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Abstract With the growth of the Linked Data Web, time-
efficient link discovery frameworks have become indispens-
able for implementing the fourth Linked Data principle, i.e.,
the provision of links between data sources. Due to the sheer
size of the Data Web, detecting links even when using triv-
ial link specifications based on a single property can be
time-demanding. Moreover, non-trivial link discovery tasks
require complex link specifications and are consequently
even more challenging to optimize with respect to runtime.
In this paper, we present a hybrid approach to link discovery
that allows combining time-efficient algorithms specialized
on specific data types. Especially, we present the HYPPO
algorithm, which can process numeric data efficiently. These
algorithms are combined by using original insights on the
translation of complex link specifications to combinations of
atomic specifications via a series of operations on sets and
filters. We show in nine experiments that our approach out-
performs SILK 2.5.1 with respect to runtime by up to four
orders of magnitude.

1 Introduction

The Linked Data Web has evolved from 12 knowledge bases
in May 2007 to 295 knowledge bases in September 20111 [1].
While the number of RDF triples available on the Linked Data
Web has now surpassed 31 billion, the number of links still
stagnates around 500 million. Consequently, less than 2 %
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of these triples are links between knowledge bases [17,19].
In addition, most knowledge bases are linked to only one
knowledge base.? Yet, links between knowledge bases play
a key role in important tasks such as cross-ontology question
answering [ 14], large-scale inferences [26] and data integra-
tion [3]. Given the enormous amount of information available
on the Linked Data Web, time-efficient link discovery (LD)
frameworks have become indispensable for implementing
the fourth Linked Data principle, i.e., the provision of links
between data sources [17,27]. These frameworks rely on link
specifications, which explicate conditions for computing new
links between entities across knowledge bases. Due to the
mere size of the Web of Data, detecting links even when
using trivial specifications can be time-demanding. More-
over, non-trivial LD tasks require complex link specifications
for discovering accurate links between instances and are con-
sequently even more challenging to optimize with respect to
runtime. Our approach is based on original insights on the
distribution of property domains and ranges on the Web of
Data. Based on these insights, we deduce requirements to
efficient LD frameworks. We then use these requirements to
specify the time-efficient approaches that underlie our frame-
work, LIMES version 0.5.3 We show that our framework
outperforms the state of the art by orders of magnitude with
respect to runtime while abiding to the restriction of not los-
ing recall.*

2 While itis clear that most knowledge bases should be linked to several
other knowledge bases, determining the desirable proportion of links
on the Linked Data Cloud remains work in progress.

3 An online demo of the framework can be found at http://limes.sf.net.
4 Not losing recall is used in the same sense as [11] and means in
this context that given a link specification, our approach is guaranteed

to find all pairs of source and target instances that abide by the said
specification.
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The contributions of this paper are as follows:

1. We present a formal grammar for link specifications that
encompass the functionality of state-of-the-art frame-
works for LD.

2. Based on this grammar, we present a time-efficient
approach for LD that is based on translating complex
link specifications into a combination of atomic specifi-
cations via a concatenation of operations on sets and filter
operations.

3. We use this method to enable the PPJoin+ [31] and
EDJoin [30] algorithms to be used for processing com-
plex link specifications.

4. We specify and evaluate HYPPO, a novel LD approach
designed to operate on numeric values in metric spaces.

5. We evaluate our approach against SILK (version 2.5.1)
within nine experiments and show that we outperform it
by up to four orders of magnitude with respect to run-
time while abiding to the constraint of not losing recall.
Note that we chose SILK because it is the only freely
available framework which supports specifications with
a similarity measure whose complexity is similar to those
supported by our approach.

The rest of this paper is structured as follows. In Sect. 2,
we give an overview of related work on LD and related
research fields. Section 3 presents the preliminaries to our
work. This section encompasses a formal definition of the
problem at hand and a short study of the distribution of prop-
erty ranges on the Data Web. We use the results of this study to
infer requirements to time-efficient LD frameworks. These
requirements are the basis for Sect. 4, in which we spec-
ify a formal grammar for link specification and an approach
to convert complex link specifications into an aggregation
of atomic link specifications via set operations and filters.
We subsequently present the core algorithms underlying
our approach in Sect. 5. Section 6 gives a brief overview
of the architecture of LIMES, the framework within which
we implemented our approach. In Sect. 7, we evaluate our
approaches in nine different experiments. After a discussion
of our findings, we present our future work and conclude.
Note that this paper extends upon the work presented in [16].
We carried out manifold extensions of our previous work,
including the following:

— We present a broader motivation for our approach, includ-
ing a study of property types across several knowledge
bases.

— We extended the specification of the grammar underlying
our framework and include a corresponding example.

— Moreover, we explicate the inner workings of LIMES
by presenting its current architecture and Graphical User
Interface.

— The experiments and results sections are completely new.
All experiments presented in [16] were repeated with the
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(at the time of writing) newest release of SILK (version
2.5.1). In addition, six new experiments were designed
to compare the runtime of HYPPO with that of SILK’s
numeric processing algorithm.

2 Related Work

Current frameworks for LD on the Web of Data can
be subdivided into two categories: domain-specific and
universal frameworks [17]. Domain-specific LD frameworks
were developed with the aim of discovering links between
knowledge bases from a particular domain. For example,
RKB’s Consistent Reference Service (RKB-CRS) [9] is a
service that aims to compute URI equivalence within the
domain of academia. It applies string similarity functions
to properties such as publications’ titles to detect initial
equivalences. It then uses this knowledge to conclude on
the equivalence of other entities such as authors, places
of work and conferences. Another domain-specific tool is
GNAT [23], which was designed especially for the music
domain. To compute the similarity of resources, GNAT relies
on audio fingerprinting. This approach can also combine the
similarity of resources with that of their neighbors to com-
pute owl : sameAs links. Further simple or domain-specific
approaches can be found in [6,10,21,22,25].

