Skip to main content
Log in

Organ segmentation from computed tomography images using the 3D convolutional neural network: a systematic review

  • Trends and Surveys
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

Computed tomography images are scans that combine a series of X-rays with computer processing techniques to display organs in the body. Recently, 3D CNN models have become effective in tasks relating to recognition, delineation, and classification. Therefore we propose a review to summarize different 3D CNN algorithms for segmenting organs in computed tomography images. This work systematically applies a two-stage procedure for review. A thorough screening of abstracts and titles to ascertain their relevance was done. Research papers published in the academic repositories were selected, analyzed, and reviewed. Insight relating to 3D organ segmentation is provided, with content such as database usage, disadvantages, and advantages. A comparison of two accuracies was carried out with a graph depicting database categories. Important insights, limitations, observations, and future directions were elucidated. After careful investigation, we observe that the encoder-decoder network is predominant for segmentation. The encoder-decoder framework provides a seamless procedure to segment CT images. A prediction of future trends with insightful recommendations for researchers is proposed. Finally, findings suggest that CNN algorithms produce good accuracies despite their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B, Mohammadianrasanani S (2014) Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Medi Image Anal 18(5):752–771

    Article  Google Scholar 

  2. Tong Y, Udupa JK, Odhner D, Caiyun Wu, Schuster SJ, Torigian DA (2019) Disease quantification on PET/CT images without explicit object delineation. Med Image Anal 51:169–183

    Article  Google Scholar 

  3. Hsieh J, Nett B, Yu Z et al (2013) Recent advances in CT image reconstruction. Curr Radiol Rep 1:39–51. https://doi.org/10.1007/s40134-012-0003-7

    Article  Google Scholar 

  4. Ecder T (2013) Early diagnosis saves lives: focus on patients with chronic kidney disease. Kidney Int Suppl 3(4):335–336

    Article  Google Scholar 

  5. Royal College of Radiologists. The older radiologist. https://www.rcr.ac.uk/clinical-radiology/service-delivery/sustainable-future-diagnostic-radiology/older-radiologist Accessed from 9 Nov 2016

  6. Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231

    Article  Google Scholar 

  7. Wan H, Fan Z, Xiaojun Yu, Kang M, Wang P, Zeng X (2022) A real-time branch detection and reconstruction mechanism for harvesting robot via convolutional neural network and image segmentation. Comput Electron Agric 192:106609

    Article  Google Scholar 

  8. Ilesanmi AE, Ilesanmi TO (2021) Methods for image denoising using convolutional neural network: a review. Complex Intell Syst 7:2179–2198

    Article  Google Scholar 

  9. Ilesanmi AE, Idowu OP, Chaumrattanakul U, Makhanov SS (2021) Multiscale hybrid algorithm for pre-processing of ultrasound images. Biomed Signal Process Control 66:102396

    Article  Google Scholar 

  10. Ilesanmi AE, Chaumrattanakul U, Makhanov SS (2021) A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybern Biomed Eng 41(2):802–818

    Article  Google Scholar 

  11. Ilesanmi AE, Idowu OP, Makhanov SS (2020) Multiscale superpixel method for segmentation of breast ultrasound. Comput Biol Med 125:103879

    Article  Google Scholar 

  12. Zhang C, Jingben Lu, Yang L, Li C (2021) CAAGP: Rethinking channel attention with adaptive global pooling for liver tumor segmentation. Comput Biol Med 138:104875

    Article  Google Scholar 

  13. Zhang C, Hua Q, Chu Y, Wang P (2021) Liver tumor segmentation using 2.5 D UV-Net with multi-scale convolution. Comput Biol Med 133:104424

    Article  Google Scholar 

  14. Jiangchang Xu, Liu J, Zhang D, Zhou Z, Zhang C, Chen X (2021) A 3D segmentation network of mandible from CT scan with combination of multiple convolutional modules and edge supervision in mandibular reconstruction. Comput Biol Med 138:104925

    Article  Google Scholar 

  15. Bae HJ, Hyun H, Byeon Y, Shin K, Cho Y, Song YJ, Yi S, Kuh SU, Yeom JS, Kim N (2020) Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network. Comput Methods Programs Biomed 184:105119

