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Abstract In this work, we introduce a new class of functions defined on the
interval-valued setting. These functions extend classical OWA operators but
allow for different weighting vectors to handle the lower bounds and the upper
bounds of the considered intervals. As a consequence, the resulting functions
need not be an interval-valued aggregation function, so we study, in the case of
the lexicographical order, when these operators give an interval as output and
are monotone. We also discuss an illustrative example on a decision making
problem in order to show the usefulness of our developments.
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1 Introduction

Aggregation functions [2, 3, 9, 12] are crucial tools for most artificial sci-
ence and computer science applications whenever information which comes
from different (homogeneous or heterogeneous) sources must be fused. These
functions are just required to satisfy appropriate boundary and monotonicity
conditions. These are quite natural conditions when we are dealing with real
numbers, e.g., with data in the unit hypercube.

However, things are a bit more complicate when we have to deal with data
which are not real numbers [13], specially if no natural linear order exists for
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such data [8]. This is the case, for instance, if we must work with intervals,
as it happens when it exists uncertainty or lack of knowledge around the
information to be handled [1, 4, 16]. If, for the sake of simplicity, we restrict
ourselves to closed subintervals of the unit interval, it is straight to define a
partial order: it is enough to consider the order which is inherited from the
one of real numbers. However, this order is not linear, that is, there exist pairs
of intervals which are not comparable in terms of this relation.

The problem worsens if we consider the extension of some specific types of
aggregation operators to interval-valued setting, as it is the case, for instance,
of ordered weighted aggregation (OWA) operators [5] or, more generally, of
Choquet integrals [10, 17]. These types of operators require, as a first step to
compute them, that the inputs are ordered. So, if we want to apply it to any
n-tuple of intervals, we must find a linear order which allows us to compare
any pair of intervals.

This problem was considered in [6] (see also [14]), where the notion of ad-
missible order was introduced. An admissible order for intervals is a linear or-
der which extends the partial order induced by the classical order relationship
in R. These admissible orders can be defined in terms of real-valued aggrega-
tion functions which fulfill appropriate conditions, and they include most of
the linear orders between intervals that have been considered in the literature,
as the lexicographical ones or the order defined by Xu and Yager in [18] in
terms of score and accuracy functions.

Once admissible orders have been defined, it is straight to provide a defini-
tion of aggregation function where the monotonicity condition is defined with
respect to the considered admissible order. In this sense, in [7] the problem of
defining Choquet integrals and OWA operators for interval-valued data was
considered.

In this work, we go one step further from the developments in [7]. Our ob-
jective is to define the so-called Unbalanced Interval-Valued OWA (UIVOWA)
operators in terms of two different weighting vectors, one for the lower bounds
and another one for the upper bounds.

The UIVOWA operator, however, needs not be an interval-valued aggre-
gation function, since, for instance, the output may not be an interval. For
this reason, we study which conditions allow us to ensure that the result is
an interval. We do not do this for the general case of admissible orders, but
just for the specific case of the lexicographical orders, since the whole analysis
would be too long for this paper.

The usefulness of our developments is clear for those applications where
OWA operators have shown themselves very fruitful, as it is the case of decision-
making problems [7, 11, 19]. In this sense, we also discuss in this work an illus-
trative example on a simplified problem to see how our theory can be applied
in this framework.

The structure of this work is as follows. In the next section we recall sev-
eral preliminary definitions and results. In Section 3 we introduce the main
concept of Unbalanced Interval-Valued OWA operator and we discuss, in the
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case of lexicographical orders, when we recover an interval-valued aggregation.
In Section 4 we present an illustrative example in decision-making.

2 Preliminaries

In this section we recall several notions and definitions which are necessary
for our subsequent developments. Furthermore, we also fix some notations for
the rest of the paper.

We denote by L([0, 1]) the set of closed subintervals of the unit interval,
i.e.,

L([0, 1]) = {x = [X,X]) | 0 ≤ X ≤ X ≤ 1} .

In particular, we denote 0L = [0, 0] and 1L = [1, 1].
The usual order in L([0, 1] is that inherited from R2, namely:

[X,X] �2 [Y , q2Y ] if and only if X ≤ Y and X ≤ Y . (1)

However, for many applications it is necessary to have the possibility of
comparing any two data. This consideration leads to the notion of admissible
order[7].