Universal LD frameworks are designed to carry out map-
ping tasks independently from the domain of the source and
target knowledge bases. For example, RDF-AI [24] imple-
ments a five-step approach that comprises the preprocess-
ing, matching, fusion, interlink and post-processing of data
sets. These modules can be configured by means of XML-
files. The SILK framework [11] implements a LD approach
dubbed Multiblock. In contrast to several other blocking
approaches, MultiBlock is guaranteed to be lossless, which
means that given a link specification, it is guaranteed to gen-
erate all triples that abide by the specification. To achieve
this goal, Multiblock maps the different similarities included
in complex link specifications to a multidimensional space.
The coordinates of the resources that are to be linked are then
computed by the means of an elaborate indexing scheme.
The computation of links is finally achieved by computing
overlapping blocks and carrying out similarity computations
within these blocks only. Like LIMES, SILK can be con-
figured using an XML-based language. The original LIMES
approach [17] is a time-efficient and lossless approach for
LD, which presupposes that the datasets to link are in a
metric space. By using the characteristics of metric spaces,
it begins by computing exemplars, which are prototypical
points for portions of space. The approach then uses the tri-
angle inequality to compute pessimistic approximations of
distances. Based on these approximations, it can discard a
large number of computations without losing links.
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LD is closely related with record linkage [7,29] and dedu-
plication [4], topics upon which a wealth of literature has
been written (see e.g., [5] for a survey). Link discovery builds
upon this research but goes beyond these two tasks by aiming
to provide the means to link entities via any of the relations
available on the Linked Data Web. For example, the LIMES
framework has been used to link drugs with their active moi-
ety and inactive ingredients as well as to link houses in Oxford
with nearby geo-spatial entities [13].° Different blocking
techniques such as standard blocking, sorted-neighborhood,
bi-gram indexing, canopy clustering and adaptive blocking
have been developed by the database community to address
the problem of the quadratic time complexity of brute force
comparison [12]. In addition, time-efficient approaches have
been proposed to compute string similarities for record link-
age, including AllPairs [2], PPJoin and PPJoin+ [31], EDJoin
[30] and Trie-Join [28]. The most time-efficient string match-
ing algorithms can only deal with simple link specifications
(i.e., they can only compare entities by the means of one pair
of property values), which is mostly insufficient when com-
puting links between large knowledge bases. In this paper,
we show how we can harness time-efficient approaches by
combining them in a framework that enables them to be
used when dealing with complex configurations. We inte-
grate PPJoin+ and EDJoin in our framework. We also present
the novel Hypersphere Approximation Algorithm (HYPPO),
which ensures that our framework can deal efficiently with
numeric values and consequently with the whole diversity of
data types found on the Web of Data.

3 Preliminaries
3.1 Problem Definition

The goal of LD is to discover the set of pair of instances
(s,t) € § x T that are related by a relation R, where S and
T are two not necessarily distinct sets of instances. One way
to automate this discovery is to compare the s € Sandt € T
based on their properties using a (in general complex) sim-
ilarity metric. Two entities are then considered to be linked
via R if their similarity is superior to a threshold 6. We are
aware that several categories of approaches can be envisaged
for discovering links between instances, for example using
formal inferences or semantic similarity functions. Through-
out this paper, we will consider LD via properties. This is
the most common definition of instance-based LD [17,27],
which translates into the following formal definition:

Definition 1 (Link discovery). Given two sets S (source) and
T (target) of instances, a (complex) similarity measure o over

> The corresponding link specifications are available as download at
http://aksw.org/Projects/LIMES.

the properties of s € S and ¢t € T and a similarity threshold
6 € [0, 1], the goal of LD is to compute the set of pairs of
instances (s,t) € S x T such thato (s, 1) > 6.

This problem can be expressed equivalently as follows:

Definition 2 (Link discovery on distances). Given two sets
S and T of instances, a (complex) distance measure § over
the properties of s € S and ¢ € T and a distance threshold
0 € [0, oo, the goal of LD is to compute the set of pairs of
instances (s, 1) € S x T such that §(s, 1) < 7.

Note that a distance function é can always be transformed
into a normed similarity function o by setting o (x,y) =
(148(x, y))~'. Hence, the distance threshold T can be trans-
formed into a similarity threshold 6 by means of the equation
6 = (1 4+ 7)~. Consequently, distance and similarities are
used interchangeably within our framework.

Although it is sometimes sufficient to define atomic sim-
ilarity functions (i.e., similarity functions that operate on
exactly one property pair) for LD, many LD problems
demand the specification of complex similarity functions
to return accurate links. For example, while the name of
bands can be used for detecting duplicate bands across dif-
ferent knowledge bases, linking cities from different knowl-
edge bases requires taking more properties into consideration
(e.g., the different names of the cities as well as their latitude
and longitude) to compute links accurately. The same holds
for movies, where similarity functions based on properties
such as the label and length of the movie as well as the name
of its director are necessary to achieve high-accuracy link
discovery. Consequently, linking on the Data Web demands
frameworks that support complex link specifications.

3.2 Categorization of Approaches to Link Discovery

Three main categories of approaches can be envisaged when
dealing with complex link specifications. The first type of
approaches, which we dub multidimensional, address link-
ing by mapping each instance to one or several points in a
multi-dimensional (usually but not necessarily metric) space.
They then use runtime reduction techniques, most commonly
blocking [12], to discard comparisons that would not lead to
a similarity above the user-given threshold. An example of
such an approachis SILK’s Multiblock [11]. The main advan-
tage of such approaches is that they can exclude a large num-
ber of comparisons and that they are able to detect blocks
that do not overlap significantly.