    Article  Google Scholar 

  16. Wang J, Lv P, Wang H (2021) SAR-U-Net: squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography. Comput Methods Programs Biomed 208:106268

    Article  Google Scholar 

  17. Zhang Y, Wu J, Liu Y, Chen Y, Chen W, Wu EX, Tang X (2021) A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med Image Anal 68:101884

    Article  Google Scholar 

  18. Zhou X (2020) Automatic segmentation of multiple organs on 3D ct images by using deep learning approaches. Adv Exp Med Biol 1213:135–147

    Article  Google Scholar 

  19. Xu X, Zhou F, Liu B (2018) Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Int J Comput Assist Radiol Surg 13(7):967–975. https://doi.org/10.1007/s11548-018-1733-7

    Article  Google Scholar 

  20. You J, Philip LH, Tsang AC, Tsui EL, Woo PP, Lui CS, Leung GK, Mahboobani N, Chu CY, Chong WH, Poon WL (2021) 3D dissimilar-siamese-u-net for hyperdense Middle cerebral artery sign segmentation. Comput Med Imaging Graphics 90:101898

    Article  Google Scholar 

  21. Dogan RO, Dogan H, Bayrak C, Kayikcioglu T (2021) A two-phase approach using mask R-CNN and 3D U-net for high-accuracy automatic segmentation of pancreas in CT imaging. Comput Methods Programs Biomed 207:106141

    Article  Google Scholar 

  22. Lyu T, Yang G, Zhao X, Shu H, Luo L, Chen D, Xiong J, Yang J, Li S, Coatrieux J-L, Chen Y (2021) Dissected aorta segmentation using convolutional neural networks. Comput Methods Programs Biomed 211:106417

    Article  Google Scholar 

  23. Sun G, Liu X, Xuefei Yu (2021) Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images. Comput Methods Programs Biomed 211:106422

    Article  Google Scholar 

  24. Chung M, Lee J, Park S, Lee CE, Lee J, Shin YG (2021) Liver segmentation in abdominal CT images via auto-context neural network and self-supervised contour attention. Artif Intell Med 113:102023

    Article  Google Scholar 

  25. Jun Su, Liu Z, Zhang J, Sheng VS, Song Y, Zhu Y, Liu Yi (2021) DV-Net: accurate liver vessel segmentation via dense connection model with D-BCE loss function. Knowl-Based Syst 232:107471

    Article  Google Scholar 

  26. Yuan W, Wei J, Wang J, Ma Q, Tasdizen T (2020) Unified generative adversarial networks for multimodal segmentation from unpaired 3D medical images. Med Image Anal 64:101731

    Article  Google Scholar 

  27. Cao Z, Bohan Yu, Lei B, Ying H, Zhang X, Chen DZ, Jian Wu (2021) Cascaded SE-ResUnet for segmentation of thoracic organs at risk. Neurocomputing 453:357–368

    Article  Google Scholar 

  28. Diniz JOB, Ferreira JL, Diniz PHB, Silva AC, de Paiva AC (2020) Esophagus segmentation from planning CT images using an atlas-based deep learning approach. Comput Methods Programs Biomed 197:105685

    Article  Google Scholar 

  29. Shu X, Yang Y, Boying Wu (2021) Adaptive segmentation model for liver CT images based on neural network and level set method. Neurocomputing 453:438–452

    Article  Google Scholar 

  30. Altini N, De Giosa G, Fragasso N, Coscia C, Sibilano E, Prencipe B, Hussain SM, Brunetti A, Buongiorno D, Guerriero A, Tatò IS, Brunetti G, Triggiani V, Bevilacqua V (2021) Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN. Informatics 8(2):40. https://doi.org/10.3390/informatics8020040

    Article  Google Scholar 

  31. Payer C, Štern D, Bischof H, Urschler M (2020) Coarse to fine vertebrae localization and segmentation with spatial configuration-Net and U-Net. VISIGRAPP 5:124–133

