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Abstract Data Semantics is a wide area that continuously
faces new challenges arising from the invention of new infor-
mation formats and novel applications. An area that is partic-
ularly challenging with respect to identifying, representing
and using data semantics is the Web. This paper attempts to
characterize the nature and challenges of Data Semantics on
the Web as an interesting research area to be covered by the
Journal on Data Semantics.

1 Introduction

Data Semantics [43] is a topic that has been investigated
in computer science for more than 30 years. It is typically
associated with a formal definition of the intended interpre-
tation of the data often in terms of logic or algebraic formal-
isms [50]. Over the time, the goals of defining data semantics
as well as the ideal of having a clear formal representation
of semantics has not change, what has changed and is con-
stantly changing, however, are ways of capturing and using
the semantic of data as well as the formalisms used to rep-
resent it. These changes are triggered by new kinds of appli-
cations that require new types of data (e.g. geoinformation
or social tagging) and with advances in the start of the art
of data management (e.g. distribution and parallel process-
ing) that has come with new problem with respect to data
semantics.

One invention that brought significant changes to the
field of data semantics is the Web. The Web fundamen-
tally changed the way data is managed if compared to tradi-
tional systems [17]. In traditional systems, the basic idea
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is to keep the system in a consistent state or to move it
from one consistent state into another. On the web, many
traditional assumptions of data semantics are not valid any
more. This makes it hard to even define the notion of
a consistent state. As a consequence, data semantics on
the web require new methods and principles to be devel-
oped. As an answer to this need, a rather active research
filed has evolved on such principles and method within the
broader area of semantic web technologies. The goal of this
research is roughly to transfer traditional ideas of data seman-
tics to the area of web data taking into account the spe-
cific challenges and needs of a data infrastructure like the
web [42].

In this paper, I try to define the research area of data
semantics on the web by giving an overview over the chal-
lenges and ideas in that part of semantic web research con-
cerned with data semantics in a wider sense. We start by
discussing the nature of data on the web focussing on the
kind of data typically found on the web and specific chal-
lenges we have to face in the area of Data Semantics.
I argue that the web does not come with challenges that
are unique, but that we are facing a unique combination of
challenges that establishes Data Semantics on the Web as
a research area in its own rights. After this general discus-
sion of the challenges I discuss three basic aspects of Data
Semantics on the Web, namely the extraction of semantics
from Web data, the representation of the semantic Informa-
tion on the Web and the Use of such Semantic represen-
tations for processing data on the Web. I will try to stay
away from specific solutions and applications as much as
possible and rather focus on general principles and lines
of work. I will conclude with a personal view on impor-
tant research directions in the field of Data Semantics on
the Web that need further attention in future research in this
area.
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2 H. Stuckenschmidt

2 The Nature of Web Data

Web Data comes in a variety of forms that have emerged
along with the development of the web over the past 20 years.
While each of these different types of data have their own
characteristics and requires different kinds of processing
methods and infrastructures, they also have a lot of com-
monalities in terms of challenges for data processing.

2.1 Types of Data on the Web

During the past 20 years, the web has evolved from a doc-
ument management system used internally at CERN into a
global information medium that becomes more important for
all parts of the society including science, business, politics
and social relations. This development has taken place in a
number of phases that can roughly be associated with differ-
ent kinds of data shared over the Web. We briefly recall these
developments and the different kinds of Web data.

Documents and Web Pages Initially, the Web was created
as a hypertext system for sharing research results in terms
of manually created HTML pages and documents that are
linked to these pages [5]. This phase is sometimes referred
to a Web 1.0. While today, web pages can contain many dif-
ferent kinds of multimedia information, the dominant kind
of information on web pages is still in the form of natural
language texts. Thus, the semantics of web data is to some
extend always connected to natural language semantics and
being able to process natural language resources is a basic
requirement for semantic processing of web data.

