
Journal on Data Semantics (2021) 10:19–39
https://doi.org/10.1007/s13740-021-00119-w

ORIG INAL ART ICLE

Resource Controllability of Business Processes Under Conditional
Uncertainty

Matteo Zavatteri1 · Carlo Combi1 · Luca Viganò2

Received: 3 February 2020 / Revised: 14 December 2020 / Accepted: 21 January 2021 / Published online: 5 March 2021
© The Author(s) 2021

Abstract
Acurrent research problem in the area of business processmanagement deals with the specification and checking of constraints
on resources (e.g., users, agents, autonomous systems, etc.) allowed to be committed for the execution of specific tasks. Indeed,
in many real-world situations, role assignments are not enough to assign tasks to the suitable resources. It could be the case
that further requirements need to be specified and satisfied. As an example, one would like to avoid that employees that are
relatives are assigned to a set of critical tasks in the same process in order to prevent fraud. The formal specification of a
business process and its related access control constraints is obtained through a decoration of a classic business process with
roles, users, and constraints on their commitment. As a result, such a process specifies a set of tasks that need to be executed by
authorized users with respect to some partial order in a way that all authorization constraints are satisfied. Controllability refers
in this case to the capability of executing the process satisfying all these constraints, even when some process components,
e.g., gateway conditions, can only be observed, but not decided, by the process engine responsible of the execution. In this
paper, we propose conditional constraint networks with decisions (CCNDs) as a model to encode business processes that
involve access control and conditional branches that may be both controllable and uncontrollable. We define weak, strong,
and dynamic controllability of CCNDs as two-player games, classify their computational complexity, and discuss strategy
synthesis algorithms. We provide an encoding from the business processes we consider here into CCNDs to exploit off-the-
shelf their strategy synthesis algorithms. We introduce Zeta, a tool for checking controllability of CCNDs, synthesizing
execution strategies, and executing controllable CCNDs, by also supporting user interactivity. We use Zeta to compare with
the previous research, provide a new experimental evaluation for CCNDs, and discuss limitations.

Keywords Access controlled processes · Resource allocation under uncertainty · Online planning · Resource controllability ·
CCND · Zeta · AI-based security · Business process compliance under uncertainty

1 Introduction

Business process management (BPM) is a scientific and tech-
nological area that focuses on issues and solutions related
to the support and coordination of complex and interrelated

B Matteo Zavatteri
matteo.zavatteri@univr.it

Carlo Combi
carlo.combi@univr.it

Luca Viganò
luca.vigano@kcl.ac.uk

1 Department of Computer Science, University of Verona,
Verona, Italy

2 Department of Informatics, King’s College London, London,
UK

activities within one or many organizations [3,18,46]. BPM
has been defined in [47] as “Supporting business processes
using methods, techniques, and software to design, enact,
control, and analyze operational processes involvinghumans,
organizations, applications, documents and other sources of
information.”

The terms “business process” (BP) and “workflow” (WF)
have been often used as synonyms, but BP has also been con-
sidered to be a term with a wider meaning than that of WF.
For example, the WorkflowManagement Coalition (WfMC)
definesWF as the automation of a business process, in whole
or part, during which documents, information or tasks are
passed from one participant to another for action, according
to a set of procedural rules [47]. Thus, a WorkFlow Man-
agement System (WFMS) is defined as a system that defines,
creates andmanages the execution ofWFs through the use of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13740-021-00119-w&domain=pdf
http://orcid.org/0000-0001-6696-2972

20 M. Zavatteri et al.

software, running on one or more workflow engines, which
is able to interpret the process definition, interact with work-
flow participants and, where required, invoke the use of
Information-Technology (IT) tools and applications. In the
following, we will use the termWF, to underline the fact that
the considered BP has been suitably formalized for automa-
tion and for checking specific properties.

A current research problem in this area is the manage-
ment of constraints on users allowed to execute specific tasks
[36,39]. Indeed, in many real-world situations, it could be
required that, within the execution of a single business pro-
cess, users assigned to different tasks have the right role and,
moreover, they satisfy some further conditions. As an exam-
ple, to prevent a possible conflict of interest, one typically
wants to avoid that married people work in the same pro-
cess, even though with different roles and in different tasks.
The need of managing roles and access control in the execu-
tion of tasks of a business process is also related to security
issues, often in a context-depending scenario, where con-
straints on roles and users have to be guaranteed to have
suitably authorized and safe processes [30,42]. Recently, it
has been highlighted that security issues, often consisting
of access control for the different tasks together with task-
related data protection, have to be considered in depth, even
with respect to some possible conflicts with other business
process requirements (e.g., preserving the privacy without
causing possible general risks) [38]. Access control require-
ments have been also highlighted by software companies
involved in process-oriented information systems [4,5].

In this direction, an access controlled WF (ACWF) aug-
ments a WF by adding users authorized for tasks and
authorization constraints saying which combinations of
assignments of tasks to users are permitted. When a WF
specifies a set of temporal, conditional, or authorization con-
straints and all of its components are under control we simply
deal with a satisfiability problem asking us to find a fixed
solution satisfying all constraints. Instead, when some com-
ponent is out of control (e.g., task durations or conditional
constraints) we deal with a controllability problem, where
the synthesis of a fixed execution plan is not enough.

Controllability implies the existence of a strategy to
operate (possibly differently) on the part under our control
depending on the behavior of some uncontrollable events that
we will only be able to observe while executing. This means
that, depending on how this uncontrollable part behaves, we
might schedule the same tasks at different times or commit
different users for the same tasks.

Controllability of temporal workflows (TWFs) (i.e., WFs
augmented with task duration constraints, delays and dead-
lines) addresses uncontrollable task durations and condi-
tional uncertainty (i.e., the uncontrollable choice of the WF
path to take at runtime). A possible way to check controlla-
bility of TWFs is by encoding the TWF into a corresponding

temporal network to boil down the controllability of the TWF
to that of the temporal network for which controllability
checking algorithms exist (e.g., [7–9,19,23,37,49,52,53,60]).
Like TWFs, in ACWFs conditional uncertainty models the
uncontrollable choice of the WF path to take during exe-
cution. For instance, when a patient comes to the ER, the
therapies/interventions he has to undergo are not known a
priori but they are established by a physician, while the WF
is being executed. Since the result of this choice discrimi-
nates what tasks have, or have not, to be executed, and which
users are committed for the same tasks, the system must be
able to complete the WF by executing all relevant tasks and
satisfying all relevant authorization constraints regardless
of the result of (any combination) of uncontrollable condi-
tions. When the assignment of tasks to users is generated
while the WF executes we must never backtrack. In the real
world, this means that we must avoid situations in which,
if a patient needs a specialized intervention, no surgeon is
available because we chose to assign the “wrong” surgeon to
some previous general task.

In [51], an approach to address controllability of ACWFs
is provided. That approach maps WF paths to constraint
networks (CNs, [14]), relies on directional consistency to
guarantee no backtracking when generating any solution to
the underlying constraints satisfaction problem [17], and rea-
sons on the intersection of the common parts of theWF paths
to achieve a dynamic execution of the ACWFs. However,
dynamic controllability of ACWFs also depends on how the
components of the ACWF are ordered [59,61]. In [51], the
designer encodes manually an ACWF into a CN meaning
that it is up to him to choose a suitable total order for each
WF path such that these WF paths can be intersected in their
common parts to rule out assignments of tasks to users that
never satisfy any solution. If the designer chooses the wrong
order (even for one WF path only), either the controllability
algorithm is not applicable or a controllable ACWFmight be
classified as uncontrollable.

With respect to these previous contributions, in this paper
we focus on awider scenario, and dealwith the validation and
runtime enactment of business processes with access control
and conditional branches that may be either controllable or
uncontrollable. This paper thus revises and extends our pre-
vious work in [54]. The main novelties may be summarized
as follows.

– We introduce a new kind of network, namely conditional
constraint network with decisions (CCND), to represent
both controllable and uncontrollable choices together
with relation constraints.

– We propose a mapping from an extended fragment of
BPMN (business process model and notation, [3]) to
CCND constructs.

123

Resource Controllability of Business Processes Under Conditional Uncertainty 21

– We define and discuss weak, strong, and dynamic con-
trollability for CCNDs and show how to check them on
extended BPMN processes, by also allowing for the rep-
resentation of roles, agents, and related constraints.

– We describe and discuss an improved tool for checking
controllabilities of CCNDs, together with an extended
experimental evaluation that also compares with the soft-
ware tool we previously used in [54].

In Sect. 2, we extend the motivating example used in
[54] by adding an inclusive OR block. In Sect. 3, we define
conditional constraint networks with decisions by extending
constraint networks under conditional uncertainty (CNCUs)
used in [54] with decision variables to encode controllable
conditional branches and a labeled partial order relation. Sec-
tion 4 provides an encoding from business processes we
consider here into CCNDs. The extension we provide here
augments that in [54] by also considering controllable con-
ditional branches, inclusive OR blocks, and further mutual
exclusivity constraints on task execution. In Sect. 5,we define
weak, strong, and dynamic controllability of CCNDs, clas-
sify their computational complexity, and discuss strategy
synthesis algorithms. In Sect. 6, we provide a new version of
Zeta, completely rewritten.We useZeta to compare against
a previous experimental evaluation for CNCUs and also pro-
vide a new one for CCNDs. There, we briefly discuss some
technical and non-technical limitations of our approach. In
Sect. 7, we give an overview on related work on resource
controllability, and finally in Sect. 8, we draw some conclu-
sions.

2 Running Example

As a motivating example we will use throughout the paper,
we consider a simplified loan origination process (LOP). Fig-
ure 1 depicts the process structure, according to the widely
knownBPMNnotation [3], extended to graphically represent
roles, resources, and the related constraints. The process con-
sists of 10 tasks, 6 roles (Clerk,Auditor,AMLOfficer,
IRSOfficer, Manager, and System), 6 users (alice,
bob, evie, kate, mike and ted), and 1 automated agent
(server). Clerk contains alice and bob, Auditor
contains bob and kate, AMLOfficer contains mike
only, IRSOfficer contains evie only, Manager con-
tains kate and ted, whereas System contains server
only.

A Clerk starts the process by processing a loan request
(ProcR). After that, the flow of the execution splits by
entering an unconditional parallel block. In this block, an
Auditor checks the financial records of the customer
(CheckFR) and at the same time another further verification
takes place depending on if the amount of money requested

is huge or not. IfhugeA? is true, then an AMLOfficer car-
ries out an anti-money laundering assessment (AntiML). If
hugeA? is false, then an IRSOfficer carries out a simple
tax fraud assessment (TaxFA). The Auditorwho executes
CheckFR must be different from the Clerk who executed
ProcR, (as someusers, e.g.,bob,might belong to both roles)
and must also not be a relative of the AMLOfficer who
executed AntiML nor of the IRSOfficer who executed
TaxFA (it is not necessary for them to be different since
the bank requires AMLOfficers and IRSOfficers to be
external disjoint consultants). After that, both the internal
conditional block and the external parallel one (in this order)
complete and the execution flow enters a new conditional
block to carry out the final tasks depending on if the loan
has been approved or not. If app? is true, then a Manager
prepares the contract (PrepC) and another one, whomust be
different from the first, signs it (Sign). If app? is false, then
the same Clerk who executed the initial ProcR rejects the
request (Reject).

