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Abstract Semantic modeling approaches (e.g., conceptual
models, controlled vocabularies, and ontologies) are increas-
ingly being adopted to help address a number of challenges in
scientific data management. While semantic information has
played a considerable role within bioinformatics, semantic
technologies can similarly benefit a wide range of scientific
disciplines. Here we focus on three main areas where model-
ing and semantics are playing an increasingly important role:
scientific workflows, scientific data provenance, and obser-
vational data management. Applications of these areas span a
number of disciplines and provide both challenges and new
opportunities for conceptual modeling research and devel-
opment. We provide a brief overview of each area, discuss
the role that modeling plays within each, and present current
research opportunities.

Keywords Conceptual modeling · Semantics ·
Scientific workflows · Provenance and Observational data

1 Introduction

Scientists carrying out their research today face many dif-
ficult and challenging data management problems. These
challenges are due in part to the changing nature of scien-
tific research, which is increasingly based on large-scale data
analysis. In this article, we broadly survey three informatics
research areas that are being studied to help scientists over-
come a number of data management challenges: scientific
workflows, scientific data provenance, and observational data
semantics.
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The scientific workflow community is developing
workflow systems to help scientists implement and execute
often complex analyses involving various types of data man-
agement and computational tools. Traditionally, these types
of analyses are implemented by scientists using either script-
ing languages (such as bash, Perl, or Python), which require
fairly sophisticated computational skills, or by manually call-
ing and storing intermediate results, which requires a consid-
erable amount of time organizing data files and managing the
overall analysis process [45]. Alternatively, scientific work-
flow systems help scientists by providing higher-level mod-
eling approaches for explicitly specifying analyses as well
as by providing a number of generic services for optimiz-
ing workflow execution, visualizing workflows and workflow
results, managing intermediate data products, and storing the
details of past workflow runs.

The ability to automatically track and record each step and
dependency of a workflow run is often referred to as work-
flow “provenance”, which has become a significant area of
research within the scientific data management community.
Using provenance information, scientists are able to more
easily validate their analytical results and determine causal
dependencies among data products. Provenance information
is also crucial to the scientific process, both for data reuse
and for determining reproducibility of scientific results [50].

While scientific workflows emphasize the processes used
in modeling scientific analyses, the ability to describe and
annotate data products themselves is crucial for interpret-
ing, sharing, and reusing scientific data. Many scientific
disciplines today leverage existing data collected by other
researchers to perform analyses at broad geographic, tempo-
ral, and biological scales. These data are used to provide a
better understanding of wide-ranging phenomena in which a
single individual or research group cannot realistically col-
lect the data needed to carry out a study. Classic examples

123



20 S. Bowers

in earth and environmental science include examining the
effects of nitrogen treatments across North American grass-
lands [56], and studying how changing environmental con-
ditions affect bird migratory patterns [62]. These types of
studies often require access to hundreds of data sets col-
lected by independent research groups over many years.
However, observational data collected in this way is inher-
ently heterogeneous and often is not accompanied by rich
enough semantic information to automatically perform the
types of integration needed to combine and use the data in
broader scientific analyses. Recently, a number of efforts
have been developed to help provide richer conceptual mod-
els for observational data with the goal of helping researchers
deal with complex, heterogeneous observational data.

We briefly summarize the work being carried out in each of
these three areas as well as opportunities for future research.
We focus primarily on modeling challenges within scien-
tific workflows, provenance, and observational data, with the
hope that more researchers in the conceptual and semantic
modeling communities will find opportunities to apply their
own research work to these three important areas in scien-
tific data management. The rest of this article is organized as
follows. In Sects. 2 through 4 we describe scientific work-
flows, data provenance, and observational data approaches,
respectively. Each section provides an overview together with
a number of modeling challenges and directions for future
research. Section 5 concludes with a brief summary of the
challenges presented as well as issues and future work con-
cerning the integration of scientific workflows, provenance,
and data semantics.

2 Scientific Workflows

Science is an exploratory process involving cycles of obser-
vation, hypothesis formation, and experiment design and exe-
cution. Scientific knowledge discovery is increasingly driven
by data analysis and computational methods, which is due
in part to technological advances in data collection instru-
mentation and the availability of commodity clusters for
data-intensive and high-performance scientific computing.
Scientific workflows can be applied during various phases
of the larger scientific process to help researchers model
and automate their computational experiments, data analy-
ses, and data management tasks. The results from applying
scientific workflows can yield new data and insights and thus
may lead to a better understanding of or modifications to a
given hypothesis or experiment outcome.

