Skip to main content

Advertisement

Log in

Continuous Bayesian networks for the estimation of species richness

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

We propose a new methodology based on continuous Bayesian networks for assessing species richness. Specifically, we applied a restricted structure Bayesian network, known as tree augmented naive Bayes (TAN), regarding a set of environmental continuous predictors. First, we analysed the relationships between the response variable (called the terrestrial vertebrate species richness) and a set of environmental predictors. Second, the learnt model was used to estimate the species richness in Andalusia (Spain) and the results were depicted on a map. In addition to this, the TAN model was compared to three other methods commonly used for regression in terms of their root mean squared error. The experimental results showed that the TAN model not only was competitive from the point of view of accuracy but also managed to deal with the species richness–environment relationship, which is complex from the ecological point of view. The results highlight that landscape heterogeneity, topographical and social variables had a direct relationship with species richness while climatic variables showed more complicated relationships with the response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Data sources: Andalusian Environmental Network, Spanish Inventory of Terrestrial Species, Spanish National Geographic Institute and Multiterritorial Information System of Andalusia.

  2. Obtained from the Andalusian Land Use and Land Cover Map.

References

  1. Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A.: Bayesian networks in environmental modelling. Environ. Model. Softw. 26, 1376–1388 (2011)

    Article  Google Scholar 

  2. Aguilera, P.A., Fernández, A., Reche, F., Rumí, R.: Hybrid Bayesian network classifiers: application to species distribution models. Environ. Model. Softw. 25(12), 1630–1639 (2010)

    Article  Google Scholar 

  3. Atauri, J., de Lucio, J.: The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landsc. Ecol. 16, 147–159 (2001)

    Article  Google Scholar 

  4. Balmford, A., Moore, J.L., Brooks, T., Burges, N., Hansen, L.A., Williams, P., Rahbek, C.: Cnservation conflicts across Africa. Science 291, 2616–2619 (2001)

    Article  Google Scholar 

  5. Boone, R.B., Krohn, W.B.: Partioning sources of variation in vertebrate species richness. J. Biogeogr. 27, 457–470 (2000)

    Article  Google Scholar 

  6. Chown, S.L., van Rensburg, B.J., Gaston, K.J., Rodrigues, A.S.L., van Jaarsveld, A.S.: Energy, species richness and human population size: conservation implications at a national scale. Ecol. Appl. 15(5), 1233–1241 (2003)

    Article  Google Scholar 

  7. Currie, D.J.: Energy and large-scale patterns of animal- and plant- species richness. Am. Nat. 137, 27–49 (1991)

    Article  Google Scholar 

  8. Diniz-Filho, J.A.F., Bini, L.M., Vieira, C.M., Blamires, D., Terribile, C., Bastos, R.P., de Oliveira, G., de Souza Barreto, B.: Spatial patterns of terrestrial vertebrate species richness in the brazilian Cerrado. Zool. Stud. 42(2), 146–157 (2008)

    Google Scholar 

  9. Elvira-Consortium: Elvira: an environment for probabilistic graphical models. In: Proceedings of the First European Workshop on Probabilistic Graphical Models (PGM’02), pp. 222–230 (2002)

  10. Fernández, A., Morales, M., Salmerón, A.: Tree augmented naïve Bayes for regression using mixtures of truncated exponentials: applications to higher education management. IDA’07. Lecture Notes in Computer Science 4723, pp. 59–69 (2007)

  11. Fernández, A., Salmerón, A.: Extension of Bayesian network classifiers to regression problems. In: Geffner, H., Prada, R., Alexandre, I.M., David, N. (eds.) Advances in Artificial Intelligence-IBERAMIA 2008. Lecture Notes in Artificial Intelligence, vol. 5290, pp. 83–92. Springer (2008)

  12. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  13. Graham, J.H., Duda, J.J.: The humpbacked species richness-curves: a contingent rule for community ecology. Int. J. Ecol. 2011, 1–15 (2011). doi:10.1155/2011/868426

    Article  Google Scholar 

  14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009). doi:10.1145/1656274.1656278

    Article  Google Scholar 

  15. Hawkins, B.A., Porter, E.E., Diniz-Filho, J.A.F.: Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84(6), 1608–1623 (2003)

    Article  Google Scholar 

  16. Hollander, M., Wolfe, D.A.: Nonparametric Statistical Methods, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  17. Hothorn, T., Hornik, K., van de Wiel, M., Zeileis, A.: Implementing a class of permutation tests: the coin package. J. Stat. Softw. 28, 1–23 (2008)

    Article  Google Scholar 

  18. Hutchinson, G.E.: Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959)

    Article  Google Scholar 

  19. Jellinek, S., Rumpff, L., Driscoll, D.A., Parris, K.M., Wintle, B.A.: Modelling the benefits of habitat restoration in socio-ecological systems. Biol. Conserv. 169, 60–67 (2014)