Finally, the process goes through an inclusive OR block
where a notification is sent. Specifically, an agent of System
sends an email (EmailN) plus either a text notification
(TextN) or a mobile app notification (MobN). This last
either-or part is up to the system. After that, the process com-
pletes.

As the overall goal is that of executing this process always
satisfying the precedence, the authorization constraints, and
the mutual-exclusion constraints between tasks no matter
which execution path we go through, we would like to be
able to establish at design time and then manage at runtime
different controllability-related features.

3 Conditional Constraint Networks with
Decisions

In this section, we introduce a new formalism suitable to
encode a more expressive fragment of BPMN with respect
to our previous work in [54]. We deal with both controllable
and uncontrollable parts andmodel the arising controllability
problems as two-player games betweenController (operating
on controllable parts) and Nature (operating on uncontrol-
lable parts).

Given a set P of Boolean propositions, a label � =
λ1 . . . λn is any finite conjunction of literals λi , where a lit-
eral is either a proposition p (positive literal) or its negation
¬p (negative literal). The empty label is denoted by �. The
label universe of P , denoted by P∗, is the set of all possible
(consistent) labels drawn from P , e.g., if P = {p, q}, then
P∗ = {�, p, q,¬p,¬q, p∧q, p∧¬q,¬p∧q,¬p∧¬q}.
Two labels �1, �2 ∈ P∗ are consistent if and only if their
conjunction �1 ∧ �2 is satisfiable. A label �1 entails a label
�2 (written �1 ⇒ �2) if and only if all literals in �2 appear

123

22 M. Zavatteri et al.

in �1 too (i.e., if �1 is more specific than �2). For instance, if
�1 = p∧¬q and �2 = p, then �1 and �2 are consistent since
p∧¬q∧ p is satisfiable, and �1 entails �2 since p∧¬q ⇒ p.

Definition 1 A conditional constraint networkwith decisions
(CCND) is a tuple 〈X ,V, D,O,D,P, O, L,�, C〉, where:

1. X = {X1, . . . , Xn} is a finite non-empty set of variables.
2. V = {a,b, . . . } is a finite non-empty set of discrete val-

ues.
3. D ⊆ X × V is the domain relation such that (X ,v) ∈

D means that X can be assigned v. We abuse notation
and shorten the domain of any X ∈ X as D(X) = {v |
(X ,v) ∈ D} and assume that all D(X) are non-empty.

4. O ⊆ X = {P?, Q?, . . . } is a set of observation variables
andD ⊆ X = {A!, B!, . . . } is a set of decision variables.
Moreover, O and D are disjoint sets.

5. P = {p, q, . . . } is a set of Boolean propositions whose
truth values are all initially unknown.

6. O : P � O ∪ D is a bijection assigning either an obser-
vation or a decision variable to each proposition.When an
observation variable P? is assigned a value v ∈ D(P?),
the truth value of p is set byNature and no longer changes.
Instead, when a decision variable A! is assigned a value
v ∈ D(A!), the truth value of a is set by Controller.

7. L : X → P∗ is a mapping assigning a label � to each
variable.

8. � ⊆ X × X × P∗ is a labeled precedence relation
on the variables. We write (X1, X2, �) ∈ � (or more
conveniently (X1 � X2, �)) to express that if � is true,
then X1 executes before X2.

9. C is a finite set of labeled relational constraints of the
form (R, �), where R = (S, T) is a relation with non-
empty scope S = {X j , . . . , Xk} ⊆ X and set of tuples
T ⊆ D(X j) × · · · × D(Xk), whereas � ∈ P∗.

ACCNDiswell defined if andonly if the followingproperties
hold.

(1) For each X ∈ X , if a literal p (or ¬p) ∈ L(X), then
L(X) ⇒ L(O(p)) and (O(p) � X , L(X)) (variable
label honesty).

(2) For each constraint ((S, T), �) ∈ C, if a literal p (or ¬p)
∈ L(X), then � ⇒ L(O(p)) (constraint label honesty).
Furthermore, � ⇒ L(X) for each X ∈ S (constraint label
coherence).

(3) For each (X1, X2, �) ∈�, if a literal p (or ¬p) ∈ �, then
� ⇒ L(O(p)) (precedence label honesty). Moreover,
� ⇒ L(X1) and � ⇒ L(X2). �

A constraint network under conditional uncertainty (CNCU,
[55,59,61])—the model we used in the previous version of

this paper—is equivalent to a CCND where D = ∅, and
� = � for each (X ,Y , �) ∈�.

We say that a variable, precedence, or relational constraint
is relevant if and only if its label is true (once the involved
propositions have been assigned).

A CCND is binary if all constraints ((S, T), �) ∈ C
are such that |S| ≤ 2. We graphically represent a binary
CCND as a labeled constraint (multi)graph, where each vari-
able X is labeled by its label L(X) ∈ P∗ and its domain
D(X) = {v1, . . . ,vn}. Edges are of two kinds: order edges
(directed labeled edges) and constraint edges (undirected
labeled edges). An order edge X1 → X2 labeled by �models
(X1 � X2, �). A constraint edge between X1 and X2 labeled
by (R, �) models (R, �) ∈ C where R = ({X1, X2}, T).
Many constraint edges may possibly be specified between
the same pair of variables (or more conveniently, many labels
on the same edge), as long as � is different.

4 Encoding Processes into CCNDs

Table 1 provides an extension of the encoding from the frag-
ment of BPMN discussed in [51,54] into CCNDs. Despite
such an encoding is quite restrictive with respect to the num-
ber of components, it handles a number of process blocks
that are crucial to many process instances. In this section,
we follow a structured approach and deal with what in the
BPM community are known as process blocks. A process
block can be seen at a more theoretical level as a context-
free grammar in which tasks and skips are terminal symbols
and everything else is non-terminal. Before discussing our
process blocks we spend a few words on access control.

A role-based access control model (RBAC, [41]) relies on
the concept of role that acts as an interface between users and
permissions. If a user changes his roles the security officer
simply reassigns him to the new ones. An RBAC model for a
process is a tuple

〈Roles,Users,Tasks,UA,TA〉
where Roles = {r1, . . . , rn}, Users = {u1, . . . , um}
and Tasks = {t1, . . . , tk} are finite sets of roles, users
and tasks, respectively, and UA ⊆ Users × Roles and
TA ⊆ Tasks×Roles are the user-role and task-role assign-
ment relations, respectively. We write users(t) = {u | ∃r ∈
Roles, (t, r) ∈ TA, (u, r) ∈ UA} for the set of users autho-
rized for t .

Table 1 (left column) provides the encoding from (acyclic)
process blocks into CCNDs. Note that loops could be mod-
eled by unfolding a maximum number of iterations where
each iteration is modeled by a choice block (positive con-
dition means iterate, negative one means stop). Tasks are
labeled by a finite set of roles {r1, . . . , rn} ⊆ Roles mean-

123

Resource Controllability of Business Processes Under Conditional Uncertainty 23

ProcR
(Clerk)

{alice, bob}

+

× hugeA?

AntiML
(AMLOfficer)

{mike}

TaxFA
(IRSOfficer)

{evie}

CheckFR
(Auditor)

{bob, kate}

×

+ × app?

PrepC
(Manager)

{kate, ted}

Sign
(Manager)

{kate, ted}

Reject
(Clerk)

{alice, bob}

× O

EmailN
(System)

{server}

TextN
(System)

{server}

MobN
(System)

{server}

O

hugeA

¬hugeA

app

¬app

(always)

text!

mobile!

�=

¬Rel ¬Rel

�= �=

=

Fig. 1 Example of business process with access control in BPMN-like
graphical style for a loan origination process. The BPMN notation has
been extended in an intuitiveway to represent roles (within round brack-
ets in the task labels), resources (within braces below each task), and

labeled dashed lines for constraints between the connected tasks. bob
and mike are brothers. kate and evie are sisters. Email notifications
are always sent in addition to either a text or a mobile app notification

Start
[]

{wfms}
ProcR
[]

{alice, bob}
PS

[]

{wfms}

H?
[]

{wfms}

AntiML
[h]

{mike}

TaxFA
[¬h]

{evie}

CheckFR
[]

{bob, kate}

HJ

[]

{wfms}

PJ

[]

{wfms}
A?
[]

{wfms}

PrepC
[a]

{kate, ted}
Sign
[a]

{kate, ted}

Reject
[¬a]

{alice, bob}

AJ

[]

{wfms}

T !
[]

{wfms}
M !
[]

{wfms}
TextN
[t]

{server}

EmailN
[]

{server}

MobN
[m]

{server}

OJ

[]

{wfms}
End
[]

{wfms}

h

¬h

h

¬h

a

¬a

a a

¬a

t

m

t

m

(R1,)

(R2, h)

(R3,¬h)

(R4, a)
(R5, a)

(R6,¬a)

(R7,¬t ∧ ¬m)
(R7, t ∧ m)

(a) CCND encoding of the process in Figure 1.

ProcR CheckFR
alice bob
alice kate
bob kate

(b) R1

CheckFR AntiML
kate mike

(c) R2

CheckFR TaxFA
bob evie

(d) R3

CheckFR PrepC
bob kate
bob ted
kate ted

(e) R4

PrepC Sign
kate ted
ted kate

(f) R5

ProcR Reject
alice alice
bob bob

(g) R6

End
∅

(h) R7

Fig. 2 a The CCND corresponding to BPMN process in Fig. 1; b–h the relational constraints

123

24 M. Zavatteri et al.

Table 1 Encoding process blocks into CCNDs

123

Resource Controllability of Business Processes Under Conditional Uncertainty 25

ing that (t, r1), . . . , (t, rn) ∈ TA (Table 1, 2nd row). Assign-
ing roles to tasks models “who does what.” Each mutual
exclusive gateway is associated with a unique Boolean vari-
able dec!/cond? whose truth value assignment may be
controllable or not depending on if we desire to model a
decision or a condition (Table 1, 5th row).