    Google Scholar 

  32. Abramova V, Clèrigues A, Quiles A, Figueredo DG, Silva Y, Pedraza S, Oliver A, Lladó X (2021) Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks. Comput Med Imaging Graphics 90:101908

    Article  Google Scholar 

  33. Zhao W, Jiang D, Queralta JP, Westerlund T (2020) MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net. Inf Med Unlocked 19:100357

    Article  Google Scholar 

  34. Belal SL, Sadik M, Kaboteh R, Enqvist O, Ulén J, Poulsen MH, Simonsen J, Høilund-Carlsen PF, Edenbrandt L, Trägårdh E (2019) Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol 113:89–95

    Article  Google Scholar 

  35. Cao Y, Ding Y, Jia M, Tian R (2021) A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings. Reliab Eng Syst Saf 215:107813

    Article  Google Scholar 

  36. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)

  37. Glorot X, Bordes A, Bengio Y (2011) AISTATS ’11: proceedings of the 14th international conference on artificial intelligence and statistics. 15:315–323

  38. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 1:1097–1105

    Google Scholar 

  39. Gao W, Zhang X, Yang L, Liu H (2010) An improved Sobel edge detection, computer science and information Technology (ICCSIT). In: 2010 3rd IEEE international conference, 5(71): 9–11

  40. Lin T, Goyal P, Girshick R, He K, Dollar P (2020) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327

    Article  Google Scholar 

  41. Xie X, Zhang W, Wang H, Li L, Feng Z, Wang Z, Wang Z, Pan X (2021) Dynamic adaptive residual network for liver CT image segmentation. Comput Electr Eng 91:107024

    Article  Google Scholar 

  42. Ruiz-Sarmiento J, Galindo C, Gonzalez-Jimenez J et al (2015) UPGMpp: a software library for contextual object recognition. Proc REACTS 2015:1–14

    Google Scholar 

  43. Kong B, Wang X, Bai J, Yi Lu, Gao F, Cao K, Xia J, Song Qi, Yin Y (2020) Learning tree-structured representation for 3D coronary artery segmentation. Comput Med Imaging Graph 80:101688

    Article  Google Scholar 

  44. Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, Jacobs R (2021) Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod 47(5):827–835

    Article  Google Scholar 

  45. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-CNN. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

  46. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  47. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  48. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403

  49. Chen W, Yang F, Zhang X, Xin Xu, Qiao Xu (2021) MAU-Net: multiple attention 3D U-Net for lung cancer segmentation on CT images. Procedia Comput Sci 192:543–552

    Article  Google Scholar 

  50. Hubbard LD, Brothers RJ, King WN et al (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the atherosclerosis risk in communities study. Ophthalmology 106(12):2269–2280

    Article  Google Scholar 

  51. Tan J, Jing L, Huo Y, Li L, Akin O (2021) LGAN: lung segmentation in CT scans using generative adversarial network. Comput Med Imaging Graph 87:101817

    Article  Google Scholar 

  52. Yang J, Bo Wu, Li L, Cao P (2021) MSDS-UNet: a multi-scale deeply supervised 3D U-Net for automatic segmentation of lung tumor in CT. Comput Med Imaging Graph 92:101957

    Article  Google Scholar 

  53. Yang Y, Wu B (2012) Split Bregman method for minimization of improved active contour model combining local and global information dynamically. J Math Anal Appl 389(1):351–366

    Article  MathSciNet  MATH  Google Scholar 

  54. Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  55. Chi J, Han X, Chengdong Wu, Wang H, Ji P (2021) X-Net: multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans. Neurocomputing 459:81–96

    Article  Google Scholar 

  56. Tu Z, Bai X (2010) Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans Pattern Anal Mach Intell 32(10):1744–1757

    Article  Google Scholar 

  57. Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450

  58. Ulyanov D, Vedaldi A, Lempitsky V (2016) Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.

  59. MM Boubnovski, M Chen, K Linton-Reid, JM Posma, SJ Copley, EO Aboagye (2022) Development of a multi-task learning V-Net for pulmonary lobar segmentation on CT and application to diseased lungs, Clinical Radiology, 2022, https://doi.org/10.1016/j.crad.2022.04.012

