Skip to main content
Log in

Evolutionary algorithms for large-scale global optimisation: a snapshot, trends and challenges

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

In the last years, several real-world problems that require to optimise an increasing number of variables have appeared. This type of optimisation, called large-scale global optimisation, is hard due to the huge increase of the domain search due to the dimensionality. Large-scale global optimisation is a research area getting more attention in the last years, thus many algorithms, mainly evolutionary algorithms, have been specially designed to tackle it. In this paper, we give a brief introduction of several of them and their techniques, remarking techniques based on grouping of variables and memetic algorithms, because they are two promising approaches. Also, we have reviewed the winners of the different competitions in the area, to give a snapshot of the algorithms that have obtained the best results in this area. Finally, several interesting trends in the research area have been pointed out, and some future trends and challenges have been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ali, A., Hassanien, A., Snášel, V.: The nelder-mead simplex method with variables partitioning for solving large scale optimization problems. In: Abraham, A., Krömer, P., Snášel, V. (eds.) Innovations in Bio-inspired Computing and Applications. Advances in Intelligent Systems and Computing, vol. 237, pp. 271–284. Springer International Publishing (2014)

  2. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol (1997)

    MATH  Google Scholar 

  3. van den Bergh, F., Engelbrecht, A.: A cooperative approach to particle swarm optimization. IEEE Trans. Evolut. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  4. Brest, J., Zamuda, A., Fister, I., Maučec, M.: Large scale global optimization using self-adaptive differential evolution algorithm. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

  5. Cao, Y., Sun, D.: A parallel computing framework for large-scale air traffic flow optimization. IEEE Trans. Intell. Transp. Syst. 13(4), 1855–1864 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 1(11), 1–18 (2003)

    Article  Google Scholar 

  7. Korosec, P., Tashkova, K., Silc, J.: The differential ant-stigmergy algorithm for large-scale global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

  8. LaTorre, A., Muelas, S., Peña, J.M.: A comprehensive comparison of large scale global optimizers. Inf. Sci. 316, 517–549 (2015)

    Article  Google Scholar 

  9. LaTorre, A., Muelas, S., Pena, J.M.: Large scale global optimization: Experimental results with mos-based hybrid algorithms. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 2742–2749 (2013)

  10. Li, X., Tang, K., Omidvar, M., Yang, Z., Qin, K., Tang, K.: Benchmark functions for the CEC’2013 special session and competition on large scale global optimization. Tech. rep., Evolutionary Computation and Machine Learning Group, RMIT University, Australia (2013)

  11. Li, X., Tang, K., Suganthan, P., Yang, Z.: Editorial for the special issue of Information Sciences Journal (ISJ) on nature-inspired algorithms for large scale global optimization. Inf. Sci. 316, 437–439 (2015)

    Article  Google Scholar 

  12. Liao, T., Molina, D., Stützle, T.: Performance evaluation of automatically tuned continuous optimizers on different benchmark sets. Appl. Soft Comput. 27, 490–503 (2015)

    Article  Google Scholar 

  13. Liu, J., Tang, K.: Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) Intelligent Data Engineering and Automated Learning IDEAL 2013. Lecture Notes in Computer Science, vol. 8206, pp. 350–357. Springer Berlin Heidelberg (2013)

  14. Lozano, M., Molina, D., Herrera, F.: Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft Comput. 15(11), 2085–2087 (2011)

    Article  Google Scholar 

  15. Molina, D., Herrera, F.: Iterative hybridization of de with local search for the cec’2015 special session on large scale global optimization. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1974–1978 (2015)

  16. Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

  17. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Toward Memetic Algorithms. Tech. rep., Caltech Concurrent Computation Program. California Institute of Technology, Pasaden (1989)

  18. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)

    Article  Google Scholar 

  19. Omidvar, M., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)

    Article  Google Scholar 

  20. Omidvar, M., Mei, Y., Li, X.: Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1305–1312 (2014)

  21. Omidvar, M.N., Li, X., Tang, K.: Designing benchmark problems for large-scale continuous optimization. Inf. Sci. 316, 419–436 (2015)

    Article  Google Scholar 

  22. Ren, Y., Wu, Y.: An efficient algorithm for high-dimensional function optimization. Soft Comput. 17(6), 995–1004 (2013)

    Article  MathSciNet  Google Scholar 

  23. Shi, Y., Zhang, J., O’Donoghue, B., Letaief, K.: Large-scale convex optimization for dense wireless cooperative networks. IEEE Trans. Signal Process. 63(18), 4729–4743 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sun, L., Yoshida, S., Cheng, X., Liang, Y.: A cooperative particle swarm optimizer with statistical variable interdependence learning. Inf. Sci. 186(1), 20–39 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for the CEC’2010 special session and competition on large-scale global optimization. Tech. rep., Nature Inspired Computation and Applications Laboratory (2009)

  26. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 3052–3059 (2008)

  27. Wang, Y., Li, B.: Two-stage based ensemble optimization for large-scale global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

  28. Wang, Y., Member, S., Li, B.: A restart univariate estimation of distribution algorithm: sampling under mixed gaussian and lévy probability distribution. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2008), Hongkong, pp. 3218–3925 (2008)

  29. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  30. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 1663–1670 (2008)

  32. Yang, Z., Zhang, J., Tang, K., Yao, X., Sanderson, A.: An adaptive coevolutionary differential evolution algorithm for large-scale optimization. In: IEEE Congress on Evolutionary Computation, 2009. CEC ’09, pp. 102–109 (2009)

  33. Zhao, S., Liang, J., Suganthan, P., Tasgetiren, M.: Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 3845–3852 (2008)

  34. Zhao, S.Z., Suganthan, P., Das, S.: Dynamic multi-swarm particle swarm optimizer with sub-regional harmony search. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2010)

  35. Zhao, S.Z., Suganthan, P., Das, S.: Self-adaptive differential evolution with multi-trajectory search for large-scale optimization. Soft Comput. 15(11), 2175–2185 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science under Grants TIN2012-37930-C02-01, TIN2014-57251-P and Research Regional Projects P10-TIC-6858, P12-TIC-2958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Molina Cabrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, D.M. Evolutionary algorithms for large-scale global optimisation: a snapshot, trends and challenges. Prog Artif Intell 5, 85–89 (2016). https://doi.org/10.1007/s13748-016-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-016-0082-4

Keywords

Navigation