Definition 1 Let ≤L be an order in L([0, 1]). The relation ≤ is an admissible
order if

1. it is linear (i.e., for every x,y ∈ L([0, 1]) it holds that x ≤L y or y ≤L x),
and

2. for all x,y ∈ L([0, 1]), such that x �2 y it holds that x ≤L y.

Remark 1 Note that for every admissible order ≤L and for every x ∈ L([0, 1])
it holds that 0L ≤L x ≤L 1L. That is, 0L and 1L are the top and the bottom
elements, respectively, in (L([0, 1]),≤L), whatever the admissible order ≤L is.

That is, an admissible order is a linear order which extends the usual partial
order between intervals.

Example 1 The three more relevant examples of admissible orders that can
be found in the literature are the following.

1. Lexicographical order with respect to the first variable. x ≤lex1 y if X < Y
or X = Y and X ≤ Y .

2. Lexicographical order with respect to the second variable. x ≤lex2 y if X <
Y or X = Y and X ≤ Y .

3. Xu and Yager’s order [18]:

[X,X] ≤XY [Y , Y ] if

{
X +X < Y + Y or

X +X = Y + Y and X −X ≤ Y − Y .
(2)
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Remark 2 Xu and Yager’s order was initially introduced in the Atanassov
intuitionistic setting. However, as it is well known, it exists an straight math-
ematical equivalence between Atanassov intuitionistic fuzzy sets and interval-
valued fuzzy sets. Nevertheless, the order considered here is not exactly the
same which was originally defined by its authors, since the second inequality
is reversed here.

Another key notion which is at the basis of our present work is that of ag-
gregation function. The definition of aggregation in the unit interval is widely
known. Nevertheless, we recall the definition here.

Definition 2 An aggregation function is a function M : [0, 1]n → [0, 1] such
that

1. M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1;
2. M is increasing in each variable.

A particular instance of aggregation functions frequently used in many
application are OWA operators given by Yager [3, 20].

Definition 3 Let w be a weighting vector, i.e, w = (w1, . . . , wn) ∈ [0, 1]n with
w1 + . . .+wn = 1. The Ordered Weighted Aggregation operator associated with
w, OWAw, is a mapping OWAw : [0, 1]n −→ [0, 1] defined by

OWAw(x1, . . . , xn) =

n∑
i=1

wix(i)

where x(i), i = 1, . . . , n, denotes the i − th greatest component of the input
(x1, . . . , xn).

Aggregation functions can be used to define admissible orders in L([0, 1])
as follows.

Proposition 1 Let M1,M2 be two aggregation functions M1,M2 : [0, 1]2 →
[0, 1] such that for all (a, b), (c, d) ∈ [0, 1]2 with a ≤ b and c ≤ d the equalities
M1(a, b) = M1(c, d) M2(a, b) = M2(c, d) hold simultaneously if and only if
a = c y b = d.

Then the relation ≤M1,M2
on L([0, 1]) given by [a, b] ≤M [c, d] if and only

if

i) M1(a, b) < M1(c, d) or
ii) M1(a, b) = M1(c, d) and M2(a, b) ≤M2(c, d)

is an admissible order on L([0, 1]).

Example 2 1. The lexicographical order with respect to the first variable is
recovered taking M1(x, y) = x and M2(x, y) = y.

2. The lexicographical order with respect to the second variable is recovered
taking M1(x, y) = y and M2(x, y) = x.

3. Xu and Yager’s order is recovered taking M1(x, y) = x+y
2 and M2(x, y) = y.
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Among admissible orders one very important class is generated by means
of the Kα operators.

Definition 4 Let α ∈ [0, 1]. The operator Kα : L([0, 1])→ [0, 1] is defined by:

Kα([X,X] = (1− α)X + αX .

Note that K0 corresponds to the projection with respect to the first com-
ponent and K1 corresponds to the projection with respect to the second com-
ponent. In general, we have the following result:

Proposition 2 Let α1, α2 ∈ [0, 1], with α1 6= α2. then, the order ≤α1,α2 de-
fined as in Proposition 1 with M1(x, y) = (1 − α1)x + α1y and M2(x, y) =
(1− α2)x+ α12 is an admissible order.

Remark 3 The lexicographical order with respect to the first component is
the same as ≤0,1 whereas the lexicographical order with respect to the second
component corresponds to ≤1,0 and Xu and Yager’s order corresponds to ≤ 1

2 ,1
.

