
original emotion annotation. Here, we divide our framework
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into two parts. The first part is an unsupervised learn-
ing model which generates the feature representation for
segment-level music without defining new emotion labels
for them. The second part is a supervised training model
where we view segments as the sequential units of each music
excerpt and train them in a deep learning model of handling
time-series data to predict the final emotion. In the module
of unsupervised learning, we utilize the SpecAugment tech-
nique [30] to partially mask log-mel spectrogram input data
from frequency and time dimensions to enhance the robust-
ness of the training model.

The main contribution of this work is designing a two-
stage MER architecture that combines segment-based unsu-
pervised learning as a feature extractor and supervised
learning as an emotion detector. In this way, we could split
each music excerpt into contiguous segments without hav-
ing to provide segment-level annotations, and feed them
into appropriate training models to explore potential fea-
tures effectively. From the perspective of data augmentation,
segment-level music with partial masking increases the data
scale and data variation for unsupervised learning, thereby
boosting the model performance.

2 Related works

With the evolution of MIR research, deep learning has played
a vital role in improving performance. Based on such mod-
els, various factors have been considered, including feature
sources, feature representation and model design.

2.1 Feature source

To train a deep learning model, the first thing researchers
need to determine is what kind of sources are used to extract
features. Music audio data is the primary consideration.
Compared with traditional machine learning where tens or
hundreds of human-engineered features are selected, the typi-
cal inputs for deep neural networks are one-dimensional (1D)
raw audio data [23], two-dimensional (2D) mel-scaled spec-
trogram [4] or a mix of both [36]. Further, some research
made use of a Music source separation (MSS) module
Demucs [8] to generate vocals, drums, bass and other sources
from the raw waveform and fed them into deep learning mod-
els with three fusion strategies [7]. On the other hand, some
attempts have been made only using lyrics [6,24] or elec-
troencephalogram (EEG) signals [35]. Apart from this, much
research tends to employ multimodal methodologies based
on multiple data sources to take advantage of their com-
plementarity. Among them, the combination of audio and
lyrics is a popular solution [9,21]. In some cases, researchers
achieved better performance by leveraging audio as the main
source and aggregating supplementary resources such as
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electrodermal activity (EDA) [44], social tags [19] and even
facial expression images when the video is available [25].

2.2 Feature representation

In recent years, feature representation has gained more atten-
tion in many studies on account of training deep neural
networks more efficiently. Distinct from engineered features
extracted from source data directly, feature representation
benefits from the ability of deep learning to extract more
meaningful information and generate vector-based features
to represent sources. One practical method is utilizing unsu-
pervised learning models. Generally, unsupervised learning
is used to analyze unlabeled datasets for the purpose of
clustering, association, and dimensionality reduction. In
recent years, with the development of neural networks,
unsupervised learning models could learn efficient feature
representation from data input, such as an autoencoder or
Restricted Boltzmann Machine (RBM) [48]. In this situa-
tion, unsupervised learning models usually act as feature
extractors, followed by supervised learning models for pre-
diction. Sometimes, unsupervised learning is also used to
correlate and blend the multimodal features into new features
that contain more common information [39]. Furthermore,
transfer learning is another well-known approach for feature
representation. Fan et al. [11] utilized a pretrained model
VGGish [18] as a feature extractor where the audio data is
converted into latent feature vectors as inputs for subsequent
training. MusiCoder [47] combined these two approaches.
They conducted unsupervised learning on unlabeled audio
data to build up a pretrained model which serves other labeled
datasets to form feature representation. In our work, we adopt
unsupervised learning to extract feature representations.

2.3 Model design

To pursue better performance, researchers have put a great
deal of effort into investigating alternative model designs.
Inspired by the success of deep learning in image detec-
tion, convolutional neural network (CNN) models are applied
widely in MIR research [23,32,33]. Such models could
exploit highly abstract features automatically from inputs.
Since music is sequential data, recurrent neural network
(RNN) models have become a complementary approach for
capturing time-varying information [5,9,36]. These models
were ever used to make up the unsupervised autoencoder
[27]. Besides CNNs and RNNs, multiple layers of multi-
head attention model was proposed as the components of
an autoencoder for music classification [47], which is also
known as the transformer architecture inspired by research in
Natural Language Processing (NLP) [10] and speech recog-
nition [26]. However, the complexity of this approach is very
high, and the pre-training duration is beyond 800 hours for
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Fig. 1 Model overview: the two-stage learning framework includes an unsupervised learning model as a segment-level feature extractor and a

supervised learning model as an emotion recognizer

each dataset. It may not productive for some MER tasks
to train such attention model in terms of computing cost.
Regarding multimodal fusion, deep learning also contributes
to fusion strategies. An emerging strategy takes advantage
of graph attention networks (GAT) to make decision-level
fusion [12], and could be a good option for future research.