    Article  Google Scholar 

  20. Kerr, J.T., Packer, L.: Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997). doi:10.1038/385252a0

    Article  Google Scholar 

  21. Lacave, C., Luque, M., Díez, F.J.: Explanation of Bayesian networks and influence diagrams in Elvira. IEEE Trans. Syst. Man Cybern.: Part B Cybern. 37, 952–965 (2007)

    Article  Google Scholar 

  22. Langseth, H., Nielsen, T., Pérez-Bernabé, I., Salmerón, A.: Learning mixtures of truncated basis functions from data. Int. J. Approx. Reason. 55, 940–956 (2014)

  23. Langseth, H., Nielsen, T.D., Rumí, R., Salmerón, A.: Mixtures of truncated basis functions. Int. J. Approx. Reason. 53(2), 212–227 (2012)

    Article  MATH  Google Scholar 

  24. Li, L., Wang, Z., Zerbe, S., Abdusalih, N., Tang, Z., Ma, M., Yin, L., Mohammat, A., Han, W., Fang, J.: Species richness patterns and water-energy dynamics in the drylands of northwest China. PLoS One 8, e66,450 (2013). doi:10.1371/journal.pone.0066450

    Article  Google Scholar 

  25. MacArthur, R.H., Wilson, E.O.: The Theory of Island Biogeography. Princeton University Press, Princeton (1967)

    Google Scholar 

  26. Maldonado, A., Ropero, R., Aguilera, P., Rumí, R., Salmerón, A.: Estimation of species richness using bayesian networks. In: Puerta, J.M., Gámez, J.A., Dorronsoro, B., Barrenechea, E.,  Troncoso, A., Baruque, B., Galar, M. (eds.) Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol. 9422, pp. 153–163. Springer (2015). doi:10.1007/978-3-319-24598-014

  27. Moral, S., Rumí, R., Salmerón, A.: Mixtures of truncated exponentials in hybrid Bayesian networks. In: Benferhat, S., Besnard, P. (eds.) Symbolic and quantitative approaches to reasoning with uncertainty. Lecture Notes in Artificial Intelligence, vol. 2143, pp. 156–167. Springer (2001)

  28. Moreno-Rueda, G., Pizarron, M.: The relative influence of climate, environmental heterogeneity, and human population on the distribution of vertebrate species richness in south-eastern spain. Acta Oecol. 32, 50–58 (2007)

    Article  Google Scholar 

  29. Mori, T., Saitoh, T.: Flood disturbance and predator-prey effects on regional gradients in species diversity. Ecology 95(1), 132–141 (2014)

    Article  Google Scholar 

  30. van Rensburg, B.J., Chown, S.L., Gaston, K.J.: Species richness, environmental correlates and spatial scale: a test usign south african birds. Am. Nat. 159, 566–577 (2002)

    Article  Google Scholar 

  31. Ruiz-Labourdette, D., Nogués-Bravo, D., Ollero, H.S., Schmitz, M.F., Pineda, F.D.: Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39, 162–176 (2012)

    Article  Google Scholar 

  32. Schmitz, M.F.: Cultural landscape and socioeconomic structure. Dirección General de la Red de Espacios Naturales Protegidos y Servicios Ambientales, pp. 211 (2005)

  33. Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of polynomials. Int. J. Approx. Reason. 52(5), 641–657 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B (Methodol) 36(2), 111–147 (1974)

    MATH  Google Scholar 

  35. Thornthwaite, C.W., Mather, J.R.: The Water Balance. Publications in Climatology, Vol. 8. Drexel Institute of Technology (Philadelphia) Laboratory of Climatology, Centerton, New Jersy, USA (1955)

  36. Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous cases. In: Proceedings of the Poster Papers of the European Conference on Machine Learning, pp. 128–137 (1997)

  37. Werbos, P.: Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974)

  38. Wright, D.H.: Species-energy theory: an extension of species-area theory. Oikos 141, 496–506 (1983)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness through Project TIN2013-46638-C3-1-P, by Junta de Andalucía through Projects P12-TIC-2541 and P11-TIC-7821 and by ERDF (FEDER) funds. A.D. Maldonado and R. F. Ropero are being supported by the Spanish Ministry of Education, Culture and Sport through an FPU Research Grant, FPU2013/00547 and AP2012-2117, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Maldonado.

Additional information

A preliminary version of this work [26] was presented at the 16th Conference of the Spanish Association for Artificial Intelligence (CAEPIA’15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado, A.D., Ropero, R.F., Aguilera, P.A. et al. Continuous Bayesian networks for the estimation of species richness. Prog Artif Intell 4, 49–57 (2015). https://doi.org/10.1007/s13748-015-0067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-015-0067-8

Keywords

Navigation