The definition of aggregation function can be extended to L([0, 1] as follows.

Definition 5 Let ≤L be an order in L([0, 1]). An aggregation function M
on L([0, 1]) with respect to the order ≤L is a mapping M : (L([0, 1]))n →≤
L([0, 1]) satisfying:

1. M(0L, . . . , 0L) = 0L, M(1L, . . . , 1L) = 1L,
2. M(x1, . . . ,xn) ≤L M(y1, . . . ,yn) whenever xi ≤L yi for every i ∈ {1, . . . , n}.

Finally, we also recall here the definition of interval-valued fuzzy set [15, 8].

Definition 6 An interval-valued fuzzy set A over the universe X 6= ∅ is de-
fined as:

A = {(x, µA(x)) | x ∈ X}.

where µA : X → L([0, 1] is the membership function of the set A.

We denote by IV FS(X) the set of all interval-valued fuzzy sets on the
universe X. Every order ≤L in L([0, 1]) induces a (partial) order in IV FS(X)
, (that we denote by ≤L, too), given by:

A ≤L B ⇐⇒ µA(x) ≤L µB(x) for every x ∈ X .

3 Unbalanced interval-valued OWA operators

In the literature, interval-valued OWA operators are usually defined using one
single numerical value for each weight. However, in this work we go one step
further and propose the possibility of using two different values, one for the
upper bounds and another for the lower bounds. For this reason, we propose
the following definition.
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Definition 7 Let ≤L be an admissible on L([0, 1]). Consider two weighing
vectors w̃ = (w1, . . . , wn), ṽ = (v1, . . . , vn) ∈ [0, 1]n such that w1 + . . .+wn = 1
and v1 + . . . + vn = 1, with ṽ 6= w̃. An Unbalanced Interval-Valued OWA
operator (UIVOWA) is a mapping

UIV OWA[w̃,ṽ,≤L] : (L([0, 1]))n −→ [0, 1]2

defined by

UIV OWA[w̃,ṽ,≤]([X1, X1], . . . , [Xn, Xn]) =

(
n∑
i=1

wiX(i),

n∑
i=1

viX(i))

)
(3)

where [X(n), X(n)] ≤L . . . ≤L [X(1), X(1)].

Remark 4 OWA operators in the unit hypercube are particular instances of
aggregation functions. Furthermore, ote that if we let ṽ = w̃ then we recover
the usual definition of interval-valued OWA operator. However, Definition 7
does not in principle correspond to an interval-valued aggregation function,
since, to start with, it does not provide an interval as its result. To see it,
consider, for instance, the vectors of weights

w̃ = (1, 0) and ṽ = (0, 1)

Then, if we consider the lexicographical order with respect to the first compo-
nent and we take the intervals [0, 0] and [0.8, 1]. Then we have that [0, 0] ≤lex1
[0.8, 1] and we arrive at

UIV OWA([0.8, 1], [0, 0]) = (0.8, 0)

which is not an interval.

We intend now to study the conditions which allow us to state that UIV-
OWA operators are in fact interval-valued aggregation functions. First of all,
we have the following trivial result, whose proof is straight.

Proposition 3 For every admissible order ≤L and for every pair of weighting
vectors w̃, ṽ ∈ [0, 1]n it holds that

1. UIV OWA[w̃,ṽ,≤L]([1, 1], . . . , [1, 1]) = (1, 1);
2. UIV OWA[w̃,ṽ,≤L]([0, 0], . . . , [0, 0]) = (0, 0).

So in order to recover an interval-valued aggregation function we only need
to consider two points:

– Which conditions ensure that the function UIVOWA is monotone with
respect to the considered order ≤L, and

– which conditions ensure that
∑n
i=1 wiX(i) ≤

∑n
i=1 viX(i); i.e., when we

recover an interval.

None of these questions is trivial. Regarding the second one, for instance,
we have the following result.
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Proposition 4 Let be ≤L be an admissible order. Let ṽ, w̃ ∈ [0, 1]n be two
weighing vectors such that it exists j0 ∈ {1, . . . , n} with wi = vi for every
i < j0 and wj0 > vj0 . Then, UIV OWA[w̃,ṽ,≤L] does not provide an interval
as its result.

Proof. First of all, it is clear that

j0−1∑
k=1

wk =

j0−1∑
k=1

vk

and consequently
n∑

k=j0

wk =

n∑
k=j0

vk .