As mentioned above, most research work concentrates
on model design regardless of the impact of the length of
each input. Focusing on audio segmentation, [38] argued
that song-level features may lead to inaccurate feature rep-
resentation for emotion recognition due to music emotion
varying between segments. However, emotion is mostly
consistent within each segment. Further, [1] distinguished
emotional segments from structural segments for music.
They compared these two types of segmentation, and found
that emotional boundaries coincide with structural bound-
aries very often. Therefore, segment-level emotion detection
for music is reasonable. In practice, [23] compared a sample-
level deep learning approach with a frame-level approach
through configuring convolutional filter length and stride
rather than partitioning the raw waveform directly. The seg-
mentation occurs during training, which leads to no way
to obtain segment-level data for additional manipulation. In
contrast, [32] split each audio clip into 5-s segments and
transformed them into mel-scaled spectrogram as inputs to
a VGGNet-style model. But they assigned clip-level labels
to segments as training targets, which may mislead the final
prediction. In our work, we are allowed to process segment-
level data before training so as to find more ways to improve
performance. Meanwhile, no extra labels are required for
segments.

3 Methodologies

We propose a two-stage learning framework as shown in
Fig. 1. The first stage is an unsupervised learning model
to obtain segment-level feature representation. The second
stage is a supervised learning model to predict emotion clas-
sification. For feature source, we use music audio data to
serve this model structure. For emotion taxonomy, we fol-
low 2D valence-arousal space initiated by [31] and view it as
a classification problem.

3.1 Feature representation

The detailed design for feature representation is shown in
Fig. 2. In this part, we first process the audio data and trans-
form it into log-mel spectrogram. Then, we partially mask
these data from time and frequency dimensions separately.
After that, these data are passed into an autoencoder architec-
ture to encode and decode with the target of minimizing the
loss between the reconstructed outputs and the inputs. In this
way, the feature encoder module with the optimized training
weights become a feature extractor which accepts log-mel
spectrogram of segment-level audio data and outputs their
feature representation.

3.1.1 Frequency and time masking

Inspired by SpecAugment [30] and MusiCoder [47], we
mask the input data partially to increase the robustness of
the training model against partial loss of information. More
importantly, this procedure feeds the model with deliberately
perturbed data to reduce overfitting during training. Due to
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Fig. 2 Detailed design for feature representation. For each segment-
level audio, it is transformed into log-mel spectrogram, followed by
frequency and time masking. Then, such input is fed into a CNN-based

the log-mel spectrogram applied, we mask such data in both
the frequency domain and time domain.

Frequency masking Given the total number of mel fre-
quency channels F,, we set the frequency mask parameter
F and make F < F,.. We specify a span of consecutive mel
frequency channels [ fy, fo + f) to be masked, where f is a
randomly selected number from a uniform distribution over
[0, F) and fj is a randomly selected number from a uniform
distribution over [0, F. — f).

Time masking Given a log-mel spectrogram with the total
time steps T, we set the time mask parameter 7 and make
T < T,. We specify a span of consecutive time steps [7o, fo +
t) to be masked, where ¢ is the randomly selected number
from a uniform distribution over [0, 7") and ¢ is the randomly
selected number from a uniform distribution over [0, Ty —t).

Here, we mask one span for each domain. Because the
time duration for each segment is not very long and only
mel-scaled frequency is included. Masking multiple spans
of time or frequency may increase the risk of under fitting
during training due to too much information loss. For the
option of masked value that replace true value, either zero
or the mean value could be applied. We compare these two
situations in our experiments to find the best performance.