Databases and the Deep Web Although text is still the most
visible form of data on the Web, a significant amount of
data on the web today is structured data from databases that
have been linked to web pages. The resulting information
space available through the web is often referred to as the
‘Deep Web’ or the ‘Hidden Web’ as the data is typically not
explicitly represented on web pages and is thus not indexed
by conventional search engines, but has to be surfaced by
posting queries to database interfaces on web pages [25].
While the semantics of relational data is well understood,
the problem of data on the deep web is the need to describe
the data indirectly via the available interface.

Semi-Structured Data A more direct way of publishing non
textual information on the Web, semi-structured data repre-
sentation languages based on the Extensible Modelling Lan-
guage XML have been developed. These languages allow the
explicit publication of structured data in form of documents
on the web. The obvious advantage over the Deep Web is
the possibility to directly index and access the content of the
data sets in a document. A prominent example is the resource

description format RDF that has become the foundation for
a large space publication of free data on the web. A specific
feature of semi-structured data is the ability to explicitly link
data to descriptions of its semantics in terms of conceptual
models. This ability, often referred to as Web 3.0, can be
seen as a cornerstone in the definition and processing of data
semantics on the Web [12].

Social Media A rather recent development is the spread of
so-called social media. While all other kinds of data dis-
cussed so far are created by data providers, social media
provide data consumers with the possibility to add contents
to web pages [20]. This User-created contents has a number
of specifics that need to be taken into account. In particular,
social contents is characterized by a very low level of regu-
larity that is even below the regularity of natural language.
Further, user-created content is highly diverse and subjective
asking for methods able to control these aspects. In contrast to
other forms of data, user created contents is often very timely
and therefore provides an important indicator for trends and
buzzes.

2.2 Challenges in Web Data Management

While the nature of the different types of data differs, certain
challenges for managing data (semantics) on the Web come
from the Web itself and are therefore similar for the different
data types. These challenges that are described in the follow-
ing also define the research area of web data management
by setting it aside from classical data management. There is
no doubt that similar challenges occur in different areas of
data management, the combination of all of the following
challenges, however, is rather unique.

Heterogeneity Heterogeneity of data is a fundamental prob-
lem on the web. As we have seen above, heterogeneity starts
with the problem of having many different kinds of data rep-
resenting using a variety of representations including free
text, XML languages and relational data. However, hetero-
geneity of data on the Web is not limited to data formats and
representations, but also occurs at the level of conceptual
models and terminology used to describe data items, often
referred to as semantic heterogeneity [29]. While semantic
heterogeneity is already a major problem when staying inside
the relational data model, it becomes a real challenge on
the web, where semantic heterogeneity has to be addressed
across different types of data.

Distribution One reason for the heterogeneity of Web data
on the semantic level is the inherently distributed architec-
ture of the Web that lacks central control mechanisms. Instead
authors and users create data completely independent from
each other which leads to different representations of the
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Data Semantics on the Web 3

same real world objects. Distribution and the resulting inde-
pendence of data sources is also a challenge for data manage-
ment as data processing has to be coordinated across different
sources and the consistency of results have to ensured across
different locations. This significantly increases the effort that
has to be put into data management on the Web.

Change While managing change is a problem in data man-
agement in general, it is especially difficult on the web
because, as mentioned above, there is no central point of con-
trol. Different web sites changes completely independent of
each other and there are no mechanisms for propagating or
even announcing changes to other sources referring to the
changes data. The original approach of coping with change
on the web is not to care about it and just ensure that the sys-
tem remains stable. While this approach has proven to be very
effective, it is problematic from the point of data semantics,
especially when the meaning of data in one source depends
on the interpretation of another [40].

Scale Probably, the most significant challenge of seman-
tic web data management is scale. The web is the largest
freely available information resource that ever existed and it
is constantly growing. The following statistics underline this
aspect.

• In 2005, the size of the web was estimated with at least
11.5 billion pages [21] end of 2011 Google indexes more
than 50 billion webpages1

• In 2004, the number of deep web sites has been estimated
as around 300.000 in the entire Web [25]

• In September 2011, the linked open data cloud was esti-
mated to contain about 30 billion statements in 500 mil-
lion RDF documents2

• Lists more than 200 data catalogs each pointing to thou-
sands of datasets all over the world3.