However, classical RBAC models fail to specify security
policies at user level such as separation of duties (SoD) and
binding of duties (BoD).1

Authorization constraints address such an issue. Autho-
rization constraints are defined for a subset of non-mutually
exclusive tasks t1, . . . , tn and are formalized as a set of
relations {ρ1, . . . , ρm} each one defined over Usersm (i.e.,
m-times the cross product of Users). Each relation may
appear positive (ρ) or negative (¬ρ). If u1 ∈ users(t1),
u2 ∈ users(t2), …, un ∈ users(tn) and (u1, u2, . . . , un) sat-
isfies all (¬)ρi in the set, then any execution assigning t1 to
u1, t2 to u2,…, and tn to un satisfies the authorization con-
straint.Whenever an authorization constraint restricts to only
two tasks we can easily draw it as an undirected dashed edge
between them (Table 1, last row).

The start and end of a process are encoded as two vari-
ables Start and End occurring before and after all other
variables, respectively. L(Start) = L(End) = � since the
start and the end of a process always occur.wfms—thework-
flow management system—is the unique authorized user for
these variables. No constraint edge involvesStart andEnd
(Table 1, row 1). A task t having authorized roles r1, . . . , rn is
encoded as a homonymous variable whose domain consists
of the union of all users belonging to r1, . . . , rn authorized
for t , i.e., users(t), whereas its label contains the proposi-
tions modeling the Boolean variables associated with the
mutual exclusive gateways according to the nesting level of
the block in which the task appears (Table 1, row 2). All
arcs regulating the control flow are encoded as order edges
(Table 1, row 3). Parallel and conditional blocks are straight-
forwardly encoded mirroring the partial order of the process
in the CCND. If the block is a parallel, a variable PS models
the parallel gateway, whereas a variable PJ models the cor-
responding join. L(PS) = L(PJ) according to the nesting
level of the block in the process. All labels of the variables
modeling the components inside the block in the process (if
any) must entail L(PS) in the CCND (Fig. 1, row 4). If a
block is a choice then a decision variable P! or an observa-
tion variable P? having associated a proposition p models
the mutual exclusive gateway. In the first case, the choice
of the branch to take is controllable, whereas in the second
it is uncontrollable. PE still models the corresponding join.
Again, L(P!/P?) = L(PE) but this time as well as entailing

1 SoD is a security policy saying that a subset of tasks must be carried
out by different users, whereas BoD says that a subset of tasks must be
carried out by the same user.

L(P!/P?), all labels of the variables modeling the compo-
nents belonging to the true and false branch in the process
(if any) are augmented with p or ¬p, respectively, in the
CCND (Table 1, row 5). All variables modeling gateways
are all executed by wfms.

An inclusive OR block consists of a gateway having n
associated Boolean variables, n+1 outgoing branches, and a
join. Each Boolean variable, which, again, may be a decision
or a condition, is associated one-to-one to a specific branch.
The execution flow goes through any of these branches if and
only if the corresponding Boolean variable is true. Instead,
the (n + 1)-th branch—the default branch—is always exe-
cuted. To encode an inclusive OR block into a CCND we
replace the split gateway with a sequence of as many deci-
sion/observation variables as the number of conditions and
decisions. After that, we connect the last of these variables
to each branch (and coherently label the branch like the pre-
vious discussed blocks), and finally connect the end of all
internal blocks to a variable OJ modeling the join connector
(Table 1, row 6).

An authorization constraint between two non-mutually
exclusive tasks is encoded as a constraint edgewhose relation
is the intersection of all relations appearing on the autho-
rization constraint in the process block and the label is the
conjunction of the labels of the variables modeling tasks
(Table 1, row 7). Likewise, despite we do not show it in
Table 1, an authorization constraint involving n non-mutually
exclusive tasks is encoded into a n-ary relation in the CCND
along with the conjunction of the labels of the corresponding
variables.

Finally, further constraints on the combination of allowed
decisions/conditions can be encoded into CCNDs. For exam-
ple, the process in Fig. 1 requires that the end of the process
exactly onebetweentext! andmobile! is true.To encode
it we proceed as follows. Let t and m be the correspond-
ing propositions in the CCND. Let X be any variable in the
CCND (it really does not matter which variable). We add an
unsatisfiable constraint (({X},∅),¬t∧¬m) to impose that at
least one between t and m must be true, and another unsatis-
fiable constraint (({X},∅), t ∧m) to prevent that both cannot
be true in the same execution.

Figure 2a represents the encoding of the process depicted
in Fig. 1. We show the relational constraints encoding autho-
rization constraints and mutual exclusivity of text! and
mobile! in Fig. 2b, h.

Figure 2a shows a graph-based representation of the
CCND Z = 〈X ,V, D,O,D,P, O, L,�, C〉 in which:

– X := {Start, ProcR, PS , H?, AntiML, TaxFA, HJ ,
PJ , A?, PrepC, Sign, Reject, AJ , T !, M !, EmailN,
TextN, MobN, OJ , End}

– V := {alice, bob, kate, evie, mike, ted, wfms,
server}

123

26 M. Zavatteri et al.

– D(Start) = D(PS) = D(H?) = D(HJ) = D(PJ) =
D(A?) = D(AJ) = D(T !) = D(M !) = D(OJ) =
D(End) := {wfms}

– D(ProcR) = D(Reject) := {alice,bob}
– D(CheckFR) := {bob,kate},D(AntiML) := {mike},

D(TaxFA) := {evie},
D(PrepC) = D(Sign) := {kate,ted},D(EmailN) =
D(TextN) = D(MobN) := {server},O := {H?, A?},

– D := {T !, M !}, P := {h, a, t,m}
– O(h) := H?, O(a) := A?, O(t) := T !, O(m) := M !,
– L(AntiML) := h, L(TaxFA) := ¬h,

L(PrepC) = L(Sign) := a, L(Reject) := ¬a,
L(MobN) := m and L(TextN) := t , L(X) := � for all
X ∈ X \ {AntiML, TaxFA, PrepC, Sign, Reject,
TextN, MobN}

– (Start � ProcR,�), (ProcR � PS,�), (PS �
CheckFR,�), (CheckFR � PJ ,�), (PS � H ,�),
(H � AntiML, h), (AntiML � HJ , h), (H? �
TaxFA,¬h), (TaxFA � HJ ,¬h), (HJ � PJ ,�),
(PJ � A,�), (A? � PrepC, a), (PrepC � Sign, a),
(Sign � AJ , a), (A? � Reject,¬a), (Reject �
AJ ,¬a), (AJ � T !,�), (T ! � M !,�), (M ! �
EmailN,�), (EmailN � OJ ,�), (M ! � TextN, t),
(TextN � OJ , t), (M ! � MobN,m), (MobN � OJ ,m),
(OJ � End,�)

– C := {(R1,�), (R2, h), (R3,¬h), (R4, a), (R5, a),
(R6,¬a), (R7,¬t ∧ ¬m), (R7, t ∧ m)}, where
– R1 := ({ProcR,CheckFR}, {(alice,bob),

(alice, kate), (bob,kate)})
– R2 := ({CheckFR,AntiML}, {(kate,mike)})
– R3 := ({CheckFR,TaxFA}, {(bob,evie)})
– R4 := ({CheckFR,PrepC}, {(bob,kate),

(bob,ted), (kate,ted)}
– R5 := ({PrepC,Sign}, {(kate,ted),

(ted,kate)})
– R6 := ({ProcR,Reject}, {(alice,alice),

(bob, bob)})
– R7 := ({End},∅)

5 CheckingWeak, Strong, and Dynamic
Controllability

Before formally describing the three kinds of controllability,
let us introduce them informally.

In general, controllability represents the capability by
the Controller (i.e., the system managing the network) of
assigning truth values to decision variables and values (i.e.,
resources) to variables, satisfying all the precedence and
resource-related constraints and with any possible truth val-
ues of observations, which are not controllable. The different

kinds of controllabilities differ with respect to how the Con-
troller is able to deal with the (uncontrollable) observations.

Weak controllability refers to the capability of the Con-
troller to guarantee the controllability when all the uncon-
trollable observations are known at the beginning, before
assigning values to variables. Such kind of controllability
is the weakest one, as observations are assumed to be known
all before the Controller starts to manage the network.

Strong controllability, instead, refers to the capability
of the Controller to guarantee controllability “in advance,”
without the need of taking into account the truth values of
observations.

These two kinds of controllability represent a sort of lower
and upper bound, respectively. The first one is weak, and
often not acceptable in real-world contexts, as all observa-
tions are assumed to be known before the Controller works.
On the other side, strong controllability is in turn rarely appli-
cable as it assumes that the Controller is able to manage the
network in a way independent from observations. But, in
real-world contexts, as the one considered in the provided
example, decisions are often intertwined with observations
and are used to make the network flexible with respect to
uncontrollable events. In this direction, the most interesting
kind of controllability is the dynamic one.

Dynamic controllability refers to the capability of the
Controller to use a dynamic strategy in assigning values to
variables and truth values to decisions. The Controller is thus
able to react to a truth assignment of an observation in a
way that guarantees the controllability of the network with
respect to every possible future value for observation. In other
words, with respect to a given past assignment of resources
and decisions and with respect to some known observations,
the Controller is able to suitably manage every possible evo-
lution of the network according to the currently unknown
observations, guaranteeing the overall controllability.

As we have a network with both controllable features and
uncontrollable ones, it is quite straightforward to formally
specify the semantics of such controllabilities according to
the game theory. In this case, we have two players. The first
one is the Controller, able to set the controllable features,
whereas the second one is Nature, deciding for the occur-
rences of the uncontrollable features. In the proposed game,
Controller has to win with respect to any possible move of
Nature. Different games represent different kinds of control-
lability.

To formally introduce the three main kinds of controlla-
bility, we start by defining a few crucial mappings that we
make use of in the rest of this section. In the following def-
initions, we assume the existence of an underlying CCND
Z = 〈X ,V, D,O,D,P, O, L,�, C〉.

Definition 2 ((Un)controllable propositions) The sets of
controllable and uncontrollable propositions are defined by

123

Resource Controllability of Business Processes Under Conditional Uncertainty 27

PD := {d | d ∈ P, O(d) ∈ D} and PO := {p | p ∈
P, O(p) ∈ O}, respectively.

In our example, PD := {t,m} and PO := {h, a}.
Definition 3 (Observation, decision, scenario) An observa-
tion is a total mapping ω : PO �→ {0, 1} assigning a truth
value to all uncontrollable propositions. A decision is a total
mapping δ : PD �→ {0, 1} assigning a truth value to all con-
trollable propositions. A scenario is a pair (ω, δ) merging an
observation with a decision. A scenario s satisfies a label �

(in symbols, �(s) = 1) if � is true under the interpretation
given by s.

In our example, we have 4 possible observations and 4 pos-
sible decisions, namely,

h a
ω1 0 0
ω2 0 1
ω3 1 0
ω4 1 1

t m
δ1 0 0
δ2 0 1
δ3 1 0
δ4 1 1

Therefore, we have 16 possible scenarios.

Definition 4 (Assignment, ordering)An assignment is a total
mapping α : X �→ V enforcing that α(X) ∈ D(X) for
each X ∈ X . An ordering (for X) is a bijection π : X �
{1, . . . , |X |}.