3.1.2 Convolutional autoencoder

As shown in Fig. 2, this autoencoder model is a deep CNN-
based architecture and consists of a feature encoding module
and a decoding module. We feed the masked log-mel spec-
trogram data into the feature encoder and train the whole
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autoencoder with the target of minimizing loss. The feature encoder
with the optimized weights is used as a feature extractor to provide
segment-level feature representations

autoencoder model. Once the output of the decoder achieves
the minimized loss against the original input, we save the
optimized weights for the feature encoder that is used as
a feature extractor to generate latent feature representation.
The feature encoder consists of three groups of stacked layers
where each 2D CNN layer is followed by a 2D max-pooling
layer. The CNN layers extract latent audio features and the
max-pooling layers compact representations. The output of
the feature encoder retains the most relevant information of
the input and achieves dimensionality reduction, while the
reconstruction work is implemented by the decoder where
a series of 2D CNN layers with 2D upsampling layers are
applied. Here, the 2D CNN layers perform deconvolution
and cooperate with the upsampling layers to reconstruct the
original data. For each CNN layer, the rectified linear units
(ReLU) activation function is used to improve training effi-
ciency. Through this unsupervised learning architecture, we
extract feature representations for music segments without
labeling the emotion for them.

3.1.3 Loss function

During the autoencoder model training, we monitor the best
reconstruction driven by minimizing Huber loss. Huber loss
is arobust regression loss that is less sensitive to outliers than
the squared error loss [14]. This loss function is defined as
below:

0.5 x2 if x| <6

Ls(x) =
) = 0562 otherwise

ey
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where x means the difference between the observed and pre-
dicted values. We set § = 1 by default. In this way, Huber loss
could reduce the impact of the outliers and promote training
convergence [47].

3.2 Emotion classification

The second part of our framework is a supervised learn-
ing structure for emotion classification. A bidirectional long
short-term memory (BiLSTM) model is utilized to capture
temporal music information and detect emotion classifica-
tion. For this model, each input is a sequence of feature
representations of time-series segments which constitute
one music excerpt. The output is the Valence/Arousal (VA)
predictions corresponding to this music excerpt. From the
perspective of model implementation, we can regard the fea-
ture encoder and BiLSTM as a whole. During training, the
encoder module is frozen and holds the optimal weights
from unsupervised training while the BiILSTM neural net-
work tunes the weight itself to achieve the final fitting.

4 Experiment
4.1 Dataset description

To validate the model, we employ the PMEmo dataset!,
which is designed for MER research. The dataset contains
songs with VA annotations, song metadata, EDA signals, pre-
computed audio features, lyrics and even user comments.
This music set targets popular songs and selects the cho-
rus part for each song in mp3 format. Among the total 794
songs, we select 767 songs that have been labeled with static
VA annotations. Regarding annotation consistency, each sub-
ject listened to 20 excerpts including duplicated ones. Each
song was annotated by at least 10 subjects, and the bias for
repeated annotation from one subject was taken into consid-
eration. So that the quality of the annotation is guaranteed.
The chorus excerpts are of various length and most of them
are not less than 30 seconds (30 s). According to this, we
retain 30s for each song. For songs less than 30s, we pad
them to 30s by repeating themselves from the start to the end.
Totally, 230 clips are processed. In this manner, we make
sure all music excerpts are the same duration to facilitate
subsequent audio processing. More details about this dataset
could refer to PMEmo document [46]. Based on this dataset,
we compare our model with previous models to check the
effect of audio segmentation and model architecture. How-
ever, PMEmo dataset has some problems such as single genre
and imbalanced target labels. It is necessary to add another
dataset to support some viewpoints in our experiment.

! https://github.com/HuiZhangDB/PMEmo.

To prove the effectiveness of our model, we also validate
our model on AllMusic dataset [29]. This dataset contains
900 song clips balanced in terms of Russell’s VA quad-
rants and genres in each quadrant, which avoids the pitfall
of PMEmo dataset. The quadrantal annotation is obtained
based on AllMusic emotion tags and Warriner’s list [37].
A manual blind inspection was conducted to exclude songs
with unclear emotions so as to validate the annotation. Most
songs are 30-s clips. Only about 2% songs need be padded
to 30s by using the same strategy in PMEmo dataset. This
dataset is mainly used to check the performance of different
segment duration and masking.