A scientific workflow is a high-level description of the
processes used to carry out (often complex) computa-
tional and analytical experiments. Scientific workflows are
modeled as directed graphs consisting of task nodes and
dataflow or control-flow edges denoting execution depen-

dencies among tasks. Each task within a scientific workflow
represents a specific computational step (e.g., within a sim-
ulation study), data analysis step, or data management step.
Common types of tasks within scientific workflows include
scientific data acquisition, integration, reduction, visualiza-
tion, and publication (e.g., in a shared database). These steps
are sometimes modeled through composite tasks that serve
as subworkflows defined over lower-level tasks. A scientific
workflow is executed by a scientific workflow system. During
workflow execution, workflow systems generally schedule
tasks to be invoked according to the dataflow and control-
flow edges of the workflow. Many scientific workflow sys-
tems allow scientific workflows to be designed visually using
various forms of block diagrams (as one example, see Fig. 1).

2.1 Scientific Workflow Systems

Workflow-based approaches have been studied in the data-
base community (e.g., [35,36,46,67,70]), within business
process modeling (e.g., [1,2]), and within systems imple-
menting problem-solving environments (e.g., [33,53]). More
recently, a number of systems have been developed to provide
explicit support for scientific workflow modeling and exe-
cution; for general surveys on scientific workflow systems
see [25,28,73]. Examples of widely used scientific work-
flow systems include Taverna [49], Kepler [40], VisTrails [9],
Triana [43], Pegasus [26], and Galaxy [32], among many oth-
ers. Systems have also been developed to help scientists pub-
lish, share, and reuse workflow descriptions, e.g., MyExper-
iment [24]. A number of web-based portal applications have
also been developed (e.g., [4]) that provide higher-level user
interfaces for accessing and executing scientific workflows
which are stored and managed using distributed server-side
resources.

While scientific workflow systems largely focus on
automating the execution of scientific workflows, they typ-
ically provide additional features including support for
assisting users in workflow design and workflow composi-
tion, workflow execution monitoring, workflow optimization
(e.g., exploiting dataflow for parallel execution), fault-
tolerant execution, and the ability to record and store runtime
execution information (i.e., provenance). These additional
features also distinguish scientific workflow systems from
more traditional script-based approaches for automating sci-
entific data analysis (e.g., using shell, Python, or R scripts)
in which such functionality is usually not provided.

As mentioned above, scientific workflows are often cre-
ated within a visual editing environment in which workflows
are represented as directed graphs that link atomic and/or
composite tasks together. Atomic tasks can include native
functions of the workflow system, but often correspond to
invocations of local applications, remote (web) services, or
functions within other languages (e.g., Matlab or R func-
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Fig. 1 Example scientific workflow in the Kepler system: a the user
interface for creating, editing, and executing scientific workflows; b a
visual representation of the data product (a phylogenetic tree) computed
by a workflow run; and c a viewer for navigating the data provenance

(lineage) captured in an execution trace. This workflow (which is mod-
eled within the COMAD framework) uses a combination of local and
remote (web) services to perform multiple sequence alignment and phy-
logenetic tree inference on input DNA sequences

tions). Scientific workflows differ from conventional pro-
gramming, however, in that the workflows are often more
coarse grained and involve wiring together pre-existing com-
ponents and specialized algorithms. As an example, Fig. 1a
shows a simple workflow defined within the Kepler workflow
system. This workflow uses a combination of local applica-
tions and remote web services to perform sequence alignment
and phylogenetic tree inference on input DNA sequences.
The phylogenetic tree created by the analysis is also visu-
alized within the workflow system, which is specified via a
task in the workflow. The result of this particular workflow
on an example data set is shown in Fig. 1b.

Scientific workflow systems span virtually all areas of the
natural (and more recently social) sciences. Early applica-
tions of scientific workflow systems largely focused on sup-
porting bioinformatics analyses, however, the spectrum of
disciplines employing scientific workflow systems is much
wider today, and includes application areas such as parti-
cle physics, chemistry, neurosciences, ecology, geosciences,

oceanography, atmospheric sciences, astronomy and cosmol-
ogy, and the social sciences, among others [29,64].