What we introduced so far is enough to define traces.

Definition 5 (Trace, constraint satisfaction)Atrace is a triple
(s, α, π), where s = (ω, δ) is a scenario, α an assignment,
and π an ordering. An execution trace (s, α, π) satisfies the
CCND Z (in symbols, Z(s, α, π) = 1) if and only if the
following two conditions are met.

(1) For each (X ,Y , �) ∈�, if �(s) = 1, then π(X) < π(Y).
(2) For each ((S, T), �) ∈ C with S := {X j , . . . , Xk}, if

�(s) = 1, then (α(X j), . . . , α(Xk)) ∈ T .

We are now in position to define weak, strong, and
dynamic controllability as two-player games. The first kind
of controllability is weak controllability which assumes that
the observation is known in advance.

Game 1 (Weak controllability) The game takes place in two
rounds. Nature plays first, then plays Controller.

Round 1 Nature chooses an observation ω.
Round 2 Controller chooses a decision δ, an assignment α,

and an ordering π .

Controller wins if Z((ω, δ), α, π) = 1. Nature wins other-
wise.

Definition 6 (Weak controllability) A CCND is weakly
controllable if Controller has a winning strategy for Game 1.
It is weakly uncontrollable if it is Nature to have a winning
strategy for it.

The CCND in Fig. 2a is weakly controllable. A winning
strategy for controller is the following (we omit the symbols
ω, δ, α, and π to ease reading). To give an example, suppose
that Nature assigns false to both h and a. Then Controller,
in this order, assigns wfms to Start, alice to ProcR,
wfms PS , bob to CheckFR, wfms to H?, evie to TaxFA,
wfms to HJ , wfms to PJ , wfms to A?, alice to Reject,
wfms to AJ , wfms to T !, false to t , wfms to M !, true to m,
server to EmailN, server to TextN, wfms to OJ , and
wfms to End. We discuss the other cases in Sect. 6 when we
introduce Zeta.

The second kind of controllability is strong controllability
which assumes that the observation will be revealed only
when all variables have been executed (with respect to some
order) and a decision has been chosen.

Game 2 (Strong controllability) The game takes place in two
rounds. Controller plays first, then plays Nature.

Round 1 Controller chooses a decision δ, an assignment α,
and an ordering π .

Round 2 Nature chooses an observation ω.

Controller wins if Z((ω, δ), α, π) = 1. Nature wins other-
wise.

Definition 7 (Strong controllability) A CCND is strongly
controllable if Controller has a winning strategy for Game 2.
It is strongly uncontrollable if it is Nature to have a winning
strategy for it.

The CCND in Fig. 2a is not strongly controllable. The
problem lies in the constraints (R2, h) and (R3,¬h). Sup-
pose that before starting Controller decides to assign bob
to CheckFR. If during execution Nature assigns true to
hugeA?, the process goes for AntiML with no user avail-
able for it sincebob and mike are brothers. Then, Controller
could change his mind and decide to assign kate (instead of
bob) to CheckFR so that mike for AntiML would be fine
as kate and mike are not relatives. But if during execution
Nature assigns false to hugeA?, eviewould not be fine for
TaxFA as evie is kate’s sister. Therefore, Controller has
no way to preassign a value to CheckFR.

Yet, the CCND is still executable as long as we decide
(during execution) which value to assign to CheckFR after
observing which truth value Nature has assigned to hugeA.
This leads us to consider the most powerful kind of control-
lability: dynamic controllability.

123

28 M. Zavatteri et al.

Game 3 (Dynamic controllability) Let ω : PO �→ {0, 1},
δ : PD �→ {0, 1}, α : X �→ V , and π : X �→ N be par-
tial mappings, each undefined for all its domain elements. At
the end of the game, ω is an observation, δ a decision, α an
assignment, andπ an ordering. The game proceeds in rounds
until all variables and propositions have been assigned. Each
round is as follows.

1. If all variables have been assigned, the game is over.
2. Otherwise, Controller chooses an unassigned variable

X ∈ X , a value v ∈ D(X), and sets α(X) := v and
π(X) := k, where k is the current number of assigned
variables.

(a) If X ∈ O, let p be the uncontrollable proposition
associated with X. Nature chooses a truth value b ∈
{0, 1} and sets ω(p) := b.

(b) If X ∈ D, let d be the controllable proposition
associated with X. Controller chooses a truth value
b ∈ {0, 1} and sets δ(p) := b.

Controller wins if Z((ω, δ), α, π) = 1. Nature wins other-
wise.

Definition 8 (Dynamic controllability) A CCND is dynam-
ically controllable if Controller has a winning strategy for
Game 3. Dynamically uncontrollable if it is Nature to have a
winning strategy for it.

The CCND in Fig. 2a is dynamically controllable. Con-
troller’s strategy is the following (weonly discuss the relevant
assignments).

1. Controller assigns wfms to Start, alice to ProcR,
wfms to PS and wfms to H?, then

(a) If Nature assigns false to h, then Controller assigns
bob to CheckFR, evie to TaxFA, wfms to HJ ,
wfms to PJ and wfms to A?. Then,
i. If Nature assigns false to a, then Controller

assigns alice to Reject, wfms to AJ , wfms
to T !, false to t , wfms to M !, true tom, server
toEmailN,server toMobN,wfms to OJ , and
wfms to End.

ii. If Nature assigns true to a, Controller assigns
kate to PrepC, ted to Sign, wfms to AJ ,
wfms to T !, false to t , wfms to M , true to m,
server to EmailN, server to MobN, wfms
to OJ , and wfms to End.

(b) If Nature assigns true to h, then Controller assigns
kate to CheckFR, mike to AntiML, wfms to HJ ,
wfms to PJ , and wfms to A?. Then,
i If Nature assigns false to a, then Controller
assigns alice to Reject, wfms to AJ , wfms

to T !, false to t , wfms to M !, true to m, server
to EmailN, server to MobN, wfms to OJ , and
wfms to End.

ii If Nature assigns true to a, thenController assigns
ted to PrepC, kate to Sign, wfms to AJ ,
wfms to T !, false to t , wfms to M !, true to m,
server to EmailN, server to MobN, wfms
to OJ , and wfms to End.

Overall, the important thing is to execute H? before exe-
cuting CheckFR (since, being in a parallel block, CheckFR
could be executed before H?).

Corollary 1 (Implication chains) strong controllability ⇒
dynamic controllability ⇒ weak controllability.

Corollary 1 holds by definition (more specifically, see Defi-
nitions 6, 7, and 8).

We conclude this section by classifying the computational
complexity of deciding weak, strong, and dynamic controlla-
bility of CCNDs. The complexity of deciding weak, strong,
and dynamic controllability of CNCUs was investigated in
[55]. As a result, since CNCUs are a special case of CCNDs
we immediately inherit hardness results. Therefore, what we
are really left to prove in order to prove completeness is
membership.

Theorem 1 Deciding weak controllability of CCNDs is Π
p
2 -

complete.

Proof Hardness: Inherited fromCNCUs.Membership:For
each observation ω, there exists a decision δ, an assignment
α and an ordering π such that Z(s, δ, π) = 1 where s :=
(ω, δ). Since all these parts have a polynomial length, weak
controllability is in Π

p
2 by definition. ��

Theorem 2 Deciding strong controllability of CCNDs is NP-
complete.

Proof Hardness: Inherited from CNCUs. Membership: A
certificate of yes is a decision δ plus an assignment α plus an
ordering π . It is clear that the overall sum of these compo-
nents has polynomial length since each of them has. To verify
that Z((ω, δ), δ, π) = 1 for each possible ω, we just check
satisfaction of all partial order and relational constraints for
which δ satisfies the part of the labels involving controllable
propositions only. Since we have a finite number of con-
straints we know that this check runs in polynomial time.

Theorem 3 Deciding dynamic controllability of CCNDs is
PSPACE-complete.

Proof Hardness: Inherited from CNCUs. Membership:
Algorithm 1 is a polynomial space algorithm to decide
dynamic controllability of anyCCND. It explores anAND/OR
search tree whose depth size is upper bounded by O(|X |)2
2 This is the only exception in the paper in which we overload symbols.
Here, “O” means “big-O” (growth of functions).

123

Resource Controllability of Business Processes Under Conditional Uncertainty 29

Algorithm 1: ccnd-dc(Z)

Input: A CCND Z = 〈X ,V, D,O,D,P, O, L, �,C〉
Output: Yes, if Z is dynamically controllable. No otherwise.

1 ccnd-dc (Z)

2 Let ω : PO �→ {0, 1} be a partial mapping undefined for all of its domain
elements

3 Let δ : PD �→ {0, 1} be a partial mapping undefined for all of its domain
elements

4 Let α : X �→ V be a partial mapping undefined for all of its domain
elements

5 Let π : X �→ N be a partial mapping undefined for all of its domain
elements

6 return Variable(Z, ω, δ, α, π,∅)

7 Variable (Z, ω, δ, α, π,X) � X keeps track of executed vars
8 if X = X then
9 return Z((ω, δ), α, π)

10 for X ∈ X \ X do � for each unexecuted var
11 if Value(Z, ω, δ, α, π,X , X) then return Yes;

12 return No

13 Value (Z, ω, δ, α, π,X , X)

14 for v ∈ D(X) do � for each element in X’s domain
15 Let α′ be the extension of α in which α′(X) := v

16 Let π ′ be the extension of π in which π ′(X) := |X | + 1
17 if X /∈ D ∪ O then � Case 1
18 if Variable(Z, ω, δ, α′, π ′,X ∪ {X}) then
19 return Yes

20 if X ∈ O then � Case 2
21 Let p be the proposition associated with X

22 if Observation(Z, ω, δ, α′, π ′,X ∪ {X}, p) then return Yes;

23 if X ∈ D then � Case 3
24 Let d be the proposition associated with X

25 if Decision(Z, ω, δ, α′, π ′,X ∪ {X}, d) then return Yes;

26 return No

27 Observation (Z, ω, δ, α, π,X , p)
28 Let ω′ be the extension of δ in which ω′(d) := 0
29 Let ω′′ be the extension of δ in which ω′′(d) := 1

30 return Variable(Z, ω′, δ, α, π,X) ∧ Variable(Z, ω′′, δ, α, π,X)

31 Decision (Z, ω, δ, α, π,X)

32 Let δ′ be the extension of δ in which δ′(d) := 0
33 Let δ′′ be the extension of δ in which δ′′(d) := 1

34 return Variable(Z, ω, δ′, α, π,X) ∨ Variable(Z, ω, δ′′, α, π,X)

Finally, it is easy to see that when a CCND contains
no uncertainty (i.e., when O = ∅) we deal with a con-
sistency problem whose corresponding decision version is
NP-complete. Indeed, NP-hardness is inherited from CNs
which are a special case whenD and� are also empty.Mem-
bership in NP boils down to verify a certificate made up of a
decision δ, an assignment α and an ordering π the same way
discussed in the proof of Theorem 2.