4.2 Audio processing

We process this music audio data to prepare the inputs for
the training model. First, we split each 30-s music excerpt
into contiguous segments. The selection of the segment dura-
tion should balance the validity of emotional response and
the homogeneity of each segment for feature learning, and
meanwhile consider the model adaptability. Referring to pre-
vious research [3,11,28,40], we test segment duration from
the value set of {1s,3s,5s, 10 s} and compare the results.
For PMEmo dataset, due to audio signal values falling into
the range [—1, 1], no extra normalization is required. For
AllMusic dataset, we normalize data into the same range.

We then convert each segment-level audio into a mel-
scaled spectrogram S, by using the function provided in
Python Librosa® package. To reduce the impact of outliers,
S 1s further transformed into logarithmic scale base 10. The
detail is defined as below:

Sim = 1g(Sp + A) 2)

where we set A as | rather than a tiny increment like 1e — 6.
In the preliminary experiment, we found that A = 1 could
result in relatively narrow data range with nonnegative num-
bers, which bring about lower reconstruction losses. After
that, we transpose 2D log-mel spectrogram data to generate
the inputs before the masking operation. The expected data
size for each input is 216 x 128, where 128 represents the
number of mel-frequency channels while 216 is the num-
ber of fast Fourier transform (FFT) windows calculated from
audio data. In order to gain the same data shape for different
segment duration to adapt to the model, we need to adjust the
length of the FFT window n_fft and the number of samples
between successive windows hop_length when computing
the mel spectrogram. Table 1 lists the parameters for mel
spectrogram transformation.

For the frequency and time masking, we set ' = 30 and
T = 32. Then, we pad the masked spans by either zero or the

2 https:/librosa.github.io/librosa/.
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Table 1 Parameters for mel

spectrogram transformation Dataset Sample rate (Hz) Segment duration (s) n_fft hop_length

PMEmo 44100 1 1024 205
1024 615

2048 1024

10 2048 2048
AllMusic 22050 1024 307
1024 512

10 2048 1024

In this table, ’s” denotes second. For AllMusic dataset, *1s’ segment duration is inapplicable due to the

limitation of the model input shape

mean value of log-mel spectrogram. As observed, the mean
value is not zero but the gap is small. Hence, padding the
mean value shows a very small increase in performance. In
the following experiments, we use the mean value to mask
the frequency and time spans.

4.3 Annotation transformation

For PMEmo dataset, the original annotation data was based
on subjective responses in the range from 1 to 9 for both
valence and arousal, and was scaled into [0, 1] in the form of
continuous values for storage in the dataset. To consider this
task as a classification problem, we need to transform these
continuous values into categories. We observe the distribu-
tion of the annotation data in 2D emotion space as shown
in Fig. 3. Quadrantal classification is not appropriate due to
imbalanced training samples in each quadrant. Thus, we use
binary classification based on high/low level for each dimen-
sion. Moreover, we draw on the method used in [44,45] to
adjust the neutral threshold. That is, K-means clustering is
applied to generate 2 clusters, followed by calculating two
cluster centers and their midpoint. Then, we set up thresh-
olds for each dimension on the basis of the coordinates of
the midpoint. In this way, we could balance training data in
each category.

For AllMusic dataset, the original annotation is quadrants.
In accordance with our predictive targets and the annotation
used in PMEmo dataset, we transform quadrants into binary
valence and arousal values.

Fig.3 Distribution of static Lo
emotion annotation and the 0
division for target classes. (a) ©
two centers of k-means §
clustering and their midpoint (b) <
binary classification for

high/low valence (c) binary °%%
classification for high/low

arousal ( a)

Valence
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4.4 Training model setup

In the unsupervised learning stage, the masked data is fed
into a CNN-based autoencoder model. The parameters of
the proposed neural networks are given in Table 2. All of the
2D CNN layers specify 3 x 3 kernel size with one stride.
2 x 2 pool size with stride length of 2 is applied for 2D max-
pooling layers, and same size is applied for 2D upsampling
layers as well. The filter size starts with 128 and decreases
layer by layer in the encoder, then increases correspondingly
in the decoder ending with 1 to return to the initial shape.
During optimization, the L2 regularizer applies a penalty to
the output of the first CNN layer with a 0.001 learning rate
to benefit model convergence. Once the training is finished,
we save the optimal weights of the encoder module.