2.2 Scientific Workflow Modeling and Semantics

There is currently no standard language for modeling sci-
entific workflows, and standards from related communi-
ties (e.g., BPEL) have not found widespread adoption in
the scientific workflow community. For example, workflow
systems that primarily aim at supporting workflows within
high-performance computing and grid environments repre-
sent scientific workflows as simple directed acyclic graphs
(DAGs) of jobs, which are then scheduled on a computa-
tional grid or compute cluster according to the implied task
dependencies of the workflow. In this model of computa-
tion, each task is executed only once per workflow run and
task scheduling amounts to finding a topological sort for the
partial order implied by the DAG (or in some cases exploit-
ing the partial ordering of jobs to execute tasks in parallel).
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In addition, data are typically represented at a coarse-grained
level in the form of files, which are implicitly passed between
jobs (i.e., data passing is not explicitly modeled as part of
the workflow). Alternatively, a number of workflow systems
(including Kepler) support cyclic workflow graphs, in which
a cycle denotes looping, e.g., for modeling while, do-while,
and fixed point computations. One side effect of allowing
cycles within a workflow graph is that tasks within a work-
flow must be executed (i.e., invoked) multiple times.

A number of other more sophisticated models of computa-
tion consider tasks as independent and continuously execut-
ing processes that can receive and send multiple data items
per workflow run. Scientific workflow systems that support
these types of computation models can be used for pipelined
and stream-based data processing. In these cases, multiple
data tokens (which wrap data or references to data) can be
supplied as input to a workflow, and individual tasks are
invoked over subsets of these tokens, where each task invoca-
tion can produce multiple data tokens, and so on. Examples
include tasks for computing sliding-window aggregates (e.g.,
“running averages”) and for independently applying a spe-
cific function over individual input tokens (similar in spirit to
the map higher-order function used in functional program-
ming languages). Depending on the system, data tokens may
represent atomic data items such as integers and strings, more
complex structures such as tuples or (nested) data collections,
or references to external files or data sets.

Similar to business workflows, formal approaches such as
Petri nets can be used to describe scientific workflow exe-
cution semantics. However, as mentioned above, the mod-
els of computation of many scientific workflow systems
can exhibit both task and pipeline parallelism where token
order is important. Thus, the majority of scientific work-
flow systems are based on dataflow semantics [29], and
specifically employ dataflow computation models similar to
Kahn Process Networks [38]. While most workflow systems
support one type of computation model, the Kepler system
allows workflow designers to select their desired model of
computation (referred to as a “director”) to use for a par-
ticular workflow. The two most frequently used models of
computation for Kepler workflows are synchronous data flow
(SDF) [37] and process networks (PN). In both SDF and PN,
dependencies between tasks denote buffered data commu-
nication channels. In SDF, a serial schedule is determined
prior to workflow execution based on the token consumption–
production rates declared for each task. In PN, tasks are exe-
cuted concurrently. Each task is assigned a separate thread
within PN, and tasks are invoked as they receive tokens.
The PN model can be implemented as either a data-driven
(“eager”) model, where data is pushed through the work-
flow, or as a demand-driven (“lazy”) model, where data is
“pulled” through the workflow (allowing users, e.g., to step
through data results one output at a time). For valid SDF

workflows, maximum channel buffer sizes can be guaran-
teed and computed prior to workflow execution, whereas in
PN, buffers grow dynamically (and for some workflows may
require unbounded memory) [38].

The Kepler workflow in Fig. 1 uses an extended PN model
that provides explicit data and workflow modeling support for
managing heterogeneous nested data collections. In particu-
lar, the collection-oriented modeling and design (COMAD)
director in Fig. 1 specifies that workflow components work on
a continuous, XML-like data stream. Each task in the work-
flow can be configured to work over certain (tagged) data
collections—referred to as the component’s scope. Tasks in
COMAD are automatically invoked over their target collec-
tions, and all data outside of the task’s scope are automatically
forwarded to downstream tasks. Tasks can copy, remove, and
add new data and collections within their scope. All changes
to the scope items are also forwarded to downstream tasks.
COMAD provides a number of benefits to workflow design-
ers including workflows that are often more linear than equiv-
alent workflows modeled using PN or SDF [45], which in
turn makes relatively complex workflows easier to compre-
hend and evolve over time. The Taverna [49] system also
provides similar support for nested data collections, which
are modeled as nested lists of tokens. In Taverna, tasks can be
configured to work over input lists using a set of pre-defined
patterns (e.g., applying the task iteratively over each element
of a list or sublist).

2.3 Scientific Workflow Modeling Challenges

While considerable progress has been made in modeling sup-
port for scientific workflows, a number of challenges and
opportunities for future work remain. Here we briefly sum-
marize some current challenges and prior work in these areas.