  60. Huang G et al. (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  61. Sánchez JCG, Magnusson M, Sandborg M, Tedgren ÅC, Malusek A (2020) Segmentation of bones in medical dual-energy computed tomography volumes using the 3D U-Net. Phys Med 69:241–247

    Article  Google Scholar 

  62. Zhou Y, Xie L, Shen W, Wang Y, Fishman EK, Yuille AL (2017) A fixed–point model for pancreas segmentation in abdominal CT scans. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 693–701

  63. Zhu Z, Xia Y, Shen W, Fishman E, Yuille A (2018) A 3D coarse-to-fine framework for volumetric medical image segmentation. In: International conference on 3D vision, IEEE, pp 682–690

  64. Salah MB, Mitiche A, Ayed IB (2009) Effective level set image segmentation with a kernel induced data term. IEEE Trans Image Process 19(1):220–232

    Article  MathSciNet  MATH  Google Scholar 

  65. Dutande P, Baid U, Talbar S (2021) LNCDS: A 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed Signal Process Control 67:102527

    Article  Google Scholar 

  66. Zhang G, Yang Y, Shangliang Xu, Nan Y, Lv C, Wei L, Qian T, Han J, Xie G (2022) Autonomous localization and segmentation for body composition quantization on abdominal CT. Biomed Signal Process Control 71:103172

    Article  Google Scholar 

  67. Wei X, Chen X, Lai C, Zhu Y, Yang H, Du Y (2021) Automatic liver segmentation in CT images with enhanced GAN and mask region-based CNN architectures. BioMed Res Int 11 https://doi.org/10.1155/2021/9956983

  68. Mohassel P, Rosulek M, Trieu N (2019) Practical privacy-preserving K-means clustering. In: Proceedings on privacy enhancing technologies 4:414–433 https://doi.org/10.2478/popets-2020-0080

  69. Kim H, Jung J, Kim J et al (2020) Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network. Sci Rep 10:6204. https://doi.org/10.1038/s41598-020-63285-0

    Article  Google Scholar 

  70. Zhang Z (2016) Introduction to machine learning: k-nearest neighbors. Ann Transl Med 4(11):218. https://doi.org/10.21037/atm.2016.03.37

    Article  Google Scholar 

  71. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Conference on medical image computing and computer assisted intervention (MICCAI)

  72. Milletari F, Navab N, Ahmadi SA (2016) V-Net, Fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of the IEEE fourth international conference on 3D vision, pp 565–571

  73. Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, Wasserthal J, Koehler G, Norajitra T, Wirkert S, et al. (2018) nnu-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486

  74. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks. In: ICML, pp 1310–1318

  75. Girshick R (2015) Fast R-CNN. In: 2015 IEEE international conference on computer vision (ICCV), Santiago, Chile

  76. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 2672–2680

  77. Chen Y, Wang K, Liao X, Qian Y, Wang Q, Yuan Z, Heng P-A (2019) Channel-unet: a spatial channel-wise convolutional neural network for liver and tumors segmentation. Front Genet 10:1110

    Article  Google Scholar 

  78. Xingjian S, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv Neural Inf Process Syst 802–810

  79. Qayyum A, Lalande A, Meriaudeau F (2020) Automatic segmentation of tumors and affected organs in the abdomen using a 3D hybrid model for computed tomography imaging. Comput Biol Med 127:104097

    Article  Google Scholar 

  80. Roy AG, Navab N, Wachinger C (2018) Concurrent spatial and channel ‘squeeze & excitation in fully convolutional networks. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham pp 421–429

  81. Liu Z, Liu X, Xiao B, Wang S, Miao Z, Suna Y, Zhang F (2021) Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Comput Methods Programs Biomed 205:106070

    Article  Google Scholar 

  82. Heinrich MP, Oktay O, Bouteldja N (2019) OBELISK-Net: fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions Medical Image Analysis. 54:1–9

  83. Heinrich MP (2015) Multi-organ segmentation using deeds, self-similarity context and joint fusion. In: MICCAI challenge workshop on multiatlas segmentation beyond the cranial Vault