The second category of approaches, which we call
mono-dimensional, relies on generating necessary con-
straints across single dimensions of the similarity space and
using these for extracting linking candidates based on these
constraints. These candidates are then merged and validated,
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Table 1 Distribution of

datatype property ranges on the Knowledge bases #Datatype properties™ #Data types String Numeric Others

Web of Data LGD 1,001 3 0 1,001 0
DBpedia 1,048 60 282 765 1

The data types for these DailyMed* 17 17 0 0

knowledge bases marked with * Jamendo* 15 8 5 2

were retrieved manually. LGD DBLP* 5 2 4 1 0

stands for LinkedGeoData

i.e., checked for whether they satisfy the linking condition
specified by the user. The main advantage of such approaches
is that they deal with only one dimension at once, thus mak-
ing runtime reduction approaches computationally cheaper.
On the other hand, discarding on only one dimension at
once is usually less accurate since converting the user-given
constraints to one dimension usually leads to necessary but
not sufficient conditions. Consequently, mono-dimensional
approaches generate more candidates that must be validated.

Hybrid approaches aim to make the best of both worlds
by using runtime reduction techniques on the fragments of
the link specifications where the blocks do not overlap signif-
icantly (like multidimensional approaches) to generate can-
didates. These candidates are then merged to generate the
final list of links (mono-dimensional approaches). By these
means, hybrid approaches thus aim to ensure that only the
cheapest computations which discard a large percentage of
non-matches are carried out. In this paper, we describe such
an approach. The basic intuition behind our approach is that
time-efficient linking frameworks designed for the Web of
Data should provide dedicated algorithms for processing the
most commonly used data types found on the Web of Data.
These approaches should make use of the intrinsic character-
istics of the data type that they process to operate as efficiently
as possible. Our approach can efficiently process all property
values that can be mapped efficiently to a metric space by
applying the HYPPO algorithm in that space. In addition, it
provides dedicated algorithms for processing data types that
cannot (yet) be efficiently mapped to metric spaces. To deter-
mine the most common data types on the Web of Data, we
carried out a short study of the distribution of property ranges
across different knowledge bases and used it to specify our
approach to LD.

3.3 Requirements to Link Discovery Frameworks

We studied the distribution of attribute values for datatype
properties in several popular knowledge bases of different
sizes. We divided the data types into three categories: strings
(e.g., rdfs:label, abstract, etc.), numeric values®

© Note that we consider numerical data to be data with a datatype such
that there is a bijective mapping between the set of all elements of these
datatypes and the real numbers.
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(e.g., populations, elevations, molecular weights, etc.) and
others (mostly, URIs and URLs). The results of our study
are shown in Table 1. Note that most of these values were
retrieved manually as only a few knowledge bases provide
rdfs: range information. While the distribution across the
categories differs widely depending on the knowledge bases,
one can easily see that the first two categories of data types
(i.e., strings and numeric values) are the most commonly
used. Consequently, LD frameworks for the Web of Data
should be able to handle these two categories efficiently to
enable time-efficient instance linking.

Our framework thus implements a hybrid approach that
takes the distribution of data types into account by imple-
menting dedicated functionality for processing simple link-
ing tasks on strings (e.g., comparing the names of two cities)
and combinations of numeric values (e.g., comparing the
population and elevation of two cities) as well for merging
their results to carry out complex linking tasks (e.g., linking
cities using their labels, population and elevation) efficiently.
To achieve this goal, our framework implements a grammar
for transforming complex linking tasks into a combination
of simple linking tasks and set operations. In the follow-
ing, we present this grammar and then present efficacious
approaches to carrying out simple linking tasks that lead to
the time-efficient completion of linking tasks.

4 Link Specifications as Operations on Sets

In state-of-the-art LD frameworks, the condition for estab-
lishing links is usually expressed by using combinations of
operations such as MAX (maximum), MIN (minimum) and
linear combinations on binary similarity measures that com-
pare property values of two instances (s,#) € S x 7. Note
that transformation operations may be applied to the property
values (for example a lower-case transformation for strings)
but do not affect our formal model. We present a formal gram-
mar that encompasses complex link specifications as found
in current LD frameworks (e.g., LIMES [19], SILK [11],
KnoFuss [20]) and show how complex configurations result-
ing from this grammar can be translated into a sequence of
set and filter operations on simple configurations. We use ~-
to denote generation rules for metrics and specifications. The
symbol = denotes the equivalence of two specifications.
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Our definition of a link specification relies on the defini-
tion of atomic similarity measures and similarity measures.
Generally, a similarity measure m is a function such that
m: S x T — [0,1]. We call a measure atomic (dubbed
atomicMeasure) when it relies on exactly one similarity
measure o (e.g., trigrams similarity for strings) to compute
the similarity of two instances s and ¢ by the comparing cer-
tain property values (e.g., the labels or the elevations) of s and
t. A similarity measure m is either an atomic similarity mea-
sure atomicMeasure or the combination of two similarity
measures via metric operators metric Op such as MAX, MIN
or linear combinations as implemented in LIMES. Thus, the
following rule set for constructing metrics holds:

1. m ~» atomicMeasure
2. m ~> metricOp(mi, my)

Note that frameworks differ in the type of operators they
implement.

We call a link specification atomic (atomicSpec) if it
compares the value of a measure m with a threshold t, thus
returning the pairs (s, ¢) that satisfy the condition o (s, ¢) >
6. A link specification spec(m, 0) is either an atomic link
specification or the combination of two link specifications
via

1. specification operators spec O p such as AND (the condi-
tions of both specifications must be satisfied, equivalent
to set intersection), OR (set union), XOR (symmetric set
difference), or DIFF (set difference) and

2. afiltering threshold.