Many scientific data analyses are complex and can involve
hundreds of independent steps, large amounts of heteroge-
neous data, and multiple data derivation paths. Because of
this complexity, workflows can be difficult to design, espe-
cially for non-technical scientific users. One reason for this
stems from the need to incorporate, within a single work-
flow, analysis tools that were not originally designed to work
together, and where, e.g., no single, standard data model is
used among the tools. One approach for dealing with this
problem has been to use so-called “shims” within workflows
[55], which act as small processing steps for transforming
data into the formats needed by each tool. However, the use
of shims not only makes workflows considerably harder to
design, but can also make workflows considerably harder to
understand and reuse. Approaches like COMAD and the use
of list execution patterns in Taverna can help by allowing
tasks to work over a configurable scope, however, they do
not inherently deal with data conversion and transformation.
Another approach that has been explored is the use of ontolo-
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gies within workflow systems for annotating the inputs and
outputs of workflow steps with terms drawn from domain-
specific ontologies [10,14,72]. These annotations allow steps
to be more easily discovered and can be used by the work-
flow system to make suggestions for possible shims to be
used between steps [13,31].

However, a more general solution would be to explicitly
make workflow systems “data-model-aware”, e.g., by adding
explicit data-modeling capabilities to the workflow system
itself (similar to the newer approach of “artifact-centric”
business workflows [34] being studied within the business
process management community). For instance, much of the
complexity of heterogeneous data formats could be alleviated
by allowing more general conceptual models of data to be
defined together with mapping tools to underlying formats,
and explicitly defining workflow tasks together with their
expected formats. In this way, the workflow system could
automatically convert data into and out of the formats needed
by analysis steps within a workflow, thus removing the need
to explicitly model data transformations within a workflow.
In general, scientific workflow systems today provide limited
data modeling support, and this lack of support introduces
various types of complexities into workflow design.

Another design challenge stems from the need to intro-
duce control-flow constructs (such as conditional execu-
tion) into scientific workflows, e.g., to describe the desired
behavior of the workflow based on runtime information or
for handling faults. Because most workflow systems are
based on the dataflow model of computation, control-flow
is often difficult to describe and can lead to many addi-
tional (and low-level) tasks and dependencies when mod-
eled using only dataflow constructs. This added level of
complexity also make workflows difficult to modify, extend,
and reuse [54]. One approach for dealing with this issue is
to integrate behavioral aspects of workflows by combining
dataflow with control-flow models. For instance, in [54],
Kepler’s support for composite tasks and explicit compu-
tation models was used to embed finite-state transducers
within subworkflows to model reactive behavior for fault tol-
erance. Other approaches have also been developed, includ-
ing the use of special-purpose control-flow components [22]
as well as developing so-called “adaptive” workflows [66].
While these approaches help to simplify workflow models
by decoupling control-flow modeling from dataflow model-
ing, these approaches have not been widely adopted within
current scientific workflow systems, and more work is still
needed to formalize and to integrate the expressivity of busi-
ness workflow modeling languages with the more traditional
dataflow languages used in scientific workflow systems.

Finally, a number of systems provide mechanisms for
defining so-called “abstract” workflows [25,29,31], which
add a conceptual modeling layer over concrete (i.e., exe-
cutable) workflows. Abstract workflows typically take the

form of templates (e.g., [30,54]), which specify the gen-
eral set of high-level steps to be carried out for a particu-
lar type of analysis problem. Some systems (e.g., Pegasus
and the Wings extension [31]) provide support for taking
an abstract workflow and automatically suggestion possible
concrete, executable versions based on task metadata. Con-
ceptual workflow modeling can provide a number of benefits
to workflow designers by allowing workflows to be devel-
oped at a higher level of abstraction (e.g., without having
to worry about implementation details), for workflow dis-
covery (e.g., to find all workflows that implement a partic-
ular template), and for workflow reuse and interoperability.
However, there are currently no standard or general-purpose
approaches for defining and formalizing the notion of abstract
dataflow models. Given the complexity of data, control-flow,
and dataflow aspects of most scientific workflows, formal
conceptual workflow modeling frameworks that integrate
each of these aspects would have the potential to signifi-
cantly help users design and implement complex scientific
analyses.

3 Scientific Workflow Provenance

Most scientific workflow systems record data provenance
information during workflow execution, which typically con-
sists of the tasks that were executed as part of the run
(together, e.g., with the parameter settings of each task) and
the data input to and output by each task invocation [23]. The
provenance of a particular run is often referred to as a work-
flow trace. In addition to the inputs and outputs of tasks, some
systems also record or later infer fine-grained data depen-
dencies, which state causal relations between task inputs and
outputs. For example, consider a simple task that maps a
function f over each input value in a list [x1, x2, . . . , xn] to
produce a new output list [y1, y2, . . . , yn] such that for each
1 ≤ i ≤ n, yi = f (xi ). In this case, a dependency xi ← yi

exists between each xi and yi value stating that yi was derived
explicitly from xi (as opposed to other values in the list).