While the web itself provides a stable infrastructure for
dealing with scalability issues, the size of the web makes it
very hard to go into data semantics as traditional approaches
to semantics (schema information, metadata), only work on
a very limited part of the whole web. Further, processing
semantics typically is a computationally hard problem that
works best on small data sets.

3 Creating Data Semantics

In closed systems, the intended meaning of data is defined by
its intended use that is determined by the systems’ develop-

1 http://www.worldwidewebsize.com/.
2 http://en.wikipedia.org/wiki/Linked_data.
3 http://datacatalogs.org/.

ers and users and often reflected in the specific schema or the
data structures used for representing it. On the web, this is
only partially the case. While the intended meaning of data is
of course also determined by the intended use, the universal
availability of the data via the Web infrastructure encourages
the use of data for applications different from the one it was
originally intended for. In order to do this in a meaningful
way, the intended meaning of the data has to be understood
to correctly relate it to the new application. Thus getting hold
of the intended meaning, the Semantics of Data on the Web is
essential. We can distinguish different general approaches to
the problem of understanding the intended meaning of Data
on the web.

3.1 Semantics from Models

A viable way of dealing with the problem arising from the
attempt to use data for a different purpose than originally
intended is to make the intended meaning of the data explicit
by publishing the conceptual model in terms of an ontology
and linking the data to it using metadata [26]. Meanwhile,
this approach is well supported by language standards such
as RDF and OWL and can be seen as a cornerstone of data
semantics on the web [27]. A closer look at this idea reveals,
that publishing the ontology along with a data set does not
really solve the problem as long as every data set comes with
its own ontology. In this case the problem of possible mis-
interpretations is just lifted from the data to the conceptual
level. In order to be able to really interpret the data, what is
needed is either a jointly used ontology that is shared between
the data source and the potential user of the data. In various
domains, such ontologies have been developed that can be
used to assign an agreed interpretation to data in that domain
( e.g. [2,31]). Further, some so-called top-level ontologies
have been developed that provide a common interpretation at
a very high level and can be used to harmonize domain ontol-
ogies (e.g. [35,38]). The other possible solution is the use
of semantic mappings either between the ontologies of data
provider and consumer or directly between different data-
sets [16]. Meanwhile, it is commonly accepted that semantic
mappings between models or data are an important mecha-
nism in the description of data semantics, especially on the
Web. In particular, the use of same-as links to indicate differ-
ent representations of the same real-world object has recently
gained a lot of attention in the context of linked data [22].

3.2 Semantics from Data

The downside of the model-based approach to data semantics
is the effort that has to be spend on creating and maintain-
ing the semantic models, especially if they are built man-
ually. This has lead to various attempts to directly extract
intended interpretations from the data and either use it to
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construct semantic models automatically or to directly sup-
port the semantically correct processing of the data. As
the initial Web mostly consisted of textual information, a
lot of attention has been put on the extraction of semantic
representations from text leading to a number of different
approaches [7]. From a technical point of view, we can dis-
tinguish between statistical approaches to text semantics and
information extraction approaches try to identify semantics
based on grammatical patterns in the text. While statistical
approaches usually determine the semantics of textual data in
terms of word distributions and co-occurrences, information
extraction analyses the inherent semantics of language con-
structs. With the increasing availability of at least partially
structured information on the Web, researchers have started
to investigate the use of relational learning approaches to
extract conceptual knowledge from partially structured and
somewhat heterogeneous information [30,51]. Both, linguis-
tic analysis and learning from data also plays a significant role
in the creation of semantic mappings between models and
data sets. Ontology Matching and Data linking are two areas
of research concerned with the creation of such mappings
make extensive use of linguistic knowledge using both sta-
tistical and structural methods and from learning from data.
A prominent example of a learning approach to sdata match-
ing is [13].