Thus, the following grammar for specifications holds:

1. spec(m, 0) ~» atomicSpec(m, 0)
2. spec(m, 0)~specOp(spec(my, 01), spec(mz, 02), 63)

In the second rule, the threshold 65 is the filtering thresh-
old, while 81 and 6, stand for the thresholds that are assigned
to the measures m and mj. Each link specification that

abides by the grammar specified above can be consistently
transformed into a tree that contains the central constructs
depicted in Figs. 1, 2, 3 and 4. Note that the set of operators
on metrics and on link specification can be easily extended
without altering the constructs allowed by our grammar.

Note that several time-efficient algorithms such as
PPJoin+ operate solely on atomic measures and would not
be usable if specifications could not be reduced to run only
on atomic measures. For the operators MIN, MAX and lin-
ear combinations, we can reduce configurations that rely on
complex measures to operations on configurations that rely
on atomic measures via the following rules:

1. spec(MAX (my,m>),0) = AN D(spec(my,0),
spec(ma, 0),0)

2. spec(MIN(m1,my),0) = OR(spec(my,0),
spec(ma, 0),0)

3. spec(am| + Bmy,0) = AN D(spec(my, (6 — B)/a),
spec(ma, (0 —a)/B),0)

Note that we can derive equivalent conditions on a smaller
number of dimensions for the first two operations. Thus, we
do not need to filter the results of the operators and can set the
filtering threshold to 0. However, the simpler linking spec-
ifications that can be extracted for linear combinations are
necessary to fulfill their premise, but not equivalent to the
premise. Thus, in the case of linear combinations, it is impor-
tant to validate the final set of candidates coming from the
intersection of the two sets specified on a smaller number of
dimensions against the original linear combination using the
filtering threshold 6.

An example of such a transformation is shown in Figs. 5
and 6. Given these transformations, we can reduce all com-
plex specifications that abide by our grammar to a sequence
of set and filter operations on atomic specifications which
rely on atomic measures. We can now apply time-efficient
approaches designed for atomic measures on each category
of data types to process even highly complex link specifica-
tions on the Web of Data.

@ Springer
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spec
m 0.9
|
MIN
m m
| |
trigrams Jaccard

Fig. 5 Complex link specification based on metric operators

spec
|
AND
spec 0 spec
/\ /\
m 0.9 m 0.9
| |
trigrams Jaccard

Fig. 6 Equivalent complex link specification based on specification
operators

5 Processing Simple Configurations

Our framework implements a hybrid approach to LD and
implements two main types of matchers for processing sim-
ple configurations: string matchers and numeric matchers. In
the following, we present the idea behind the string matching
algorithms we employ as well as present the novel HYPPO
algorithm.

5.1 Processing Strings

The first category of matchers implemented in our frame-
work deals exclusively with strings by harnessing the near-
duplicate detection algorithms PPJoin+ [31] and EDJoin
[30]. Instead of mapping strings to a vector space, PPJoin+
and EDJoin use a combination of three main insights to
implement a time-efficient string comparison approach. First,
they use the idea that strings with a given similarity must
share a certain number of characters in their prefix to be
able to have a similarity beyond the user-specified thresh-
old. A similar intuition governs the suffix filtering imple-
mented by these algorithms. Finally, the algorithms make
use of the position of each word w in the index to retrieve a
lower and upper bound of the index of the terms with which
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w might be similar. By combining these three approaches,
PPJoin+ and EDJoin can discard a large number of non-
matches. The integration of these two algorithms into our
framework ensures that we can mitigate the pitfall of the
time-demanding transformation of strings to vector spaces
as implemented by multidimensional approaches. The main
drawback of PPJoin+ and EDJoin is that they can only oper-
ate on one dimension [12]. However, by applying the trans-
formations of configurations specified above, we make the
algorithms at hand applicable to link discovery tasks with
complex configurations. While mapping strings to a vector
space demands some transformation steps and can be thus
computationally demanding, all numeric values explicitly
describe a vector space. The second approach implemented
in our framework deals exclusively with numeric values and
implements a novel approach dubbed HYPPO.

5.2 Processing Numeric Values

Current approaches to LD mostly focus on processing strings
efficiently. Yet, as shown in Table 1, values that can be
mapped to real numbers (e.g., elevations, temperatures, pop-
ulations, etc.) play an important role on the Link Data Web.
We developed the HYPPO algorithm to address the effi-
cient processing of such property values. HYPPO stands
for HYpersphere aPPrOximation algorithm. It addresses
the problem of efficiently mapping instance pairs (s, ) €
S x T described using exclusively numeric values in a
n-dimensional metric space. The approach assumes a dis-
tance metric § for measuring the distance between objects
and returns all pairs such that §(s, t) < 6, where 6 is a dis-
tance threshold. Let w = (w1, ..., ®w,) andx = (x1, ..., X,)
be points in the n-dimensional space 2 = S U T. The obser-
vation behind HYPPO is that in spaces (€2, §) with orthogo-
nal, i.e., uncorrelated dimensions, the most common distance
metrics can be decomposed into the combination of func-
tions ¢; ;e(1...ny Which operate on exactly one dimension of
Q:8 = f(¢1,...,¢n). For example, for Minkowski dis-
tances of order p > 1, ¢; (x, w) = |x; — w;| for all values of
iand §(x, w) = /> ¢i(x, w)P. Note that the Euclidean dis-
tance is the Minkowsky distance of order 2. The Minkowski
distance can be extended further by weighting the different
axes of Q. In this case, (x,w) = {/> v ¢;(x, w)? and
¢i(x, w) = yiilxi — w;|, where y;; are the entries of a posi-
tive diagonal matrix.