Workflow provenance information represents important
metadata that can be used by scientists to help interpret, val-
idate, debug, and reproduce scientific analyses. The prove-
nance of scientific data is also used to help determine data
quality, e.g., to help decide whether to reuse a particular data
result, as well as an aid in the process of data integration,
e.g., by providing detailed information on the methods used
to derive data.

Figure 2 shows a number of standard views of work-
flow provenance information from an example run of an
image manipulation workflow (for magnetic resonance imag-
ing) [51]. The top of Fig. 2 shows a standard data depen-
dency graph in which nodes represent data tokens and edges
denote data dependencies. Each dependency edge is labeled

123



24 S. Bowers

Fig. 2 Three different provenance views of an example run of the first
provenance challenge workflow: a a portion of the fine-grained depen-
dency graph corresponding to the first invocation of each workflow task;

b an invocation dependency graph for the complete workflow run; and c
used andwasGeneratedBy edges from OPM for the first invocation
of the run

by its corresponding task invocation. For instance, the label
Softmean:1 between node 13 and 16 states that the Image
represented by token 16 was generated by the first invoca-
tion of the Softmeanworkflow task, the Image represented
by token 13 was input to this invocation, and Image 16 was
derived directly from Image 13. The middle of Fig. 2 shows a
standard invocation dependency graph in which nodes repre-
sent task invocations and edges denote dependencies between
tasks. For example, the edge between theSoftmean:1 task
invocation and theReslice:1 task invocation states that an
output of Reslice:1was input to Softmean:1, and this
output was used to derive an output of Softmean:1. The
invocation graph of Fig. 2 shows the complete set of invoca-
tions of the trace, whereas the dependency graph shows only
the data dependencies introduced by the first invocation of
each workflow task in the run.

Provenance graphs provide a natural representation for
provenance information and in general, the information cap-
tured within provenance graphs can be used in a variety of
ways. For example, workflow developers can leverage prove-
nance to verify that a workflow design executes properly by
examining the inputs and outputs of task invocations, or by

ensuring that all input data is used to derive at least one cor-
responding output data product. Similarly, scientists can use
provenance graphs to help understand how workflow results
were derived by determining the data, tasks, and invoca-
tion parameters that contributed to a particular data product.
Provenance information can also be used to discover data
and workflows, e.g., by enabling users to find data, possibly
across workflow runs, derived from certain input data (in case
data is revised or found to contain errors), or to find work-
flows used to produce data of a certain type. A number of
scientific workflow and provenance-based systems support
queries over provenance information. Examples of common
types of queries include [16,51]:

– What were the inputs and/or outputs of this run?
– What were the inputs, outputs, and/or parameters of this

invocation?
– What data and/or invocations were used to derive this

output?
– What data was derived from this input?
– Were specific data and invocation dependencies satisfied?
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Queries are often expressed using either standard query lan-
guages such as SQL, XQuery, or SPARQL, or via declarative
query languages designed specifically for provenance (e.g.,
[7,11,39,60,61]).

3.1 Provenance Modeling Approaches

The Open Provenance Model (OPM) [50] attempts to stan-
dardize a number of basic relationships found within the
models of provenance employed by a number of workflow
and provenance systems. OPM defines four types of enti-
ties: Processes, which are similar to task invocations; Arti-
facts, which are similar to tokens; Agents, which direct
processes; and Accounts, which act as containers for repre-
senting different views of the same set of provenance events.
OPM also defines a number of provenance relationships,
including used to denote that an artifact was used by a
process, wasGeneratedBy to denote that an artifact was
produced by a process, wasDerivedFrom to denote arti-
fact dependency relationships, and wasTriggeredBy to
denote process dependencies. The bottom of Fig. 2 shows a
portion of an OPM provenance graph (containing used and
wasGeneratedBy edges) for the dependency graph shown
at the top of the figure. Kepler, Taverna, VisTrails, Pegasus,
and a number of other workflow and provenance systems
have been extended to support OPM, allowing traces cap-
tured within each system to be represented and exchanged
using the OPM standard. A series of “provenance chal-
lenges”1 were created to compare provenance support across
workflow systems as well as to evaluate the effectiveness of
using OPM as a standard interchange approach for workflow
provenance.