These complexity results suggest immediately how to
implement rough strategy synthesis algorithms. To avoid
heaving the paper, we only discuss what they look like.

For dynamic controllability, we need to modify Algo-
rithm1 for it to save the strategy tree insteadof only traversing
it. Specifically,wheneverAlgorithm1would return “yes,”we
return a (sub)tree containing the part of δ, α and π that is rel-
evant at that specific recursion level. Whenever Algorithm 1
would return “no,” we return an empty tree. If the CCND is
not dynamically controllable, then we get an empty tree.

For weak controllability, we proceed this way. We iterate
on each observation ω and generate a CND (i.e., a CCND
withO = ∅) in which we fix the values of all uncontrollable
propositions according to ω. After that, we use Algorithm 1
to synthesize α, δ, π for this specific ω (note that no AND
nodes are explored here). If just one of these trees is empty,
the CCND is not weakly controllable.

For strong controllability, we generate a CND by wiping
out all uncontrollable propositions from the initial CCND
(wherever they appear). After that, we run Algorithm 1 to get
α, δ, π (if any) for allω (again, no AND nodes are explored).
If we get an empty tree, the CCND is not strongly control-
lable.

6 Zeta: a tool for CCNDs

The initial versionofZetawas a Java tool provided in [59,61]
that acted as a strategy synthesizer and executor simulator
for weakly, strongly and dynamically controllable CNCUs
according to the old approach. Taking advantage of the new
results in this paper, we completely rewrote Zeta in C++
in order to implement the strategy synthesis algorithms we
discussed at the end of Sect. 3. In its internal, Zeta exploits
pruning techniques that stop a search when consistency of
a partial trace ((ω, δ), α, π) results broken already in the
search tree and also optimization techniques aimed at ignor-
ing irrelevant variables. Despite Zeta deals with weak and
strong controllability as well, it was mainly conceived to
address dynamic controllability of CCNDs natively, with
special attention devoted to the synthesis of dynamic strate-
gies and execution of dynamically controllable networks.
Zeta relies on Z3’s C++ API [35] as a backend for solv-
ing CNDs which play a role when synthesizing strategies for
weakly and strongly controllable CCNDs. Instead, to syn-
thesize strategy trees for dynamically controllable CCNDs
Zeta does not need Z3.

We added new features and simplified the input language.
We discuss this new version in the rest of this section, we
compare with the experimental evaluation in [61] and we
also provide a new set of benchmarks for CCNDs.

6.1 The NewVersion of Zeta and Its Experimental
Evaluation

Listing 1 shows Zeta’s help screen. Despite the command
line arguments follow a different BNF grammar, this version
of Zeta also offers the possibility to:

– decide dynamic controllability of a CCND without syn-
thesizing any strategy (i.e., decision problem),

– print a previously synthesized strategy in a human read-
able format,

123

30 M. Zavatteri et al.

Listing 1 Zeta’s help screen.

$./zeta network ACTION [-silent]

ACTION ::= -d CONTROLLABILITY # decision problems
| -s CONTROLLABILITY strategy # strategy synthesis
| -x[i] strategy [N] # execution (online planning and scheduling)
| -p strategy # strategy printing (human readable)

CONTROLLABILITY ::= weak | strong | dynamic

– execute a controllable CCND interactively meaning that
the user is free to play the Nature (i.e., choose the uncon-
trollable truth value assignments upon the execution of
the observation variables).

The new input language of Zeta consists of three main
sections instead of five. Listing 2 shows the specification of
theCCND inFig. 2awritten inZeta’s input language,where:

– the section Variables specifies the sets X , P , V as
well as the mappings O and L ,

– the section Precedence specifies �, and
– the section Constraints specifies C.

We added a few comments to clarify the syntax.
If the input network is controllable (or consistent) and

Zeta is asked to synthesize a strategy for a specific kind
of controllability, Zeta saves to file the strategy tree if the
network is proved consistent or controllable. Such a strategy
will be provided later as input (along with the network) in
the execution phase.

We run Zeta on the specification in Listing 2 to prove that
the CCND in Fig. 2 is weakly, dynamically but not strongly
controllable (Listing 3) and we carried out 1000 execution
simulations for weak and dynamic controllability generating
random observations at each simulation (we show a few in
Listings 4 and 5).We used a FreeBSD virtual machine run on
top of a VMWare ESXi Hypervisor using a physical machine
equipped with an Intel i7 2.80 GHz and 16 GB of RAM.
The VM was assigned 12 GB of RAM and full CPU power.
Time and space consumed are negligible for the CCND in
Fig. 2 apart from the synthesis of the strategy tree for dynamic
controllability that took about 4.6 seconds.

In [59] and [61] two different sets of benchmarks for
CNCUs were provided. However, in [59] no particular cri-
teria was adopted to generate the CNCUs. Instead, in [61]
CNCUs were divided with respect to some criteria of inter-
est.

We compared the new approach against the one in [61]
and converted in the new format 100 weakly controllable
CNCUs only, 100 strongly (therefore weakly and dynami-
cally) controllable CNCUs, 100 dynamically but not strongly

controllable CNCUs and finally 100 CNCUs uncontrollable
for each kind of controllability as the reverse implication
chain weak uncontrollability ⇒ dynamic uncontrollability
⇒ strong uncontrollability holds too. We put aside strongly
and dynamically uncontrollable CNCUs in [61] as they could
be controllable even in the old approach for some other kind
of controllability (that is why we focused on weakly uncon-
trollable CNCUs only).

Each CNCU has exactly 6 variables, where each variable
has the same 6 values in its domain and specifies a maxi-
mum number of relational constraints of 40% of |X | × |O|,
where each binary relation (({Xi , X j }, T), �) has a maxi-
mum number of tuples of 50% of |D(Xi)|×|D(X j)| and the
label � is generated randomly. Furthermore, to increase the
search space all variables are unlabeled and no partial order
is specified.

Figure 3 shows the comparison between the old approach
(dashed lines) and the new one (solid lines) where the cap-
tions of the subfigures say which set of benchmarks is under
analysis. The data shows that the approach in this paper
is faster. The new Zeta also proved that weak/6vars/
6obs/008 (classified as weakly controllable only by the
old approach) is also dynamically controllable when consid-
ering dynamic orderings.

After that, we generated a new set of benchmarks for
CCNDs. We followed the previous idea of generating
CCNDs that are weakly controllable only, strongly control-
lable, dynamically but not strongly controllable and weakly
uncontrollable. For each of these subsets, we generated 100
CCNDs having 1 decision and 1 observation variables, 100
CCNDs having 2 decision and 2 observation variables, 100
CCNDs having 3 decision and 3 observation variables and
100 CCNDs having 4 decision and 4 observation variables.
That is, in each network the number of decision variables
is always equal to the number of observation variables. In
this way half of the propositions are controllable and the
other half uncontrollable. Each CCND has exactly 8 unla-
beled variables whose domains are filled randomly from a set
of 8 values. Let N be the number of decision and observation
variables in a CCND. The partial order relation is filled with
maximum 2+ N randomly labeled order edges, whereas the
constraint set is filledwithmaximum1+N randomly labeled

123

Resource Controllability of Business Processes Under Conditional Uncertainty 31

Listing 2 Specification of Fig. 2 in Zeta’s input language.

Variables { # Syntax
Start : wfms : ; # variable : domain : label;
ProcR : alice bob : ;
PS : wfms : ;
CheckFR : bob kate : ;
H? : h : wfms : ; # observation_variable : proposition : domain : label;
AntiML : mike : h;
TaxFA : evie : !h;
HJ : wfms : ;
PJ : wfms : ;
A? : a : wfms : ;
PrepC : kate ted : a;
Sign : kate ted : a;
Reject : alice bob : !a;
AJ : wfms : ;
T! : t : wfms : ; # decision_variable : proposition : domain : label;
M! : m : wfms : ;
EmailN : server : ;
TextN : server : t;
MobN : server : m;
OJ : wfms : ;
End : wfms : ;

}

Precedence { # variable -> variable : label;
Start -> ProcR : ;
ProcR -> PS: ;
PS -> CheckFR : ;
CheckFR -> PJ : ;
PS -> H : ;
H -> AntiML : h;
AntiML -> HJ : h;
H -> TaxFA : !h;
TaxFA -> HJ : !h;
HJ -> PJ : ;
PJ -> A : ;
A -> PrepC : a;
PrepC -> Sign : a;
Sign -> AJ : a;
A -> Reject : !a;
Reject -> AJ : !a;
AJ -> T : ;
T -> M : ;
M -> EmailN : ;
EmailN -> OJ : ;
M -> TextN : t;
TextN -> OJ : t;
M -> MobN : m;
MobN -> OJ : m;
OJ -> End : ;

}

Constraints { # scope : tuples : label;
ProcR CheckFR : (alice bob) (alice kate) (bob kate) : ;
CheckFR PrepC : (bob kate) (bob ted) (kate ted) : a;
PrepC Sign : (kate ted) (ted kate) : a;
CheckFR AntiML : (kate mike) : h;
CheckFR TaxFA : (bob evie) : !h;
ProcR Reject : (alice alice) (bob bob) : !a;
End : : !t !m;
End : : t m;

}

123

32 M. Zavatteri et al.

binary relations (each containing maximum 2+N randomly
generated tuples). Figure 4 shows the analysis carried out
with Zeta where, again, the captions of the subfigures say
which set of benchmarks is under analysis. Also, note that
this time the size of the strategy is given in number of nodes.

Listing 3 Weak, strong and dynamic strategy synthesis for Fig. 2.

$./zeta LOP_jods.ccnd -s weak LOP_jods.weak
.s

controllable
$./zeta LOP_jods.ccnd -s strong LOP_jods.

strong.s
uncontrollable
$./zeta LOP_jods.ccnd -s dynamic LOP_jods.

dynamic.s
controllable

We executed all CNCUs and all CCNDs 1000 times each
with respect to weak, strong, and dynamic controllability
(according to the set of benchmarks under analysis). No exe-
cution crashed.

The new version of Zeta (for FreeBSD, Linux, and Win-
dows) along with the running example of this paper and
the experimental evaluation we just discussed is available at
https://github.com/matteozavatteri/zeta inside the directory
ccnd.