In the supervised learning stage, we assemble tempo-
ral segment-level representations in sequence through the
saved encoder module, and then put them into the BILSTM
model. We set the output units of the LSTM layers as 512
for forward and backward direction separately. After that,
the dropout rate of 0.5 is applied. The final binary classifi-
cation is obtained through the dense layer with the softmax
activation. In this part, we also consider LSTM and GRU
(Gated Recurrent Unit) models instead due to less parameters
and training cost. However, BILSTM model could capture
sequential information in both directions and has higher per-
formance in the experiment. Then, we check the detail of
training cost for BILSTM model: the training time for each
epoch is generally 5-21 s, and the number of epochs for each
fold is averagely 25. Based on this, time cost is completely

Valence

(b) (c)

Valence
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;::}iisze d?:fgﬁifg;ﬂ:&ild Layer type Parameters Output shape
Input - (216, 128, 1)
2D CNN kernel=3 x 3, stride=1, filter=128 (216, 128, 128)
2D Maxpooling pool_size=2 x 2, stride=2 (108, 64, 128)
2D CNN kernel=3 x 3, stride=1, filter=64 (108, 64, 64)
2D Maxpooling pool_size=2 x 2, stride=2 (54, 32, 64)
2D CNN kernel=3 x 3, stride=1, filter=32 (54,32, 32)
2D Maxpooling pool_size=2 x 2, stride=2 (27, 16, 32)
2D CNN kernel=3 x 3, stride=1, filter=32 (27, 16, 32)
2D Upsampling size=2 x 2 (54, 32, 32)
2D CNN kernel=3 x 3, stride=1, filter=64 (54, 32, 64)
2D Upsampling size=2 x 2 (108, 64, 64)
2D CNN kernel=3 x 3, stride=1, filter=128 (108, 64, 128)
2D Upsampling size=2 x 2 (216, 128, 128)
2D CNN kernel=3 x 3, stride=1, filter=1 (216, 128, 1)

Table 3 Hyper-parameters for

Hyper-
model training yper-parameter

Unsupervised learning Supervised learning

Optimizer
Optimizer’s learning rate
Batch size

Loss

Adam Adam

le—3 le—5

64 10

Huber Categorical cross-entropy

affordable. Therefore, we give priority to performance and
choose BiLSTM model.

We evaluate the whole model by running tenfold cross-
validation and obtaining the average performance based on
classification accuracy and F1-score. Accordingly, we split
training/test sets with the ratio of 9:1. In each fold, we run
5 rounds for Valence/Arousal predictions, respectively, to
check the statistical results. For both unsupervised learning
and supervised learning, the Adam optimizer [22] is used, and
the early stopping strategy is configured with the patience of
10-epoch for the validation dataset to avoid overfitting during
training. The former model monitors reconstruction Huber
loss while the latter model monitors classification accuracy.

Table 4 General time cost of the proposed model during training

The details of some hyper-parameters are summarized in
Table 3. Moreover, we report the general time cost of our
model training on two datasets (see Table 4). All experiments
are implemented via Nvidia GeForce GTX 1080 GPU. The
unsupervised learning usually takes 100-200 epochs per fold.
The supervised learning usually takes 20-30 epochs per fold.

To validate the advantage of the proposed autoencoder
model, we also build up a baseline model that combines CNN
and BiLSTM directly. The CNN module reuses the structure
of the feature encoder in the unsupervised learning, followed
by BiLSTM for emotion classification. These two parts are
trained together.