Some distances do exist, which do not assume an orthog-
onal basis for the metric space. Mahalanobis distances
for example are characterized by the equation §(x, w) =
\/(x —o)['(x — )T, where I is a n x n covariance matrix.
However, given that each space with correlated dimensions
can always be transformed into an affine space with an ortho-
normal basis, we will assume in the remainder of this paper




LIMES

209

that the dimensions of €2 are independent. Given this assump-
tion, it is important to notice that the following inequality
holds:

¢i(x, w) < 8(x, w), ey

ergo, §(x, w) is the upper bound of ¢; (x, w). Note that this
is the sole condition that we pose upon § for HYPPO to
be applicable. Also note that this condition can always be
brought about in a metric space by transforming its basis
into an orthogonal basis.

The basic intuition behind HYPPO is that the hyper-
sphere H(w,0) = {x € Q : 6(x,w) < 6} is a sub-
set of the hypercube V defined as V(w,0) = {x € Q :
Vi € {1...n}, ¢i(x;, w;) < 6} due to inequality (1). Conse-
quently, one can reduce the number of comparisons necessary
to detect all elements of H (w, 8) by discarding all elements
which are not in V (w, 6) as non-matches. HYPPO uses this
intuition by implementing a two-step approach to LD. First,
it divides €2 into hypercubes of the same volume. Second, it
compares each s € S with those ¢ € T that lie in cubes at a
distance below 0. Note that these two steps differ from the
steps followed by similar algorithms (such as blocking) in
two ways. First, we do not use only one but several hyper-
cubes to approximate H (w, 6). Most blocking approach rely
on finding one block that contains the elements that are to be
compared with w [12]. Note that in contrast to most block-
ing techniques, HYPPO is guaranteed to be lossless as H is
completely enclosed in V.

Formally, let A = 6/a. We call @ € N the granularity
parameter. HYPPO first tiles €2 into the adjacent hypercubes
(short: cubes) C that contain all the points w such that Vi €
{1...n},¢;A < w; < (¢; + DA, (c1,...,¢cp) € N'. We
call the vector (cq, ..., c,) as the coordinates of the cube
C. Each point w € Q2 lies in the cube C(w) with coordinates
(lwi/Al)i=1..n- Given such a space tiling and inequality (1),
itis obvious that all elements of H (w, 0) lie in the set €(w, )
of cubes suchthatVi € {1...n} : |c; — c(w);| < «. Figure 7
shows examples of space tilings for different values of .

The accuracy of the approximation performed by HYPPO
can be computed easily: the number of cubes that approx-
imate H(w,6) is 2a + 1)", leading to a total volume
Ve(a,0) = (Qa+ DAY = (%«9)” that approximates
H(w, 6). The volume Vg (0) of H(w, ) is given by S,0",
where S, is the volume of a unit sphere in n dimensions, i.e.,
2forn = 1,7 forn = 2,4T”f0rn = 3 and so on. The
approximation ratio

Vel 0)  (Qa+1)"
V(@) — Sh)a”

permits to determine the accuracy of HYPPO’s approxima-
tion as shown in Fig. 8 for dimensions between 1 and 3 and
values of &« up to 10 . Note that Vi and Vi do not depend on w

and that KV’H(O(‘—(’;’;) does not depend on 6. Furthermore, note that

@)

the higher the value of «, the better the accuracy of HYPPO.
Yet, higher values of « also lead to an exponentially growing
number of hypercubes |€(w, )| and thus to longer runtimes
when constructing €(w, «) to approximate H (w, ). Once
the space tiling has been completed, all that remains to do is
to compare each s € S withallther € TN (| C € €(w, w))
and to return those pairs of entities such that §(s, ) < 6.
Algorithm 1 shows HYPPO’s pseudocode.

Algorithm 1 Current implementation of HYPPO
Require: Source data S

Require: Target data T’
Require: Distance threshold 6
Require: Distance function o
Require: Granularity factor «
Mapping M := ()
A=0/a
for we SUT do
Clwi/A], -, lwn/A]) = C(lw1 /A, .., [wn/A]) U{w}
end for
for s € S do
for C € €(s,a) do
forte CNT do
if 6(s,t) <6 then
M := M U{(s,t)}
end if
end for
end for
end for

return M

6 Implementation

The approach presented in this paper was implemented in
the LIMES Framework’ version 0.5. The input of LIMES is
a XML file that allows configuring the processing pipeline
of LIMES. An example of such as file is shown in Fig. 11.
The core of the LIMES’ implementation is shown in Fig. 9
and consists of five main layers. The input layer imple-
ments a series of modules that allow the retrieval of data
not only from SPARQL endpoints but also from RDF seri-
alizations (such as N3 and Turtle) and Character-Separated
Value (CSV) files. In our example, LIMES retrieves data
from two SPARQL endpoints. The data items retrieved by the
input layer are transmitted to the preprocessing layer, which

7 See http://limes.sf.net. The user manual available at the same page
describes the architecture presented herein in more detail.
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Fig. 7 Space tiling for different
values of . The colored squares
show the set of elements that
must be compared with the
instance located at the black dot.
The points within the circle lie
within the distance 6 of the
black dot