6.2 Limitations

Limitations in the considered experimental setting aremainly
due to the fact that Zeta has been realized as a sound
proof-of-concept prototype for checking controllabilities of
CCNDs. We decided to generate artificial networks to have
a generic set of networks with predefined features, leaving
for the future work an experimental evaluation on real-world
networks, possibly derived from business processes. Having
real-world business processes for extensive benchmarking
and comparison of different approaches is in fact still an
issue in business process research [13] and some initiatives
have been proposed to this end [13,48]. Indeed, on one hand,
business processes are still considered an important piece
of strategic knowledge, preventing their sharing even for
research purposes. On the other hand, such processes would
need to be suitably mapped into new networks, according
to the proposed theoretical framework. Such a step may
present different kinds of issues, as some features of the pro-
cesses could be either not supported (e.g., metric constraints
between tasks) or underspecified (e.g., the resources avail-
able for specific tasks). To partially deal with the real-world
applicability of our approach, we discussed a concrete (but
simplified with respect to the other features that we did not
consider) example throughout the paper.

From a more technical point of view, the limitations of
Zeta, once a process is encoded into a CCND (a linear time
step), are related to its main algorithmic bottlenecks. Indeed,

a combinatorial explosion may arise, mainly due to the fol-
lowing aspects:

– the number of (variables modeling) activities in the pro-
cess,

– the number of (values modeling) resources associated
with activities in the process,

– the number of (Booleans modeling) XOR conditions/de-
cisions in the process, and

– the number of possible total orders arising from parallel
blocks in the process.

These aspects can be considered in isolation or simultane-
ously, in combination. However, in general, we can say that
the more, the worse, as is clear also from the theoretical com-
plexity analysis that we carried out at the end of Sect. 5.

7 RelatedWork

A constraint network (CN, [14]) consists of a finite set of vari-
ables, a set of finite discrete domains (one for each variable),
and a set of relational constraints, and is a possible formal-
ism to model the constraint satisfaction problem (CSP) that
is the problem of finding an assignment of values to the vari-
ables satisfying all constraints. Deciding consistency of CNs
is NP-complete [14]. Over the years, several algorithms for
computing one or all solutions of a CN were provided fol-
lowing search or inference approaches (or a combination of
both). For example, node, arc, and path consistency [29,32]
are incompletefiltering techniques aimed to rule out inconsis-
tent assignments. ACN isminimal if any tuple of any relation
can be extended to a complete consistent solution [14,33].
Computing a minimal network is NP-hard [33]. Moreover,
given a minimal network, generating an arbitrary solution is
NP-hard aswell [26].Directional consistencywas introduced
to speed up the process of consistency checking and solution
generation exploiting total orderings on the set of variables
[17]. On top of that, when we need to generate a solution to a
CN limiting or avoiding backtracking, we need, in general, a
concept of (strong) k-consistency which guarantees that any
consistent assignment to k−1 variables can be extended to k
variables without breaking consistency [24,25]. CNs model
fully controllable CSPs only. This work deals with a CSP in
which some parts are uncontrollable.

When we need dynamicity (i.e., CSPs changing the set
of variables and/or constraints) over time, we need to con-
sider dynamic CSPs. Dechter and Dechter in [15] defined a
dynamic CSP as a sequence of static CSPs where each CSP
in the sequence differs from the previous one for a single
change in the constraint or in the variable set and provided
algorithms for support propagation and contradiction resolu-
tion for acyclic CNs. The degree of support of each variable

123

https://github.com/matteozavatteri/zeta

Resource Controllability of Business Processes Under Conditional Uncertainty 33

Listing 4 Weak execution simulations for the CCND in Fig. 2.

$./zeta LOP_jods.ccnd -x LOP_jods.weak.s 1000
------------- ------------- ------------- -------------
Execution 1 Execution 2 Execution 3 Execution 4
------------- ------------- ------------- -------------
h=0 h=0 h=1 h=1
a=0 a=1 a=0 a=1
Start=wfms Start=wfms Start=wfms Start=wfms
ProcR=alice ProcR=alice ProcR=alice ProcR=alice
PS=wfms PS=wfms PS=wfms PS=wfms
CheckFR=bob CheckFR=bob CheckFR=kate CheckFR=kate
H=wfms H=wfms H=wfms H=wfms
TaxFA=evie TaxFA=evie AntiML=mike AntiML=mike
HJ=wfms HJ=wfms HJ=wfms HJ=wfms
PJ=wfms PJ=wfms PJ=wfms PJ=wfms
A=wfms A=wfms A=wfms A=wfms
Reject=alice PrepC=ted Reject=alice PrepC=ted
AJ=wfms Sign=kate AJ=wfms Sign=kate
T=wfms, t=1 AJ=wfms T=wfms, t=1 AJ=wfms
M=wfms, m=0 T=wfms, t=1 M=wfms, m=0 T=wfms, t=1
EmailN=server M=wfms, m=0 EmailN=server M=wfms, m=0
TextN=server EmailN=server TextN=server EmailN=server
OJ=wfms TextN=server OJ=wfms TextN=server
End=wfms OJ=wfms End=wfms OJ=wfms

End=wfms End=wfms
------------- ------------- ------------- -------------
SAT! SAT! SAT! SAT!
------------- ------------- ------------- -------------

Listing 5 Dynamic execution simulations for the CCND in Fig. 2.

$./zeta LOP_jods.ccnd -x LOP_jods.dynamic.s 1000
------------- ------------- ------------- -------------
Execution 1 Execution 2 Execution 3 Execution 4
------------- ------------- ------------- -------------
Start=wfms Start=wfms Start=wfms Start=wfms
ProcR=alice ProcR=alice ProcR=alice ProcR=alice
PS=wfms PS=wfms PS=wfms PS=wfms
H=wfms, h=0 H=wfms, h=0 H=wfms, h=1 H=wfms, h=1
CheckFR=bob CheckFR=bob CheckFR=kate CheckFR=kate
TaxFA=evie TaxFA=evie AntiML=mike AntiML=mike
HJ=wfms HJ=wfms HJ=wfms HJ=wfms
PJ=wfms PJ=wfms PJ=wfms PJ=wfms
A=wfms, a=0 A=wfms, a=1 A=wfms, a=0 A=wfms, a=1
Reject=alice PrepC=kate Reject=alice PrepC=ted
AJ=wfms Sign=ted AJ=wfms Sign=kate
T=wfms, t=0 AJ=wfms T=wfms, t=0 AJ=wfms
M=wfms, m=1 T=wfms, t=0 M=wfms, m=1 T=wfms, t=0
EmailN=server M=wfms, m=1 EmailN=server M=wfms, m=1
MobN=server EmailN=server MobN=server EmailN=server
OJ=wfms MobN=server OJ=wfms MobN=server
End=wfms OJ=wfms End=wfms OJ=wfms

End=wfms End=wfms
------------- ------------- ------------- -------------
SAT! SAT! SAT! SAT!
------------- ------------- ------------- -------------

123

34 M. Zavatteri et al.

Fig. 3 Time and space comparison between the new approach and the old one in [61]. The sizes of the strategies in the new approach (number of
nodes) have been converted in kilobytes according to the data structure used to save them to file

123

Resource Controllability of Business Processes Under Conditional Uncertainty 35

Fig. 4 Time and space analysis on the new set of benchmarks (CCNDs)

123

36 M. Zavatteri et al.

models the number of consistent extensions that any variable
assignment has with respect to the set of all solutions. No
notion of controllability is given.

Despite the terminology is similar, another approach to
tackle dynamic constraint satisfaction problems (DCSPs)
was provided in [31] by Mittal and Falkenhainer who
extended a classic CSP by partitioning the set of constraints
in compatibility constraints (i.e., classicCSP constraints) and
activity constraints, a new kind of constraints saying when
variables are active (i.e., when they must belong to a solu-
tion) depending onwhich values other variables are assigned.
Solving a DCSP means finding all (complete) solutions sat-
isfying all compatibility and activity constraints. DCSPs can
model configuration problems. Amilhastre et al. investigated
in [1] the interactive version of a DCSP via Assumption-
based CSPs (A-CSPs) and encoded the problem into an
(exponential-size) automaton in order to pre-compute the set
of possible solutions to allow for fast generation of a solution.
Sabin and Freuder proposed in [40] to use the term condi-
tional CSP (CCSP) instead of DCSP in order to make more
clear that configuration problems are conditional problems.
However, these types of DCSPs (A-CSPs included) are con-
trollable conditional CSPs (that is why consistency analysis
is enough).

To face uncertainty, a line of research has been proposed
over the years providing several formalisms built on top of
(temporal) constraint networks.

In [20], Fargier andLangprovided aprobabilistic approach
to a CSP under uncertainty where each relational constraint
is associated with a probability of being part of the real prob-
lem and provided an algorithm to compute the most probable
solutions (those that are expected to satisfy the constraints
of the real problem). Later, in [21], the same authors along
withMartin-Clouaire and Schiex defined a probabilistic CSP
(PCSP) partitioning the set of variables in parameters (i.e.,
variables whose value assignments are out of control) and
decision variables (variables whose value assignments are
under control). Constraints are specified over both parame-
ters and decision variables. Each parameter is also associated
with a probability. The authors provided two algorithms to
find solutions when (1) no knowledge on the uncontrollable
part arrives “in time” before assigning decision variables,
and (2) all knowledge on the uncontrollable parts reveals
before assigning decision variables. However, no approach
to deal with partial observation is investigated in order to
assign decision variables relying on the knowledge of the
uncontrollable part revealed “so far.” In this paper, we have
a notion of partial observation when we deal with dynamic
controllability.

In [22], Fargier et al. defined a mixed CSP where the set
of variables is still divided in parameters and decision vari-
ables but no probability measure to constraints is given. In
that work, the authors focused on the problem of consistency

under full observability and no observability of the uncon-
trollable part. However, consistency is not investigated under
partial observability (i.e., no dynamic context).

Aconstraint networkunder conditional uncertainty (CNCU)
[59,61] extends a CN with a set of Boolean propositions
whose truth value assignments are out of control (or, equiv-
alently, can be thought of as being under the control of
Nature), observation variables (i.e., special kind of variables
to observe such truth value assignments), and propositional
labels to enable or disable a subset of variables and con-
straints. CNCUs also introduce an (implicit) notion of partial
order among the variables. In [59,61], the authors extended
algorithms based on directional consistency [17] to accom-
modate labels in order to synthesize execution strategies for
weakly, strongly, and dynamically controllable CNCUs with
respect to total orders. More recently, an algorithm to decide
dynamic controllability of a CNCU considering dynamic
orderings was provided in [55]. Regarding computational
complexity aspects of CNCUs, weak controllability is Π

p
2 -

complete, strong controllability is NP-complete, whereas
dynamic controllability is PSPACE-complete [55].