Dataset Segment duration (s) Unsupervised learning (CNN-based autoencoder) Supervised learning (BiLSTM)
PMEmo 1s 75s/epoch, 3h/fold 21s/epoch, 525s/fold
24s/epoch, 1h/fold 13s/epoch, 325s/fold
5 15s/epoch, 0.6h/fold 7slepoch, 175s/fold
10 8s/epoch, 0.3h/fold Ss/epoch, 138s/fold
AllMusic 28s/epoch, 1.1h/fold 18s/epoch, 450s/fold
5 18s/epoch, 0.7h/fold 13s/epoch, 325s/fold
10 9s/epoch, 0.4h/fold 9s/epoch, 225s/fold

In this table, ‘s’ denotes second, ‘h’ denotes hour
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Table 5 Performance comparison based on different segment duration

Dataset Segment duration (s) Valence Arousal
Accuracy (%) Fl-score (%) Accuracy (%) (%) Fl-score (%)

PMEmo Is 79.01 83.2 83.19 86.1

3s 78.75 82.95 82.67 85.59

S5s 78.23 82.64 83.62 86.52

10s 77.58 82.18 83.51 86.62
AllMusic 3s 67.11 67.11 85.67 85.67

5s 66.89 66.89 86.56 86.56

10s 66.45 66.45 86.11 86.11

Bold values denote the best performance

5 Results

In this section, we report our experiment results based on
selected segment duration and compare our performance
with previous work.

5.1 Performance of different segment duration

The segments of different duration have been applied in our
experiments. In multiple runs for each segment duration, we
average tenfold scores. The results are shown in Table 5, and
show that the performance for arousal recognition is always
better than valence in all of the segment lengths investigated.
The results also indicate that shorter segment length shows
better performance on the valence dimension, while longer
segment duration benefits arousal performance. For exam-
ple, in PMEmo dataset, 1-s segment shows the best valence
results with 79.01% accuracy and 83.2% Fl1-score, while
5s/10s’s segments show better accuracy (83.62%/83.51%)
and Fl1-score (86.52%/86.62%) on arousal dimension. All-
Music dataset shows the similar trends. For such results, we
analyze the possible reasons in the discussion section.

5.2 Performance comparison with different models
and sources

Table 6 shows a performance comparison with cutting-edge
benchmarks based on different models and sources. From
this comparison, it is clear that our model can outperform
any models using a single data source, either music or elec-
trodermal activity signals. Compared to the Yin et al. model
[43] that uses music sources only, the accuracy for valence
prediction in our model increases by more than 12%, and the
corresponding F1-score increases by more than 10%. Simi-
larly, there are increases in almost 17% and 13% on arousal
recognition in terms of accuracy and F1-score, respectively.
Our model even competes with the latest multimodal frame-
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work [44] that utilizes EDA signals and music together with
attention neural networks. Furthermore, we compared our
model with the baseline model which also use segment-level
inputs but lack of the autoencoder architecture. The results
show that our model is superior to the baseline model in both
emotion dimensions.

6 Discussion
6.1 Segment duration analysis

From Table 5, we may suppose that a longer segment length
contains more acoustic cues for arousal recognition while a
shorter one has more relevant information for valence pre-
diction. Compared with segments of long duration, shorter
segments are more likely to avoid changes of musical charac-
teristics and reflect consistent perceptual properties of music
like harmony, pitches that benefit valence recognition [13].
In contrast, relatively long duration may capture more time-
domain regularities like beat and tempo that benefit arousal
recognition [15]. Further, we conduct paired t tests to exam-
ine the performance of different segment duration, and the
results demonstrate that there is no statistical significance
with respect to which segment duration is best. The possi-
ble reason is that we use log-mel spectrogram with same
input shape for different segment duration, which limits the
selection of the length of FFT window and the hop length
thereby impacting the musical pattern extraction from audio
data. Another reason is to what extent the segment duration
could match with the emotional boundary. The performance
depends on whether the fixed segmentation could cover emo-
tional segmentation well for most of songs [1]. Generally,
5-s segment is a relatively better choice for our model as this
duration is a reasonable trade-off between performance and
computing cost.
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6.2 Performance analysis compared with other
models