@a=1

implements several functions for transforming the input data
into less noisy data. This layer implements methods for reg-
ular expression replacement, lower and upper case transfor-
mation, string cleaning and stripping and many more. The
preprocessing methods can be combined by the user to a
preprocessing pipeline at will. In our example, the property
values that are strings are first converted to the lowercase and
all language tags are then removed. The preprocessed data
are then stored in the data layer, which implements several
strategies for storing data including memory and file caching
methods. The mapping strategy specified in the configura-
tion file is then carried out by the processing layer based
on the data in the data layer. Several mappers for complex
link specifications and atomic mappers for atomic configu-
rations are implemented and allow for a speedy execution
of LD tasks. In our examples, two places are considered to
stand for the same real-world entity if their transformed labels
have a trigrams similarity of at least 0.9 and the difference of
their populations in the two knowledge bases is maximally
999 (i.e, the numeric similarity of their population is at least
1073). The resulting links are serialized by the output layer,
which also allows giving out the results of the computation
in several formats including Turtle, N3 and CSV files. Note
that LIMES can be extended easily to accommodate user-
specific functionality thanks to its highly modular architec-
ture. In addition, LIMES provides a graphical user interface
dubbed COLANUT (COmplex Linking in A NUTshell, see
Fig. 10), which guides the user through the link specification
process by providing statistical ontology matching function
based on stable marriage algorithms [8,15] as described in
[18].

7 Evaluation
We compared our approach with that implemented in SILK
version 2.5.1. We chose SILK because (to the best of

our knowledge) it is the only other LD framework that
allows the specification of such complex linking experiments.
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Fig. 10 Colanut’s main
window. The user can combine
properties, metrics and
transformation functions on the
left. Note that the properties are
color-coded. Properties across :‘3
two knowledge bases that share 3
the same color are suggested to .
be equivalent by Colanut’s 6. siterdugNane
9
0

» Source Properties

= Target Properties

sider.drugName

property matcher

rdfs:label

* Preprocessing Functions
*  Metrics

» Operators

We could not separate the fetching and the indexing of the
data in SILK as these two processes are intertwined. To
ensure that our evaluation was not biased towards LIMES,
we only measured the time needed by SILK to compare
links. This was realized by allowing both tools to down-
load all data necessary for the linking experiments unto
the hard drive of our machine. Note that SILK indexes
the data. It downloads and stores the data and the index
locally on the hard drive. LIMES on the other hand sim-
ply downloads the data and serializes them into a file. We
ran the experiments by allowing both systems to retrieve
the data necessary for linking from the hard drive of the
local machine. As all computations are done on the fly in
LIMES (i.e., no pre-indexing or data segmentation is carried
out during the download of the data), our measurements of
LIMES’ overall runtime display the sum of the tiling and
link computation time, while the measurements of SILK
reflect exclusively the time necessary for the computation of
links.

We ran all experiments on the same computer running a
Windows 7 Enterprise 64-bit installation on a 2.8 GHz i7
processor with 8 GB RAM. The JVM was allocated 4 GB
RAM in the first series of experiments and 7.4 GB RAM
in the second series of experiments. All experiments were
carried out five times except when stated otherwise. In all
cases, we report best runtimes. The a-priori complexity of
the experiments was computed as n|S||T| where n is the
number of property pairs used during the experiments, |S| is
the size of the source knowledge base and |7T'| is the size of
the target knowledge base.

7.1 Experiments with HYPPO

In our first series of experiments, we aimed at determining
the behavior of HYPPO on problems with a varying number
of dimensions. Thus, we evaluated HYPPO within six use
cases of 1, 2 or 3 dimensions and compared it with SILK.

Configure metrics

drughank:brandName
Source Endpoint
"
drngbank:bramd NVame

sider:drugName

rdfs:tabel

To ensure that we compared solely HYPPO and SILK, we
designed experiments that aimed at deduplicating instances
in DBpedia and executed solely the fragment of the speci-
fication that dealt with numeric values. We chose DBpedia
because it contains a large amount of general knowledge.
Note that all data sets were retrieved from a local copy of
DBpedia 3.6. We ran all experiments with distance thresh-
olds (0) and granularity () values between 1 and 16. In all
experiments, we used the normed similarity based on the
Euclidean Distance.

The goal of the first experiment, dubbed Towns, was to
deduplicate towns based on their population. The second
experiment, dubbed Books, was also one-dimensional and
aimed at finding duplicate records of books based on the
number of pages of each book. The third and fourth experi-
ment were two-dimensional. Vacations, the third experiment,
aimed to detect similar towns by comparing their popula-
tion and elevation. The fourth experiment, dubbed Actors,
deduplicated people based on their height and weight. The
fifth and sixth experiments were carried out on three dimen-
sions. The fifth experiment was designed to detect duplicate
television Series using their number of episodes, number of
seasons and runtime for a movie portal. Finally, the sixth
experiment generated links between cities by means of their
elevation, land area and water area for studies on Hydrology.
An overview of the experiments is given in Table 2.

The results of this series of experiments are shown in
Figs. 12, 13 and 14. With respect to time complexity, our
evaluation hints towards the runtime of HYPPO growing lin-
early with the threshold 8. We outperform SILK by up to
four orders of magnitude, e.g., in the Series experiment (see
Fig. 14a). The results of most of these experiments suggest
that the runtimes of HYPPO depend significantly on the value
of a. We expected the runtimes to decrease significantly up to
a certain value of « and then to increase or remain constant.
Our experiments confirm this behavior. Overall, setting « to 4
leads to a good trade-off between the exponentially growing
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Table 2 Summary of

. Experiment # Instances A-priori complexity # Dimensions

experimental setups for

experiments on HYPPO Town 27,525 0.76 x 10° 1
Books 14,714 0.22 x 10° 1
Vacations 21,925 0.96 x 10° 2
Actors 15,909 0.51 x 10° 2
Series 4,841 0.07 x 10° 3
Hydrology 19,095 1.09 x 10° 3