  84. Heinrich MP, Oktay O (2017) BRIEFnet: deep pancreas segmentation using binary sparse convolutions. In: International conference on medical image computing and computer-assisted intervention (MICCAI), Springer, New York pp 329–337

  85. Huang G, Liu Z, Weinberger KQ, van der Maaten L (2017) Densely connected convolutional networks. In: IEEE conference on computer vision and pattern recognition (CVPR), 1:3

  86. Gao Y, Huang R, Yang Y, Zhang J, Shao K, Tao C, Chen Y, Metaxas DN, Li H, Chen M (2021) FocusNetv2: imbalanced large and small organ segmentation with adversarial shape constraint for head and neck CT images. Med Image Anal 67:101831

    Article  Google Scholar 

  87. Li X, Gong Z, Yin H, Zhang H, Wang Z, Zhuo Li (2020) A 3D deep supervised densely network for small organs of human temporal bone segmentation in CT images. Neural Netw 124:75–85

    Article  Google Scholar 

  88. Huang Z, Wang J, Xuesong Fu, Tao Yu, Guo Y, Wang R (2020) DC-SPP-YOLO: dense connection and spatial pyramid pooling based YOLO for object detection. Inf Sci 522:241–258

    Article  MathSciNet  Google Scholar 

  89. Chen X, Zhang R, Yan P (2019) Feature fusion encoder-decoder network for automatic liver lesion segmentation. arXiv preprint arXiv:1903.11834

  90. Zhang Z, Zhang X, Peng C, Xue X, Sun J (2018) Exfuse: enhancing feature fusion for semantic segmentation. In: Proceedings of the European conference on computer vision 269–284

  91. Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. Artif Intell Stat 562–570

  92. Roth HR, Oda H, Zhou X, Shimizu N, Yang Y, Hayashi Y, Oda M, Fujiwara M, Misawa K, Mori K (2018) An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput Med Imaging Graphics 66:90–99

    Article  Google Scholar 

  93. Linyan Gu, Cai X-C (2021) Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images. Artif Intell Med 121:102189

    Article  Google Scholar 

  94. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++: a nested U-net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, Cham, pp 3–11

    Chapter  Google Scholar 

  95. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  96. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics 249–256

  97. Koesten LM, Kacprzak E, Tennison JFA, Simperl E (2017) The trials and tribulations of working with structured data: -a study on information seeking behavior. In: Proceedings of the 2017 CHI conference on human factors in computing systems, ACM, New York, NY, USA, pp 1277–1289 https://doi.org/10.1145/3025453.3025838

  98. Udupa JK, Odhner D, Zhao L, Tong Y, Matsumoto MM, Ciesielski KC, Falcao AX, Vaideeswaran P, Ciesielski V, Saboury B, Mohammadianrasanani S (2014) Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images. Med Image Anal 18(5):752–771

    Article  Google Scholar 

  99. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. IEEE Conf Comput Vis Pattern Recognit (CVPR) 2016:770–778. https://doi.org/10.1109/CVPR.2016.90

    Article  Google Scholar 

  100. Lin T-Y, Dollar P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR). IEEE pp 936–944. https://doi.org/10.1109/CVPR.2017.106

  101. Jianyun Cao, Haoran Lai, Jiawei Zhang, Junde Zhang, Tao Xie, Heqing Wang, Junguo Bu,Qianjin Feng, Meiyan Huang (2020)2D–3D cascade network for glioma segmentation in multisequence MRI images using multiscale information,Computers in Biology and Medicine, 21:106894.

  102. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890

Download references

Acknowledgements

Special thanks to the management of Medical Image Processing Group, Department of Radiology, University of Pennsylvania, and the anonymous referees of the review for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademola E. Ilesanmi.

Ethics declarations

Conflict of interest

All authors in this paper have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilesanmi, A.E., Ilesanmi, T., Idowu, O.P. et al. Organ segmentation from computed tomography images using the 3D convolutional neural network: a systematic review. Int J Multimed Info Retr 11, 315–331 (2022). https://doi.org/10.1007/s13735-022-00242-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-022-00242-9

Keywords

Navigation