While OPM provides a baseline standard for prove-
nance information, most models of provenance employed
within workflow systems are driven by the underlying model
of computation supported. For instance, both Taverna and
COMAD provide additional provenance modeling constructs
for representing the provenance of nested data collections.
Other systems provide considerably more detail than the
relationships supported by OPM [23], e.g., token read and
write timestamps [3], task parameter information [7], data
and task annotations [48], support for composite tasks [68],
and workflow specifications and modifications [9]. In gen-
eral, provenance models are largely driven by the set of
runtime observables that can be recorded and are available
within the workflow system (and in particular, the corre-
sponding model of computation). More complex models of
computation (e.g., involving streaming, concurrency, distrib-
uted scheduling, etc.) require additional provenance model-
ing constructs to faithfully capture the details of a workflow
run.

1 http://twiki.ipaw.info/bin/view/Challenge/.

A number of ontology-based approaches have also been
created for representing workflow provenance information.
The Provenir ontology [58,59], e.g., introduces OWL-DL
classes for representing common provenance terms and rela-
tionships. An advantage of this approach is that the ontology
can be easily extended with additional terms for describing
domain-specific information related to data and tasks. For
instance, Provenir is extended in [58] to support a sensor net-
work application in which domain-specific classes are intro-
duced to describe the sensors used for collecting input data
sets as well as the corresponding workflows used to process
this data. In Janus [48], domain-specific ontologies are used
to annotate the more traditional “domain agnostic” prove-
nance representation of Taverna [47]. Janus also extends
the Provenir ontology to support annotation of provenance
graphs. Finally, the W3C Provenance Working Group2 is cur-
rently standardizing a generic provenance model (i.e., one
that is not solely designed for representing scientific work-
flow provenance), but that is largely based on the OPM and
Provenir approaches. The W3C provenance working group
is also currently developing a provenance ontology in OWL-
DL for expressing provenance information within the context
of the web.

3.2 Provenance Modeling Challenges

As mentioned above, one challenge in modeling scientific
workflow provenance is finding an appropriate model of
provenance for a given model of computation. As workflow
languages become more expressive (e.g., adding control-flow
constructs to dataflow computation models), provenance rep-
resentations must also be supplemented with new model-
ing features to support these changes. Within the context
of provenance information, tasks are often characterized as
being either “white box” or “black box” components. White
box components refer to tasks that can be statically analyzed
such as those expressed using SQL queries. In this case, fine-
grained dependencies can often be inferred directly from the
definition of the task [19]. Alternatively, black-box compo-
nents refer to tasks where the underlying implementation
is not visible to the workflow system, implying that fine-
grained data dependencies must be explicitly declared, e.g.,
by task or workflow developers. For initial work on combin-
ing white-box and black-box provenance approaches, see [5].
Alternatively, many workflow systems allow additional lev-
els of specification of tasks in addition to the underlying task
implementation itself. The ability to specify a task’s scope
within the COMAD computation model is one such exam-
ple. In these cases, we can think of the task as a “gray box”
that mixes both white-box features (through task wrapping
and customization) and black-box features (since the under-

2 http://www.w3.org/2011/prov/wiki/Main_Page.
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lying code is not directly analyzable). The ability to define
gray-box specifications is important not only for provenance,
but also for making workflows easier to develop for users.
However, suitable and formal languages and approaches for
modeling gray-box features is still largely unexplored.

Another often overlooked challenge within scientific
workflow provenance centers on distinguishing different
types of dependencies. For instance, OPM along with many
other provenance models consider only one generic type
of data dependency relationship. Data dependencies can be
established for a number of reasons, e.g., a dependency rela-
tionship may represent a derivation (where the value of an
input was used to compute a new value), a copy operation
(the output was a copy of the input), control-flow (the input
was used to trigger the task), and so on.

Another challenge related to workflow provenance con-
cerns application support, e.g., for visualization and brows-
ing, incorporating provenance information into data quality
metrics, provenance analytics and mining (e.g., to determine
workflow patterns and similarities), incorporating prove-
nance information into workflow design, and ensuring pri-
vacy when publishing provenance information. A number
of approaches have been developed to help users view
and navigate relevant portions of provenance graphs gener-
ated from large-scale workflows. Kepler, e.g., uses a simple
browser for displaying provenance graphs (see Fig. 1c). The
Zoom*UserViews approach [11] extends these approaches
by allowing users to select relevant tasks from which the
system automatically generates a set of well-defined abstract
composite tasks to simplify provenance navigation and query.
Other similar approaches (e.g., [6]) have also been devel-
oped to support user-defined summarization and interactive
browsing of provenance large provenance graphs.