Fﬁg'll ExanqﬂEOfaIJthS 1 | <?xml version="1.0" encoding="UTF-8"7>

configuration file. The 2 | <!DOCTYPE LIMES SYSTEM "limes.dtd">

corresponding link discovery 3 | <LIMES>

task maps places from ; <PEE§;§;PACE>htt //dbpedi /ontology/</NAMESPACE>

. 5 p: pedia.org/ontology

LinkedGeoData and Geonames 6 <LABEL>dbpedia -o</LABEL></PREFIX>

by measuring the similarity of 7 | <PREFIX>

their labels and of their 8 <NAMESPACE>http://www.w3.0rg/1999/02/22-rdf -~syntax-ns#</NAMESPACE>

9 <LABEL>rdf</LABEL></PREFIX>

opulations
pop <PREFIX>

<NAMESPACE>http://www.w3.0rg/2000/01/rdf -schema#</NAMESPACE>
<LABEL>rdfs</LABEL></PREFIX>

<PREFIX>
<NAMESPACE>http://www.w3.0rg/2002/07/0owl#</NAMESPACE>
<LABEL>owl</LABEL></PREFIX>

<PREFIX>
<NAMESPACE>http://www.geonames.org/ontology#</NAMESPACE>
<LABEL>geonames</LABEL></PREFIX>

<PREFIX>
<NAMESPACE>http://linkedgeodata.org/property/</NAMESPACE>
<LABEL>1gdp</LABEL></PREFIX>

<PREFIX>
<NAMESPACE>http://linkedgeodata.org/ontology/</NAMESPACE>
<LABEL>1gdo</LABEL></PREFIX>

<SOURCE>
<ID>geonames</ID>
<ENDPOINT>http://1lgd.aksw.org:8900/sparql</ENDPOINT>
<GRAPH>http://geonames.org</GRAPH>
<VAR>7x</VAR>
<PAGESIZE>-1</PAGESIZE>
<RESTRICTION> </RESTRICTION>
<PROPERTY>geonames:population</PROPERTY>
<PROPERTY>geonames:alternateName AS lowercase->nolang</PROPERTY>
<PROPERTY>geonames:name AS lowercase->nolang</PROPERTY>

</SOURCE>

<TARGET>
<ID>1gd</ID>
<ENDPOINT>http://linkedgeodata.org/sparql/</ENDPOINT>
<VAR>?7y</VAR>
<PAGESIZE>1000</PAGESIZE>
<RESTRICTION>?y rdf:type lgdo:Place</RESTRICTION>
<PROPERTY>1lgdo:population</PROPERTY>
<PROPERTY>rdfs:label AS lowercase->nolang</PROPERTY>

</TARGET>

<METRIC>
AND (euclidean (x.dbpedia-o:populationTotal ,y.lgdo:population)|0.001,
OR(trigrams (x.geonames:alternateName, y.rdfs:label)|0.9,

48 trigrams (x.geonames:name, y.rdfs:label)[0.9)[0.9)

49 </METRIC>

50 | <ACCEPTANCE>

BRSO R R R R R W W W W W W W WWWNNNNNNNNNNE R R R e e e e e
N A W RO OO0 OR®NDR OO0 OE®NRO®ONN®O A BN~ O

51 <THRESHOLD>0.001</THRESHOLD>
52 <FILE>places.ttl</FILE>
53 <RELATION>owl:sameAs</RELATION>

54 | </ACCEPTANCE>
55 <REVIEW>

56 <THRESHOLD>0</THRESHOLD>
57 <FILE>places_review.ttl</FILE>
58 <RELATION>owl:sameAs</RELATION>

59 </REVIEW>

60 <EXECUTION>Simple</EXECUTION>
61 <GRANULARITY>4</GRANULARITY>
62 <QUTPUT>TURTLE</OQUTPUT>

63 | </LIMES>
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Fig. 12 Results of the one-dimensional experiments (Books and
Towns). The right figures are in log-log-scale, whilst the left ones show
the runtimes of LIMES on a linear scale. Note that given the size of the
experiment, the different values of « are superimposed. a Comparison

number of cubes and the better approximation reached for
large values of «. Another noteworthy observation is that the
runtime of LIMES in the Hydrology experiment decreased
when 6 was changed from 1 to 2. This was simply due to
the results of the experiments being similar for these differ-
ent values of 6. The coarser approximation for larger 6 led
to less hypercubes being generated for in the experiments,
which consequently led to a smaller total runtime.

7.2 Experiments with LIMES

We compared our whole framework with SILK2.5.1 in three
experiments of different complexity based on geographic
data. We chose to use geographic datasets because they are
large and require the use of several attributes for linking.
Given the complexity of the data, having a time-efficient
indexing scheme plays a central role in these experiments.
Thus, we first measured the runtime without indexing (like
in the previous experiments). In addition, we approximated
the runtime necessary for the ARQ? library (which is used
in both tools) to fetch the data to compute from the end-
points. By these means, we could approximate the total

8 http://jena.sourceforge.net/ ARQ/.

(d)

with SILK in Towns experiment. b Comparison for different «-values
in Towns experiment. ¢ Comparison with SILK in Books experiment.
d Comparison for different a-values in Books experiment

runtime of both approaches including indexing. In the first
experiment, we computed links between villages in DBpe-
dia and LinkedGeoData based on the rdfs: 1abel and the
population of instances. The link condition was twofold:
(1) the difference in population had to be lower or equal to
0 and (2) the labels had to have a trigram similarity larger
or equal to 7. In the second experiment, we aimed to link
towns and cities from DBpedia with populated places in
Geonames. We used the names (gn : name), alternate names
(gn:alternateName)and population of cities as cri-
teria for the comparison. Finally, we computed links between
Geo-locations in LinkedGeoData and GeoNames using four
combinations of criteria for comparing entities: their lon-
gitude (wgs84:1long), latitude (wgs84 :lat), preferred
names and names.