3.3 Semantics from Users

A new trend in data semantics is the involvement of the data
user in the process of making semantics explicit. Efforts
in this direction can broadly be distinguished into such
approaches, where the user is explicitly asked to provide
semantic descriptions and as such where the user is unaware
of the fact that she is contributing to the establishment of data
semantics. The first type of approaches makes use of web 2.0
technologies for handling user generated contents. In con-
trast to classical knowledge acquisition scenarios, it is not
assumed that the users are experts in the particular domain.
The idea is more that asking many users the same question
will ultimately generate the right result because a majority
of users will give the correct interpretation of the piece of
data. The most prominent approach of this type is tagging,
where users attach simple descriptions (tags) to information
objects. The extraction of deeper semantics, i.e. concept hier-
archies from these tags is an area of ongoing research [45].
The problem with explicit user participation in the creation
of semantic descriptions is motivation. The User is typically
willing to contribute if he sees a benefit for himself or for
his peer group. This can be achieved by offering value added
service that improve with user input or the users have to be
motivated in a different way. the most direct way of providing
such motivation is to pay the user for his contribution. This
way is taken by crowdsourcing platforms such as the Amazon

mechanical Turk, that has already successfully been used to
let users create semantic descriptions [14]. The other way is
to motivate the user by making it fun to participate. This idea
is implemented in so-called games with a purpose that dis-
guise the creation of semantics in an online game that users
enjoy playing. Such games are already half way between the
two types of user participation as the player of a game is not
necessarily aware of his contribution to information seman-
tics [44]. An even more indirect way is to just observe user
behavior and try to derive information semantics from this
behavior [4]. Search engines, for instance can analyze which
of the search results are actually selected by a user or search
sessions of one user can be analyzed to find related search
terms.

4 Representing Data Semantics

As we have seen, the intended interpretation of Data on the
web can be explored in different ways, but it is widely agreed
that models of this intended meaning play a central role in
intelligent information processing. With the introduction of
OWL as a W3C standard for representing ontologies, the
representation of data semantics is often associated with it.
The spectrum of models for representing Data semantics,
however, is actually broader than that. Instead of discussing
specific languages that have been proposed for this purpose,
we rather discuss different principles underlying these lan-
guages that provide different ways of approaching the prob-
lem of representing semantics. This of course includes logic
as a classical way of representing meaning, but the charac-
teristics of Web Data discussed in Sect. 2 ask for more than
a purely logical treatment of data semantics. In particular,
successful approaches have to deal with uncertainty and lin-
guistic/pragmatic semantics of data on the Web.

4.1 Logics

The traditional way of defining Data Semantics in terms of
algebraic structures and formal logic using the model theo-
retic semantics of the respective formalism as a mathematical
framework for defining and analyzing the semantics. In dat-
abases, Datalog has become the most important model for
talking about the semantics of relational data [10], in the
field of knowledge representation, description logics have
been invented as a specific family of logics for talking about
conceptual knowledge [3]. Although have started to investi-
gate connections between these two families of logics (e.g.
[37]), there are still two different areas of research with lim-
ited interaction. Both formalisms also play a central role in
Data Semantics on the Web as the basis for languages like
OWL and RDF. However, it has been recognized by differ-
ent researchers that the special characteristics of Web Data
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often requires an interpretation that goes beyond the abili-
ties of classical logic. In particular, the notion of consistency
that is quite central to logic-based formalisms for capturing
data semantics has to be reinvestigated as inconsistency is
rather a rule than an exception on the Web. Consequently,
various extensions to classical logics have been proposed to
capture the semantics of heterogeneous and inconsistent data
on the Web [18,28]. Another line of research is concerned
with the development of methods for using classical mod-
els for representing smaller consistent subsets of data on the
web and managing these local models on a global level (e.g.
[6]). While the representation and processing of conceptual
data models have been in the focus of early investigations,
the attention has now shifted towards logical models that
support more practical use of data via semantic query pro-
cessing [9,33]. As a result, methods from database theory
are becoming more important and are successively adapted
to the special needs of Web Data.