4 Observational Data

A considerable amount of scientific knowledge is derived
either directly or indirectly from relatively simple, underly-
ing measurements linked to real-world phenomena. These
measurements are often recorded and stored in observational
data sets that are analyzed by researchers using a variety
of tools and methodologies. Many fields increasingly use
observational data from multiple disciplines (genetics, biol-
ogy, geology, hydrology, sociology, etc.) to tackle broader
and more complex scientific questions. Within the earth and
environmental sciences, e.g., cross-disciplinary data is nec-
essary to investigate complex environmental issues at broad
geographic and temporal scales. Carrying out such stud-
ies requires the integration and synthesis of observational
data from multiple research efforts [8,27]. Effectively using
observational data, however, can be extremely challenging
for researchers due to its inherent structural and semantic

heterogeneity. This in turn makes it difficult to find relevant
data sets, interpret data sets once found, and then combine
data collected by other researchers for analysis.

The heterogeneity of observational data is a result of a
number of factors, including: (1) most observational data
are collected by individuals, institutions, or scientific com-
munities through independent (i.e., uncoordinated) research
projects; (2) the structure of observational data is often cho-
sen based on collection methods (e.g., to make data easier to
record “in the field”) or the format requirements of analysis
tools, as opposed to standard representations and schemas for
data; and (3) the terms and concepts used to label data are not
standardized, both within and across scientific disciplines and
research groups [41]. However, as research becomes increas-
ingly cross-disciplinary, there is a growing need in a number
of communities to provide richer metadata and data repre-
sentation approaches to help unify access to observational
data sets.

4.1 Observational Data Modeling Approaches

The need for a more uniform mechanism to describe obser-
vational data has led to a number of proposals for observa-
tional data models [20,21,63] and ontologies [42,44,57,71].
Many of these provide approaches tailored to their specific
scientific domains of interest for describing data and stor-
ing observational data. Other efforts are aimed at developing
more generic and extensible approaches for modeling obser-
vational data semantics. Figure 3 shows one example of a
generic model for describing observational data [15,18].

The model of Fig. 3 defines constructs to describe
and (depending on the implementation) store observational
data. An observation is made of an entity (e.g., biological
organisms, geographic locations, or environmental features,
among others) and primarily serves to group a set of mea-
surements together to form a single “observation event”.
A measurement assigns a value to a characteristic of the
observed entity (e.g., the height of an entity). Measurements
also include standards (e.g., units) for relating values across
measurements, and can also specify additional information
including collection protocols, methods, precision, and accu-
racy (not all of which are shown in Fig. 3). An observation
(event) can occur within the context of zero or more other
observations. Context can be viewed as a form of depen-
dency, e.g., an observation of a tree specimen may have been
made within a specific geographic location, and the geo-
graphic location provides important information for inter-
preting and comparing different measured values. In this
case, by establishing a context relationship between the tree
and location observations, the measured values of the loca-
tion are assumed to be constant with respect to the measure-
ments of the tree (i.e., the tree measurements are dependent
on the location measurements). Context forms a transitive
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Fig. 3 Main observational modeling constructs defined in the Extensi-
ble Observation Ontology (OBOE): a observation (events) are recorded
for entities and are composed of zero or more measurements; b mea-
surements assert recorded values of observed entities and include a mea-
surement protocol, a measurement standard (e.g., units), the measured

value, and the characteristic of the entity measurement (e.g., height,
mass, etc.); and c the contextual information associated with an obser-
vation event (such as temporal and spatial references) are represented
through explicit context relations

relationship among observations. When describing data sets
using the model of Fig. 3, domain-specific entity, character-
istic, and standard classes are typically used, e.g., by defining
subclasses of the classes of Fig. 3.

Once data are described using an observational model, it
becomes considerably easier to use heterogeneous observa-
tional data sets. In particular, the models provide uniform
views of the data (in terms of observation and measurement
structures) that can be exploited for data-discovery queries
(e.g., to find all data sets that contain observations and mea-
surements of specific types [18]), data analysis operations
(e.g., to aggregate and summarize data sets [12]), and data
set transformation and integration (since the structural het-
erogeneity of underlying data formats is removed).

The basic concepts described in Fig. 3 are present in
a number of existing observational data models including
the ISO Observations and Measurements (O&M) model
developed by the Open Geospatial Consortium [20], the
CUAHSI ODM model [63], the Extensible Observation
Ontology (OBOE) [42], the Entity-Quality (EQ) ontology
model [52], and the SWEET ontology [57], among others.
These approaches largely differ in terms of the technology
and scientific domains they support, e.g., some models are
designed specifically for relational database systems [21,63],
others focus on higher-level representations (e.g., in UML)
without targeting any specific implementation [20], and oth-
ers use description-logic approaches by focusing on OWL-
based representations and semantic-web technologies [69].
Another major difference in the approaches concerns the
use of context information. For example, both O&M and
OBOE provide explicit support for defining a wide range

of observation context information, while others allow only
certain dimensions to be defined (such as fields for specify-
ing the location and time of the observation). The different
models also adopt specific data description approaches. For
instance, EQ and OBOE provide frameworks for supporting
data annotation in which existing data sets are stored in their
native formats but annotated with concepts from the respec-
tive ontologies. Alternatively, ODM and current implemen-
tations of O&M require data to be stored explicitly using
specific relational or XML schemas, respectively.