The setup of the experiments is summarized in Table 3. We
used two threshold setups. In the strict setup, the similarity
threshold 7 on strings was set to 0.9, the maximal difference
in population 6, was set to 9 and the maximal difference in
latitude and longitude 6 was set to 1. In the lenient setup,
7s was set to 0.7 and 6, to 19. The lenient setup was not
used in the Geo-Locations experiments because it led to too
many links, which filled up the 7.4 G of RAM allocated to
both tools and led to swapping, thus falsifying the evaluation
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Fig. 13 Results of the two-dimensional experiments (Vacations and Actors). a Comparison with SILK in Vacations experiment. b Comparison
for different o-values in Vacations experiment. ¢ Comparison with SILK in the Actors experiment. d Comparison for different a-values in Actors

experiment

Table 3 Summary of

experimental setups for LIMES Experiment |S| |T| Dims Complexity Thresholds

and SILK Villages 26,717 103,175 2 5.5 % 10° 7. 6
Cities 36,877 39,800 3 4.4 % 10° s, Op
Geo-Locations 50,031 74,458 4 14.9 x 10° Ts, Op, O

Dims stands for dimensions

of the runtimes. In all setups, we use the trigrams similarity
metric for strings and the Euclidean distance for numeric
values.

Our results (see Fig. 15) confirm that we outperform SILK
by orders of magnitude in all setups. Note that the runtimes
reported for SILK are the lower bound of the actual runtime of
the system as the indexing and data storage phase are merged.
For example, gathering the data from the SPARQL endpoints
required ca. 319 s for the Villages experiment. Once these val-
ues are subtracted from SILK’s total runtime (e.g., 3,715 s
for the Villages(strict) experiment), it becomes clear that the
indexing phase required more than 70 % of SILK’s total run-
time for this large link discovery task, making LIMES more
that 20 times faster than SILK in the worst case. In the best

@ Springer

case, LIMES outperforms SILK by more than 4.5 orders of
magnitude even when the indexing time of SILK was not
taken into consideration. Especially in this experiment, our
results suggest that the accurate approximation of HYPPO
enabled LIMES to discard a significant number of unneces-
sary comparisons that could be discarded by an approach that
uses arougher approximation. The generation of overlapping
blocks in combination with the number of dimensions of the
experiments as well as the data distribution seem to account
for the high runtimes requires by SILK. In contrast, the data
distribution in the Geolocations experiment led to less blocks
being generated and thus to better runtimes for SILK.

We compared the runtimes of LIMES for different values
of « as shown in Fig. 16. Our results show that our assumption



LIMES 215
1o° 6000
107 5000 4
D 4064 ‘@ 4000 -
10
IS £
~ —=1 ~ =1
L i ——a=2 Q3000 o=
g 103 a-4 = Wa=2
£ o | E gacs
S L] a=16 3 2000 Wao=16
& 0 — SILK (=4
103 ,//// 1000 4
10° T T T 0
1 2 4 8 16 1 2 4 8 16
Threshold b Threshold
(a) (b)
10° 3000
2 2500 4
@ 4054 ‘@ 2000
£ £
~ —g=1 :” Ha-1
“E-’ 1054 —— g 1500 Ha-2
2 A
S ] a=16 S 10004 .2:16
x 10 — I & =
1034 500
10? T T T 0
2 4 8 16 1 2 4 8 16
Threshold Threshold

(c)

(d)

Fig. 14 Results of the three-dimensional experiments (Series and Hydrology). a Comparison with SILK in the Series experiment. b Comparison
for different a-values in the Series experiment. ¢ Comparison with SILK in the Hydrology experiment. d Comparison for different o-values in the

Hydrology experiment
Fig. 15 Comparison of the 108
runtime of LIMES and SILK on
large-scale link discovery tasks
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on the relation between « and runtimes is accurate as find-
ing the right value for o can reduce the total runtime of the
algorithm by approximately 40 % (Geo-Locations, o = 4).
In these experiments, setting « to 4 also led to an improved
performance.
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8 Discussion and Future Work
In this paper, we presented and evaluated a novel hybrid

approach to LD. We first presented a series of require-
ments to LD frameworks. Based on these requirements,
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we specified the characteristics of such frameworks. We
then presented original insights for converting complex link
specifications into simple link specifications. Based on these
conversions, we inferred that efficient means for process-
ing simple link specifications are the key for time-efficient
linking. We then presented the key time-efficient approaches
implemented in LIMES and showed how these approaches
can be combined for time-efficient linking. A thorough eval-
uation of our framework in nine experiments showed that we
outperform SILK by up to 4.5 orders of magnitude while not
losing a single link.

One of the central innovations of this paper is the HY per-
sphere aPPrOximation algorithm, HYPPO. Although it was
defined for numeric values, HYPPO can be easily generalized
to the efficient computation of pairs of entities that are totally
ordered, i.e., to all sets of entities ¢ = (ey, ..., e,) € E such
that a real function f; exists, which preserves the order >
on the ith dimension of E, ergo Ve,¢’ € E : ¢; > el/. —
fle;)) > f (el’.). Yet, it is important to notice that such a
function can be complex and thus lead to overheads that
may nullify the time gain of HYPPO. In future work, we
will aim to find such functions for different data types. In
addition, we will aim to formulate an approach for deter-
mining the best value of « for any given link specification.
The new version of LIMES promises to be a stepping stone
for the creation of a multitude of novel semantic applica-
tions, as it is time-efficient enough to make complex inter-
active scenarios for link discovery possible even at large
scale [18].
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