4.2 Lexical and Distributional Semantics

In parallel to logic-based approaches to data semantics, a
completely different approach to semantics has been devel-
oped in the area of language processing. As an answer to the
infeasibility of capturing the semantics of natural language,
less formal ways of defining and exploring the meaning of
terms have been investigated in the area of lexical seman-
tics [41]. Here, the meaning of terms is described in terms
of their relations to other terms. While this idea is similar
to that of logic-based ontologies, the relations used are not
formally defined, but rather describe the use of a term in tex-
tual resources. Using these relations terms can be defined
and disambiguated via the related terms [48]. An even more
light-weight approach to describe the semantics of terms in
natural language is via co-occurrence with other terms. While
this approach also referred to as the vector space model of
semantics [49], as the meaning of a document or a term is
represented using a term vector, is a purely statistical one,
it can also be seen as a simplified version of lexical seman-
tics that only uses a single relation. Due to its simplicity and
scalability, lexical and especially distributional semantics has
become quite popular in information search and retrieval. The
popularity of the distributional model has also been caused
by the ability to generate semantic models from large cor-
pora using machine learning techniques. While there are also
approaches for learning lexical and logical models of infor-
mation semantics, the automatic generation of such richer
models from data is still an unsolved problem as mentioned
above. This means that lexical and distributional models of
semantics provide complementary approach to data seman-
tics on the web that comes into play when the creation of
rich semantic models or their use is not feasible or too costly
(e.g. [39]).

4.3 Models of Uncertainty

The characteristics of Web data described above inevitably
leads to uncertainty about both the truth and the intended
meaning of statements on the web. Uncertainty about the
truth of a statement often arises from doubt in the quality of
the source the statement originates from or from statements
that have been learned from a data sample or generated using
heuristic knowledge. Uncertainty about the intended mean-
ing often originates from vagueness in statements like often
found in natural language. When building semantic models
about this kind of data, the inherent uncertainty also has to be
reflected in the model. While this is not possible in standard
languages like OWL or RDF, the extension of logical mod-
els of information semantics with representations of uncer-
tainty about truth or intended meaning is an active field of
research [32]. A prominent line of research is concerned with
the extension of description logics with concepts from fuzzy
theory and related methods [46]. The resulting models allow
the representation of vagueness in the subsumption relation
as well as in typical properties of concepts. Another line of
research is concerned with combining logic-based represen-
tations of semantics with probability theory (e.g. [8]). Here,
the focus is much more on data and querying than on purely
terminological knowledge, often inspired by work in infor-
mation retrieval [19] and probabilistic databases [11].

5 Using Data Semantics

The specific characteristics of Web Data often requires the
explicit use of semantic models the data processing. This dis-
tinguishes semantic data models on the Web from traditional
settings where semantic models like conceptual schemas
were primarily used for the design and the documentation
of Data and did not play a central role in the actual pro-
cess of using the data afterwards. Foregoing an explicit use
of semantic models is possible if the data is centralized and
there is an agreement on the intended meaning and use of
the data. This is not the case on the Web as argued above.
Consequently, semantic models play an important role in data
processing on the web. In particular, there are two basic oper-
ations that have been shown to benefit from an explicit use of
semantic models, namely the search for and the integration
of distributed data sources.

5.1 Semantic Search

Finding information has been a central problem on the
Web from its creation on. Meanwhile commercial search
engines in particular Google provide excellent support for
finding web pages and textual documents based on key-
word matching and advanced ranking methods. Traditional
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web search, however, quickly reaches its limits when the
task is not simply to find a document or a web page but
to find a specific piece of information (e.g. the number of
inhabitants of a country), to collect information about a sin-
gle unique person (e.g. a person named Michael Schum-
acher, who is not the famous racing driver) or to find
an answer to a complex question (e.g. what causes cli-
mate change?). Such advanced scenarios require the use
of explicit semantic models at various points in the pro-
cess [34]. For instance, semantic models are used to query
semi-structured information on the web to find specific facts
rather than a related document based on structured que-
ries [23]. Semantic models are also used to translate nat-
ural language questions into structured queries to enable
precise querying [47]. Further, the use of semantic mod-
els to disambiguate query results has a long tradition in
information search, not only with respect to distinguish-
ing between different real world objects sharing the same
name [24], but also to distinguish between different possi-
ble interpretations of the same word. All kind of semantic
models have been used in this context. While logic-based
representations of semantics are typically used to support
structured querying, lexical and distributional models play
a central role in the disambiguation of information. Mod-
els of uncertainty have the potential to combine the two
aspects in a single step, however, so far their are not used that
frequently.