CNCUs were strongly inspired from research on control-
lability of temporal networks. A simple temporal network
(STN, [16]) is a specialization of a CN where variables are
called time points, have continuous domain, and model the
occurrence of some temporal events as soon as they are
assigned real values, whereas constraints are linear inequal-
ities limiting the minimal and maximal temporal distance
between pairs of time points. STNs model fully controllable
temporal plans only, therefore consistency analysis (which is
in P) is enough. Simple Temporal Networks with Uncertainty
(STNUs, [34,44]) add uncontrollable (but bounded) durations
between pairs of temporal events (temporal uncertainty),
whereas conditional simple temporal networks (CSTNs,
[28,43]) extend STNs by labeling time points and constraints
with conjunctions of literals whose truth value assignments
are out of control (conditional uncertainty). Conditional
simple temporal networks with uncertainty (CSTNUs, [27])
merge STNUs and CSTNs, whereas conditional simple tem-
poral networks with uncertainty and decisions (CSTNUDs,
[49,60]) encompass all previous formalisms by adding fur-
ther Boolean propositions whose truth value assignments are
under control. Weak controllability of CSTNUDs remains
unexplored, whereas strong controllability is addressed in
[56] and dynamic controllability in [49,60].

Some proposals also extended STNUs and CSTNUs in
order to deal with resources and temporal aspects simulta-
neously. In [12], a workflow and a fragment of Temporal
Role-Based Access Control (TRBAC, [2]) are encoded into
an STNU, and security policies are modeled by security
constraints (SCs) along with security constraint propaga-
tion rules (SCPRs) that propagate them depending on which
user is executing which time point. Dynamic controllabil-

123

Resource Controllability of Business Processes Under Conditional Uncertainty 37

ity checking for this augmented network is addressed in
[11], which revised the work in [12] with the proposal of
conditional simple temporal networks with uncertainty and
resources (CSTNURs). Access controlled temporal networks
(ACTNs) were proposed in [10] again to handle time and
resources simultaneously and differ from CSTNURs for the
type of employed constraints and blocking conditions on
resources.ACTNsandCSTNURsdonot employ controllable
conditional constraints. This work does not address temporal
constraints (in a quantitative sense) but allows for handling
all possible users assignments (with respect to the total order
of the components) during executionwhereas CSTNURs and
ACTNs don’t.

The problem of verifying WF features related to the
assignment of tasks to users is known in the literature as WF
satisfiability and resiliency [45]. The workflow satisfiability
problem (WSP) is the problem of finding an assignment of
tasks to users (i.e., a plan) such that the execution of the WF
gets to the end satisfying all authorization constraints. The
workflowresiliency problem is theWSPunder the uncertainty
that a maximum number of users may become (temporally)
absent before or during execution (see [62] for a recent con-
troller synthesis approach). In this work, we dealt with a
dynamic WSP encoding an ACWF into a CCND for both
checking controllability and executing the WF.

In the context of business process management (BPM),
Cabanillas et al. investigated resource allocation for busi-
ness processes in [6]. They consider an RBAC environment
and they do not impose any particular order on activities.
They also address loops but their approach does not address
History-Based Allocation of resources. This work addresses
history-based allocation of resources exploiting results from
dynamic controllability of CCNDs.

Zavatteri et al. proposed in [51] an initial approach to
check weak, strong, and dynamic controllability of access
controlled workflows under conditional uncertainty. Such
workflows involve a set of partially ordered tasks (variables
of the CSP), authorized users (domains), and authorization
constraints (relational constraints). Conditional uncertainty
models uncontrollable XOR splits in the workflow mean-
ing that once executed we cannot decide in which workflow
path the execution will continue. In [51], the authors unfold
workflow paths andmap them to classic CNs to reason on the
intersection of common parts when dealing with a dynamic
user assignment (different users assigned to the same tasks
depending on which workflow path is being taken). The
proposed approach pointed out that dynamic controllability
might be amatter of how the components of the workflow are
ordered, a hypothesis that was later confirmed by Zavatteri
and Viganò with the proposal of constraint networks under
conditional uncertainty (CNCUs), a formalism suitable to
model resource allocation under conditional uncertainty in
modern business processes. After that, the work in [54] pro-

vided an initial encoding from ACWFs to CNCUs to exploit
existing algorithms and software in order to handle such an
issue automatically. This paper extends that work.

Further recent research addressed the computational com-
plexity of several kinds of controllability of processes with
also uncontrollable resource assignments and uncontrollable
availability of resources [57,58]. See also [50] for a summary
of temporal and resource controllability in the BPM context
employing a constraint-based approach.

8 Conclusions and FutureWork

We defined conditional constraint networks with decisions
(CCNDs) by extending constraint networks under condi-
tional uncertainty (CNCUs) for them to support:

1. decision variables, and
2. a labeled partial order relation.

We defined weak, strong, and dynamic controllability of
CCNDs as two-player games. We classified the compu-
tational complexity of these games and discuss strategy
synthesis algorithms. Weak controllability is Π

p
2 -complete.

Strong controllability is NP-complete. Dynamic controlla-
bility is PSPACE-complete.

We considered business processes with access control
and conditional branches that may be both controllable and
uncontrollable. We provided an encoding from this kind of
processes into CCNDs. We mapped tasks and gateways to
variables. We mapped mutual exclusive gateways and their
associatedBooleanvariables to either observation or decision
variables depending on if we desire to model controllable
or uncontrollable outgoing branches. We mapped the partial
order to order edges and authorization constraints to con-
straint edges. We mapped authorized users to the domains
of the variables. We also showed that we can achieve further
constraints on the allowed combinations of decisions.

We completely rewrote Zeta which is now a tool for
CCNDs.Wediscussed amotivating example thatwe encoded
into a CCND, validated and executed with Zetawith respect
to the three kinds of controllability. We carried out an exper-
imental evaluation against previous research and provided
a new one for CCNDs. Overall, the new version of Zeta
results faster. Finally, we also pointed out technical and non-
technical limitations of our approach, which will provide the
basis for the future work.

Acknowledgements This work was partially supported by MIUR,
Project Italian Outstanding Departments, 2018–2022, and by INdAM,
GNCS 2020, Projects Strategic Reasoning and Automated Synthesis of
Multi-Agent Systems and Automated Reasoning about Time in Medical
and Business Applications.

123

38 M. Zavatteri et al.

Funding Open access funding provided by Universitá degli Studi di
Verona within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Amilhastre J, Fargier H, Marquis P (2002) Consistency restora-
tion and explanations in dynamic csps application to configuration.
Artif Intell 135(1):199–234

2. Bertino E, Bonatti PA, Ferrari E (2001) TRBAC: a temporal role-
based access control model. ACM Trans Inf Syst Secur 4(3):191–
233

3. Business process modeling notation 2.0. http://www.omg.org/
spec/BPMN/2.0/

4. Brucker AD (2014) Using securebpmn for modelling security-
aware service compositions. In: Secure and trustworthy service
composition, lecture notes in computer science, vol 8900. Springer,
pp 110–120

5. Brucker AD, Hang I, Lückemeyer G, Ruparel R (2012)
SecureBPMN: modeling and enforcing access control require-
ments in business processes. In: SACMAT. ACM, pp 123–126

6. Cabanillas C, Resinas M, del-Río-Ortega A, Cortés AR (2015)
Specification and automated design-time analysis of the business
process human resource perspective. Inf Syst 52:55–82. https://doi.
org/10.1016/j.is.2015.03.002

7. Cairo M, Combi C, Comin C, Hunsberger L, Posenato R, Rizzi
R, Zavatteri M (2017) Incorporating decision nodes into condi-
tional simple temporal networks. In: TIME 2017, vol. 90. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, pp 9:1–9:17. https://
doi.org/10.4230/LIPIcs.TIME.2017.9

8. Combi C, Gambini M, Migliorini S, Posenato R (2014) Represent-
ing business processes through a temporal data-centric workflow
modeling language: an application to the management of clinical
pathways. IEEE Trans Syst Man Cybern Syst 44(9):1182–1203.
https://doi.org/10.1109/TSMC.2014.2300055

9. CombiC, PosenatoR (2009)Controllability in temporal conceptual
workflow schemata. In: BPM. Springer, pp 64–79

10. Combi C, Posenato R, Viganò L, Zavatteri M (2017) Access con-
trolled temporal networks. In: ICAART 2017. ScitePress. https://
doi.org/10.5220/0006185701180131

11. Combi C, Posenato R, Viganò L, Zavatteri M (2019) Conditional
simple temporal networks with uncertainty and resources. J Artif
Intell Res 64:931–985. https://doi.org/10.1613/jair.1.11453

12. Combi C, Viganò L, Zavatteri M (2016) Security constraints in
temporal role-based access-controlled workflows. In: CODASPY
2016. ACM. https://doi.org/10.1145/2857705.2857716

13. Corradini F, Fornari F, Polini A, Re B, Tiezzi F (2019) Reprosi-
tory: a repository platform for sharing business process models. In:
Depaire B, Smedt JD, Dumas M, Fahland D, Kumar A, Leopold
H, Reichert M, Rinderle-Ma S, Schulte S, Seidel S, van der Aalst
WMP (eds) Proceedings of the dissertation award, doctoral con-

sortium, and demonstration track at BPM 2019 co-located with
17th international conference on business process management,
BPM 2019, Vienna, Austria, September 1-6, 2019, CEUR Work-
shop Proceedings, vol 2420, pp 149–153. CEUR-WS.org. http://
ceur-ws.org/Vol-2420/paperDT7.pdf

14. Dechter R (2003) Constraint processing. Elsevier, Amsterdam
15. Dechter R, Dechter A (1988) Belief maintenance in dynamic con-

straint networks. In: 7th AAAI national conference on artificial
intelligence, AAAI’88. AAAI Press, pp 37–42 (1988)

16. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks.
Artif Intell 49(1–3):61–95

17. Dechter R, Pearl J (1987) Network-based heuristics for constraint-
satisfaction problems. Artif Int. https://doi.org/10.1016/0004-
3702(87)90002-6

18. DumasM,RosaML,Mendling J, Reijers HA (2018) Fundamentals
of business process management. Springer, Berlin. https://doi.org/
10.1007/978-3-662-56509-4

19. Eder J, Franceschetti M, Köpke J (2018) Controllability of orches-
trations with temporal SLA: encoding temporal XOR in CSTNUD.
In: iiWAS2018. ACM , pp 234–2422018). https://doi.org/10.1145/
3282373.3282398

20. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction prob-
lems: a probabilistic approach. In: Symbolic and quantitative
approaches to reasoning and uncertainty, pp 97–104. Springer
(1993)

21. Fargier H, Lang J,Martin-Clouaire R, Schiex T (1995) A constraint
satisfaction framework for decision under uncertainty. In: 11th
annual conference on uncertainty in artificial intelligence (UAI
’95), pp 167–174. Morgan Kaufmann Publishers Inc

22. Fargier, H., Lang, J., Schiex, T.: Mixed Constraint Satisfaction: A
Framework for Decision Problems Under Incomplete Knowledge.
In: 13th National Conference on Artificial Intelligence - Volume 1,
AAAI’96, pp. 175–180. AAAI Press (1996)