F1-score (%)
85.62
86.52

64.82
76.36
85.17

In this part, we discuss segment-based framework and model
structures. Compared with the models in Table 6, our model
using segment-level learning shows better performance than
other models that used the whole music excerpts directly. The
long duration may contain acoustic cue variations and emo-
tional state changes [40], which may make learning models
confused and have difficulty extracting unified musical fea-
tures targeted to one kind of emotion [1]. Segment-based
learning relieves this problem as the relatively shorter dura-
tion usually reflects consistent music feature patterns that
facilitate emotion recognition and improve the effectiveness
of learning [38]. On the other hand, we compared two mod-
els with audio segmentation. Under the same experimental
circumstance, our model with the autoencoder structure out-
performs the baseline model. It is demonstrated that the
autoencoder can contribute to the increase in final perfor-
mance. The advantage is that the autoencoder makes it pos-
sible to separate two-stage training with their own optimum
parameters. In the meantime, as an unsupervised learning
method, no labels are required. Further, our segment-level
unsupervised learning brings about more flexibility of model
structure design. The framework is divided into two parts; one
part concentrates on feature representation, while the other
part focuses on target prediction. It is possible that we could
replace one part without changing the other part as long as
the data interfaces could match well with each other mean-
ingfully. For example, another effective deep neural network
is used to predict final emotion instead of the LSTM model.
This approach could be considered in future research.

Another factor we consider is the cost. The state-of-the-art
work adopted attention mechanisms [44]. This is powerful for
learning music representations, but it introduces more train-
ing parameters and increases the complexity of computing
which requires more computing resources and aggravates the
burden of operating environment, even more time cost [16].
We replaces the attention architecture with stacked convolu-
tional neural networks, which reduces the time cost (refer to
Table 4) but achieves the equivalent results. We argue that
our model is generally more cost-effective.

Arousal
Accuracy (%)
71.49

68.75
82.79

82.51
64.05
83.62

Fl-score (%)

80.94
62.47
75.32
81.91

83.2

Accuracy (%)

Valence
77.30
63.61
70.43
61.98
77.44
79.01

Audio segmentation

No
No
No
Yes
Yes

Input source
EDA + Music
Music + Lyrics

EDA

Music
Music
Music

6.3 Ablation test for masking data

openSMILE
Attention module + ResNet

Attention module + ResNet +
BiLSTM

Core methods
CNN + BiLSTM
CNN-based autoencoder +

SVM
SVM

We carry out the ablation test to examine the effectiveness
of the masking methods. The tenfolds of accuracy and F1-
score for valence/arousal recognition are visualized in Fig. 4.
In each subfigure, both lines represent the performance of
the model without masking and the model with masking.
For PMEmo dataset, both lines go across each other several
times. This result can be explained by characteristics of the
dataset. As the chorus part of a popular song contains the rep-

Table 6 Performance comparison with different models and different sources based on PMEmo dataset

Bold values denote the best performance

Models
RTCAN-1D [44]
RTCAG [44]
SVM [43]

SVM [34]

The baseline
Our model

@ Springer
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Fig. 4 Masking impact on the performance. For PMEmo dataset: a
shows the accuracy for valence; b shows F1-score for valence; ¢ shows
the accuracy for arousal; d shows F1-score for arousal. For AllMusic

etition of musical content that shows more clear and intense
emotion expression [42]. Such data morphology decreases
the data variation and the outliers so as to lessen the effect
of masking methodology. For AllMusic dataset, it contains
different genres of songs and balanced training samples. The
effectiveness of masking is statistically significant. Overall,
we think that masking could benefit the model robustness.
In the future work, we may investigate the effect of different
proportions of masking span on performance.

7 Conclusion

In this paper, we propose a segment-level two-stage learn-
ing framework. This naturally combines the unsupervised
learning as a feature extractor with the supervised learning
as a music emotion classifier. First, we use a CNN-based
autoencoder to calculate feature representations for contigu-
ous segments that make up each music excerpt. And then,
the time-series segments are fed into the BiLSTM model

@ Springer

dataset: e shows F1-score for valence; f shows F1-score for arousal; the
accuracy comparison is same as F1-score

to predict emotion for this music excerpt. In this way, we
implement segment-level feature extraction without being
limited to song-level annotation. Additionally, we apply the
time/frequency masking approach to the segment inputs for
enhancing model robustness. The experimental results show
that our model achieves better performance than those mod-
els using a single feature source, even competing with the
cutting-edge multi-modal framework. Compared with the
whole music excerpts as model inputs, segments with rel-
atively short duration increase the data scale and contain less
change of acoustic cues. Due to this, the learning models
could detect the correlation between musical features and
emotion more effectively. Apart from that, this two-stage
training framework is more flexible and makes changing the
combinations of neural networks possible that means much
potential for performance improvement.
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