5.2 Data Integration

The nature of Web Data makes data integration a central
problem. On the conventional web, the integration is a purely
technical one: heterogeneous contents co-exists in different
formats and can be accessed through the same infrastruc-
ture. The invention of semi-structured data description lan-
guages, i.e. XML addresses the data integration problem at
the syntactical level: Data is represented using the same for-
mat enabling users to process data using the same tools.
Models of data semantics comes into play when a syntactic
integration is not sufficient, but an integration on a structural
and semantic level is needed. It has been widely acknowl-
edged that Ontologies can play a valuable role for semantic
data integration by providing a unified structure information
from different sources can be linked to and by providing
a common interpretation of terminology used in different
information sources [29]. In a similar way, it has been shown
that semantic models are important for linking ontologies and
schemas to each other: Most semantic matching systems use
some form of background knowledge, often in terms of lex-
ical resources or special domain ontologies [15]. There are
even approaches that make use of any freely available model
on the web. A typical use of semantic models in the context
of semantic matching are—as in semantic search—the dis-

ambiguation of terms. Beyond that semantic models are used
to derive implicit semantic relationships between Data items
[1] and for detecting inconsistencies that arise due to wrong
matches [36].

6 Research Directions

In this article, I have tried to summarize the main issues con-
nected with research relating to data semantics on the web.
Starting with a discussion of the special properties of Web
Data that makes it unique I have provided a brief survey of
current ideas and principles of generating, representing and
using data semantics on the Web. As the topic is a very broad
and popular one, a lot of research is being done and will be
done on this issue. In this section, I want to provide a per-
sonal perspective on some lines of work that are very prom-
ising topics that either require further investigation to solve
existing problems or that have a high potential for creating
progress.

6.1 Semantic Processing at Scale

As mentioned in the first section, scale is the dominant char-
acteristic of the Web. While scalability has been achieved
for conventional web infrastructure, new forms of data pro-
cessing on the web, in particular the processing of structured
data and semantic models faces significant scaling problems.
While there has been progress in the development of scal-
able infrastructures for storing and querying semi-structured
data, they are still far from being ‘web-scale’ even with-
out taking semantic models into account. It is pretty clear
that centralized architectures will never scale to this level,
therefore the investigation of decentralized architectures and
algorithms remains to be an important issue for web data
processing as such. The same holds for semantic models of
data. Here the problem of scalability is even more pressing
as reasoning with semantic models is known to be compu-
tational expensive and show high degree of interaction that
makes it hard top distribute. A first step towards scaling up
has been achieved by shifting the focus from very expressive
languages to comparably simple representations that have a
higher chance of scaling, however, there is still not enough
work on distributed and parallel approaches for reasoning in
these models. Work is needed both on the theory to better
understand what kind of models support parallel process-
ing and on practice by building and evaluating systems in
the large. Unfortunately, the systematic evaluation of seman-
tic systems at web scale is an open research issue. There
is a need for reaching a common understanding of how the
claim that a system scales to ‘web-scale’ can be established
beyond doubt, because running real experiments at the scale
of the web—whatever that might be—is infeasible. Such an
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agreement on a feasible way of establishing the claim has
to be implemented in terms of datasets and benchmarks that
can be used for testing, leading to the problem that there are
many different ways of representing and processing seman-
tics as we have seen above. This means that it is very hard
top agree on common benchmarks. The good news is that
work in this direction has already started to benefit from
new developments in the area of distributed computing that
has led to the availability of huge computing resources as
bookable services that can be used to test systems at large
scale.