23. Franceschetti M, Eder J (2019) Towards checking dynamic con-
trollability of processes with temporal loops. pp 1–14

24. Freuder EC (1978) Synthesizing constraint expressions. Commun
ACM 21(11):958–966

25. Freuder EC (1982)A sufficient condition for backtrack-free search.
J ACM 29:24–32

26. Gottlob G (2012) On minimal constraint networks. Artif Intell.
https://doi.org/10.1016/j.artint.2012.07.006

27. Hunsberger L, Posenato R, Combi C (2012) The dynamic con-
trollability of conditional STNs with uncertainty. In: PlanEx at
ICAPS-2012. arXiv:1212.2005

28. Hunsberger L, PosenatoR, Combi C (2015)A sound-and-complete
propagation-based algorithm for checking the dynamic consistency
of conditional simple temporal networks. In: 22nd international
symposium on temporal representation and reasoning (TIME
2015), pp 4–18. IEEE Computer Society

29. Mackworth AK (1977) Consistency in networks of relations. Artif
Intell 8(1):99–118

30. Milosavljevic G, Sladic G, Milosavljevic B, Zaric M, Gostojic S,
Slivka J (2018) Context-sensitive constraints for access control of
business processes. Comput Sci Inf Syst 15(1):1–30

31. Mittal S, Falkenhainer B (1990) Dynamic constraint satisfaction
problems. In: 8th national conference on artificial intelligence,
AAAI’90, pp 25–32. AAAI Press

32. Mohr R, Henderson TC (1986) Arc and path consistency revisited.
Artif Intell 28(2):225–233

33. Montanari U (1974) Networks of constraints: fundamental proper-
ties and applications to picture processing. Sci Inf 7:95–132

34. Morris PH,Muscettola N, Vidal T (2001) Dynamic control of plans
with temporal uncertainty. IJCAI 2001:494–502

35. de Moura L, Bjørner N (2008) Z3: an efficient smt solver. In: Tools
and algorithms for the construction and analysis of systems, pp
337–340. Springer

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1016/j.is.2015.03.002
https://doi.org/10.1016/j.is.2015.03.002
https://doi.org/10.4230/LIPIcs.TIME.2017.9
https://doi.org/10.4230/LIPIcs.TIME.2017.9
https://doi.org/10.1109/TSMC.2014.2300055
https://doi.org/10.5220/0006185701180131
https://doi.org/10.5220/0006185701180131
https://doi.org/10.1613/jair.1.11453
https://doi.org/10.1145/2857705.2857716
http://ceur-ws.org/Vol-2420/paperDT7.pdf
http://ceur-ws.org/Vol-2420/paperDT7.pdf
https://doi.org/10.1016/0004-3702(87)90002-6
https://doi.org/10.1016/0004-3702(87)90002-6
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1145/3282373.3282398
https://doi.org/10.1145/3282373.3282398
https://doi.org/10.1016/j.artint.2012.07.006
http://arxiv.org/abs/1212.2005

Resource Controllability of Business Processes Under Conditional Uncertainty 39

36. Nouioua M, Zouari B, Alti A (2019) Formal approach for autho-
rization in distributed business process related task document role
based access control. In: IWCMC, pp 1964–1970. IEEE

37. Posenato R, Zerbato F, Combi C (2018) Managing decision tasks
and events in time-aware business process models. In: BPM 2018,
LNCS, vol 11080, pp 102–118. Springer. https://doi.org/10.1007/
978-3-319-98648-7_7

38. Ramadan Q, Strüber D, Salnitri M, Jürjens J, Riediger V, Staab
S (2020) A semi-automated bpmn-based framework for detecting
conflicts between security, data-minimization, and fairness require-
ments. Softw Syst Model 19(5):1191–1227

39. Rosa ML, Dumas M, ter Hofstede AHM, Mendling J, Gottschalk
F (2008) Beyond control-flow: extending business process config-
uration to roles and objects. In: ER, Lecture Notes in Computer
Science, vol 5231, pp 199–215. Springer

40. SabinM, Freuder EC (1999)Detecting and resolving inconsistency
and redundancy in conditional constraint satisfaction problems.
AAAI Technical Report

41. Sandhu RS, Coyne EJ, Feinstein HL, Youman CE (1996) Role-
based access control models. Computer 29(2):38–47. https://doi.
org/10.1109/2.485845

42. Schefer-Wenzl S, Strembeck M (2013) Modelling context-aware
RBACmodels formobile business processes. Int JWirelMobCom-
put 6(5):448–462

43. Tsamardinos I, Vidal T, PollackME (2003) CTP: a new constraint-
based formalism for conditional. Temp Plann Constr 8(4):365–388

44. Vidal T, Fargier H (1999) Handling contingency in temporal con-
straint networks: from consistency to controllabilities. J Exp Theor
Artif Intell 11(1):23–45

45. Wang Q, Li N (2010) Satisfiability and resiliency in workflow
authorization systems. ACMTrans Inf Syst Secur 13(4)40:1–40:35

46. Weske M (2012) Business process management-concepts, lan-
guages, architectures, 2nd edn. Springer, Berlin. https://doi.org/
10.1007/978-3-642-28616-2

47. WeskeM, van der Aalst WMP, Verbeek HMW (2004) Advances in
business process management. Data Knowl Eng 50(1):1–8. https://
doi.org/10.1016/j.datak.2004.01.001

48. Weske M, Decker G, Dumas M, La Rosa M, Mendling J, Reijers
HA (2020) Model collection of the business process management
academic initiative. https://doi.org/10.5281/zenodo.3758705

49. Zavatteri M (2017) Conditional simple temporal networks with
uncertainty and decisions. In: TIME 2017, vol 90, pp 23:1–23:17.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.
org/10.4230/LIPIcs.TIME.2017.23

50. Zavatteri M (2019) Temporal and resource controllability of work-
flows under uncertainty. In: Proceedings of the dissertation award,
demonstration, and industrial track at BPM 2019, vol 2420, pp 9–
14. CEUR-WS.org. http://ceur-ws.org/Vol-2420/paperDA3.pdf

51. Zavatteri M, Combi C, Posenato R, Viganò L (2017) Weak, strong
and dynamic controllability of access-controlled workflows under
conditional uncertainty. In: BPM 2017, pp 235–251. Springer.
https://doi.org/10.1007/978-3-319-65000-5_14

52. Zavatteri M, Combi C, Rizzi R, Viganò L (2019) Hybrid SAT-
based consistency checking algorithms for simple temporal net-
works with decisions. In: TIME 2019, vol 147, p 2:12:17.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.
org/10.4230/LIPIcs.TIME.2019.2

53. Zavatteri M, Combi C, Rizzi R, Viganò L (2020) Consistency
checking of STNs with decisions: managing temporal and access-
control constraints in a seamless way. Information and Compu-
tation (in-press). https://doi.org/10.1016/j.ic.2020.104637. http://
www.sciencedirect.com/science/article/pii/S0890540120301255

54. Zavatteri M, Combi C, Viganò L (2019) Resource controllability
of workflows under conditional uncertainty. In: Business process
management workshops, pp 68–80. Springer. https://doi.org/10.
1007/978-3-030-37453-2_7

55. Zavatteri M, Rizzi R, Villa T (2019) Complexity of weak, strong
and dynamic controllability of CNCUs. In: First workshop on for-
mal verification, logic, automata, and synthesis, 2019, OVERLAY
2019, vol 2509, pp 83–88. CEUR-WS.org. http://ceur-ws.org/Vol-
2509/paper13.pdf

56. Zavatteri M, Rizzi R, Villa T (2019) Strong controllability of
temporal networks with decisions. In: First workshop on for-
mal verification, logic, automata, and synthesis, 2019, OVERLAY
2019, vol 2509, pp 77–82. CEUR-WS.org. http://ceur-ws.org/Vol-
2509/paper12.pdf

57. ZavatteriM,Rizzi R,Villa T (2020)Dynamic controllability and (J,
K)-resiliency in generalized constraint networks with uncertainty.
In: Proceedings of the thirtieth international conference on auto-
mated planning and scheduling, ICAPS 2020, pp 314–322. AAAI
Press

58. Zavatteri M, Rizzi R, Villa T (2020) On the complexity of resource
controllability in business process management. In: Business pro-
cess management workshops (to appear). Springer

59. Zavatteri M, Viganò L (2018) Constraint networks under con-
ditional uncertainty. In: ICAART 2018, pp 41–52. SciTePress.
https://doi.org/10.5220/0006553400410052

60. Zavatteri M, Viganò L (2019) Conditional simple temporal net-
works with uncertainty and decisions. Theor Comput Sci 797:77–
101. https://doi.org/10.1016/j.tcs.2018.09.023

61. Zavatteri M, Viganò L (2019) Conditional uncertainty in con-
straint networks. In: Agents and artificial intelligence, pp 130–160.
Springer. https://doi.org/10.1007/978-3-030-05453-3_7

62. Zavatteri M, Viganò L (2019) Last man standing: static, decremen-
tal and dynamic resiliency via controller synthesis. J Comput Secur
27(3):343–373. https://doi.org/10.3233/JCS-181244

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-98648-7_7
https://doi.org/10.1007/978-3-319-98648-7_7
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/2.485845
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1016/j.datak.2004.01.001
https://doi.org/10.1016/j.datak.2004.01.001
https://doi.org/10.5281/zenodo.3758705
https://doi.org/10.4230/LIPIcs.TIME.2017.23
https://doi.org/10.4230/LIPIcs.TIME.2017.23
http://ceur-ws.org/Vol-2420/paperDA3.pdf
https://doi.org/10.1007/978-3-319-65000-5_14
https://doi.org/10.4230/LIPIcs.TIME.2019.2
https://doi.org/10.4230/LIPIcs.TIME.2019.2
https://doi.org/10.1016/j.ic.2020.104637
http://www.sciencedirect.com/science/article/pii/S0890540120301255
http://www.sciencedirect.com/science/article/pii/S0890540120301255
https://doi.org/10.1007/978-3-030-37453-2_7
https://doi.org/10.1007/978-3-030-37453-2_7
http://ceur-ws.org/Vol-2509/paper13.pdf
http://ceur-ws.org/Vol-2509/paper13.pdf
http://ceur-ws.org/Vol-2509/paper12.pdf
http://ceur-ws.org/Vol-2509/paper12.pdf
https://doi.org/10.5220/0006553400410052
https://doi.org/10.1016/j.tcs.2018.09.023
https://doi.org/10.1007/978-3-030-05453-3_7
https://doi.org/10.3233/JCS-181244

	Resource Controllability of Business Processes Under Conditional Uncertainty
	Abstract
	1 Introduction
	2 Running Example
	3 Conditional Constraint Networks with Decisions
	4 Encoding Processes into CCNDs
	5 Checking Weak, Strong, and Dynamic Controllability
	6 Zeta: a tool for CCNDs
	6.1 The New Version of Zeta and Its Experimental Evaluation
	6.2 Limitations

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgements
	References