4.2 Observational Data Modeling Challenges

While developing and using common observational mod-
els can provide significant benefits in terms of reusing and
analyzing heterogeneous data sets, current approaches are
still relatively new. While many existing tools for exploit-
ing observational models focus on data interoperability (e.g.,
where data in one database can be exchanged using the com-
mon observational model with other systems), relatively few
approaches have been developed to exploit common struc-
tures for data discovery and integration [12]. One area of
future research that can make significant impact on the sci-
entific community is the development of robust tools for
(semi-)automatically combining distinct observational data
sets into a single, integrated data set. For example, in [65]
an approach based on possible-world semantics is described
for automatically integrating biodiversity data sets. Scientists
spend a considerable amount of effort manually integrating
observational data, and tools and techniques to automate
this process which have the potential to save researchers
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considerable time and effort. Similarly, expressive and
general-purpose data discovery and query languages as well
as efficient implementations (e.g., for large-scale observa-
tional data sets) are also important areas of future research.

Another area of future research is to extend scientific
workflow systems with support for observational models,
which could provide a number of benefits for researchers.
There are various ways in which the integration could occur,
e.g., using a common observational data model for describ-
ing and representing data could help deal with some of the
“shim” problems within workflow systems, and observation
and measurement types could also be used to further describe
input and output requirements of workflow tasks. Similarly,
incorporating provenance information into current observa-
tional models could provide additional metadata that is often
crucial for interpreting and integrating data. Observational
models often provide limited support for defining detailed
protocols and methods for data collection and use, which
could be aided by the process modeling capabilities of scien-
tific workflows. This information could also help constrain
and guide workflow selection and configuration. Finally,
leveraging observational models to design data collection
and storage requirements of research studies could lead to
standardized efforts for data representation across research
groups. For example, in [21], researchers select the observa-
tions and measurements of interest prior to developing data
collection forms, which are automatically generated based
on the set of abstract observation types desired as part of the
study.

5 Summary

This article has given a broad overview of three different but
related research areas in scientific data management, namely,
scientific workflows, data provenance, and observational data
semantics, with an emphasis on the modeling approaches and
challenges within each. The scientific data management com-
munity has made a number of advances within each of these
areas, however, many open problems and opportunities for
future research and development remain. For instance, sci-
entific workflow modeling approaches are largely based on
dataflow models, but there is a significant need to extend
these with support for defining various control-flow aspects.
Another major issue is adding data modeling support to
workflow design, which is largely non-existent in current
workflow systems. Similarly, provenance systems are largely
based on a relatively simple model of provenance, whereas
workflow systems often contain a number of more advanced
features such as structured data and different types of depen-
dencies that should be modeled to obtain more accurate
lineage information. Finally, both scientific workflow and
provenance systems lack robust support for detailed seman-

tic information about data, especially for observational data
that often contain rich semantic context that is essential for
data reuse, data analysis, and data integration. While each
individual area has a number of modeling challenges, more
research into how to effectively combine these three areas is
also needed.

In [17], one possible approach for combining data, work-
flow, and provenance management is proposed based on a
simple conceptual model for capturing “project histories”. In
this work, scientific data associated with a research project is
organized by a scientist using hierarchical folder-like struc-
tures. Users can add new data sources into their project his-
tory as well as data products produced by scientific workflow
runs. Each project history stores detailed provenance infor-
mation about its data products, which can be viewed and
used to access associated workflows and workflow runs (via
a “run browser”). Dependencies between data products are
also explicitly captured within a project history, and users
can select and rerun workflows with existing and new data
products. More recently, a number of systems have adopted
similar types of functionality, e.g., the Galaxy system pro-
vides similar capabilities for bioinformatics research [32].

However, many opportunities exist for new research into
how to extend and combine scientific workflow modeling,
data provenance, and data semantics to provide effective
data management tools for scientific researchers. In particu-
lar, adopting and extending abstraction mechanisms provided
by conceptual and semantic modeling to challenges in scien-
tific data management is a promising area of future research,
which has the potential to significantly enhance the ability
of scientists to manage the inherent complexity of scientific
data and data analysis needed to advance scientific research
today.
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