6.2 Multi-Source Extraction and Bootstrapping

The Knowledge Acquisition Bottleneck is a well-known
problem associated with semantic models. Creating seman-
tic models by hand is extremely time intensive and costly.
This effort is sometimes put up with if the resulting model
is highly used and plays an important role in a commu-
nity. Examples include the international classification of dis-
eases (ICD) and the gene ontology. In the large, however,
the manual creation of models by experts is not an option.
As discussed in this article, various approaches have been
proposed for semi-automatically creating semantic models.
So far, there is no silver bullet for creating semantic rep-
resentations and known methods can often only success-
fully cover a very specific aspect of semantic models. It
seems that pushing the boundaries in this area cannot be
achieved by working on a single method. A promising direc-
tion is rather to find intelligent ways of combining sup-
plementary approaches and information types. Successful
examples include the combination of machine learning and
reasoning or the combination of crowdsourcing and infor-
mation extraction. While so far, approaches typically focus
on a single type of information like text or structured data.
In order to fully capture the semantics of a domain, any
available source can provide a contribution. In particular,
the use of different types of information or different extrac-
tion methods can benefit from bootstrapping approaches that
enhance on method with the results of other. While combined
methods have been investigated, work in this area would
benefit from a systematic approach to combining different
approaches. This way, the web could be populated with a
new generation of semantic models that do not reach the level
of quality of manually curated models, but that can further
enhance the capabilities of semantic search and information
integration.

6.3 Combined Representations

We can observe a similar situation with respect to research on
the representation of semantic models. While constant pro-
gress is made in the different areas of modeling semantics

mentioned in this article, it is clear that none of the represen-
tations that stays within one of the areas may be logic, lexical
semantics or models of uncertainty will be able to cover all
aspects of the semantics of web data. While logic-based rep-
resentations have proven useful in the context of using struc-
tured data on the web and lexical and distributional models
provide a well founded basis for capturing the semantics of
text, none of these ‘pure’ formalisms is able to provide solu-
tions for the mix of different types of data that co-exist on
the Web. What is needed is a stronger focus on formalisms
that combine aspects of these different schools. In partic-
ular, many applications on the web demand for solutions
that can adequately describe the semantics of both structured
and unstructured data and are also able to take uncertainty
into account. This means that more research is necessary in
combining the different approaches. A good example of how
useful this combination is the increased use of approaches
like Markov-Logic that combine first-order logic with prob-
abilistic models in a theoretically sound way while still sup-
porting practical implementations of inference and learning.
It has been shown that such formalisms can improve meth-
ods in various areas including natural language processing,
knowledge acquisition and data integration. Form a theoret-
ical point of view, combined formalisms need fundamental
research on tractable fragments and reasoning methods. On
the more practical side, there is a need to integrate combined
models with established standards for representing seman-
tics that so far have not made the move beyond purely logical
representations.

6.4 Open Analytics

Maybe the most interesting opportunity that comes with the
publication of structured data and its semantics on the web is
the opportunity to use this data as a basis for analyzing com-
plex problems that could not be addressed so far, because
they require the combined observation of data from multiple
data sources that were extremely hard or even impossible to
access and combine in a meaningful way. The availability
of data like public statistics like it has been published at the
large in the context of the open government data is of high
interest for researchers from various disciplines like econom-
ics of social sciences. While publishing this data on the Web
already provides significant benefits in terms of transparency,
an adequate representation of the meaning of the published
data is necessary for being able to draw conclusions across
different datasets and supports a semi-automatic analysis of
data using analytical methods. This opportunity, we refer
to as open analytics could provide significant benefits for
different scientific disciplines and public decision making.
Developing a reliable infrastructure for capturing the seman-
tics of data on the web and drawing conclusions from the
integrated data is a huge opportunity.
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7 Conclusions

In summary, Data semantics on the web is both a challenging
research topic that needs ideas from different fields of com-
puter science. It thus provides an opportunity to create radi-
cally new approaches on the boundaries of disciplines and test
results from fields such as databases, information retrieval
and artificial intelligence in a new challenging setting, lead-
ing to new research questions in the different areas. On the
other hand, being able to capture and represent the Semantics
of Data on the Web has a huge potential for advanced appli-
cations in an area that rapidly gains importance in almost all
areas of business and society including electronic commerce,
political discourse and scientific exchange. This combination
of a long-term research challenge and practical significants
makes Data Semantics on the Web a topic that promises to
remain long-term relevance and is clearly set apart from short
term hypes that come and go in the process of scientific dis-
covery.
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