We are going to prove that whatever the weighting vectors are, we can find
n intervals such that the image of the corresponding UIVOWA operator is not
an interval.

We have that

UIV OWA[w̃,ṽ,≤L]([X1, X1], . . . , [Xn, Xn]) =

(
n∑
i=1

wiX(i),
n∑
i=1

viX(i))

)

The result is an interval if and only if

n∑
i=1

wiX(i) ≤
n∑
i=1

viX(i) (4)

Let’s consider the following intervals:

i.) xi = [1, 1] for 0 ≤ i ≤ j0.
ii.) xi = [0, 0] for j0 + 1 ≤ i ≤ n.

Observe that the n-tuple (x1, . . . ,xn) is already ordered in decreasing order.
Taking into account the intervals that we have chosen, Eq.(4) is the same as

j0∑
i=1

wi ≤
j0∑
i=i

vi .

This is equivalent to

j0−1∑
i=1

wi + wj0 ≤
j0−1∑
i=i

vi + vj0 .

But the first j0−1 weights are the same, so actually we arrive at wj0 ≤ vj0 ,
which contradicts the definition of j0.

In fact, the following result is also straight.
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Proposition 5 Let ≤L be an admissible order in L([0, 1]) and let w̃, ṽ ∈ [0, 1]n

be weighting vectors such that wi ≤ vi for every i ∈ {1, . . . , n}. Then, for every
([X1, X1], . . . , [Xn, Xn]) ∈ (L([0, 1]))n it holds that

n∑
i=1

wiX(i) ≤
n∑
i=1

viX(i) .

Proof. It is a straight consequence of the monotonicity of OWA operators.
Note that, since usual OWA operators are aggregation functions, it follows

that
∑n
i=1 vi, X(i) ≤ 1, so, once the output is an interval, it is in fact an

element of L([0, 1]).
Besides, getting conditions for every possible admissible order is a very

complicate work. For this reason, we only focus in this work in the case of
lexicographical orders. As a first result, we can state the following.

Example 3 Let ≤lex1 be the lexicographical order with respect to the first
component. Consider the weighting vectors w = (0, 1) and v = (0.5, 0.5). Then

UIV OWA[w̃,ṽ,≤lex1]([0.9, 0.9], [0, 0]) = (0.9 · 0 + 0 · 1, 0.9 · 0.5 + 0 · 0.5) =
(0, 0.45).

Similarly, UIV OWA[w̃,ṽ,≤lex1]([0.8, 1], [0, 0]) = (0.8·0+0·1, 1·0.5+0·0.5) =
(0, 0.5). We have that [0.8, 1] ≤lex1 [0.9, 0.9] but [0, 0.5) ≥lex1 (0, 0.45) (seen
as intervals), so the operator UIVOWA is not monotonic in this case.

3.1 The problem of recovering an interval

Let’s discuss now when we can ensure that we recover an interval from an
UIVOWA operator. Our interest lies in studying when the inequality

n∑
i=1

wiX(i) ≤
n∑
i=1

viX(i) (5)

holds. Note that if the considered intervals are degenerate, i.e., if Xi = Xi for
every i ∈ {1, . . . , n}, then the inequality is equivalent to:

n∑
i=1

(wi − vi)X(i) ≤ 0 . (6)

In this situation, the considered interval-valued fuzzy sets actually correspond
to fuzzy sets. In this setting, in general, we only recover a degenerate interval
for every possible choice of the input degenerate intervals if the weighing vec-
tors w̃ and ṽ are the same. But in this case, we fall into the usual (real-valued)
definition of OWA operator.

Besides, note that since the class of admissible order is so large, it is far out
from the scope of the present work to provide a full characterization result.
For this reason, we are going to focus in the case of lexicographical orders and
we leave for future works a full analysis.

In order to get a characterization result, we start with the following lemma.
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Lemma 1 Let x,y ∈ [0, 1]n be two weighting vectors. Then the following
statements are equivalent.

1.

i∑
j=1

xj ≤
i∑

j=1

yj for all i = 1, . . . , n.

2.

n∑
i=1

xiti ≤
n∑
i=1

yiti for all ti ∈ [0, 1] such that t1 ≥ t2 ≥ . . . ≥ tn ≥ 0.

Proof. Let’s start proving that 1. implies 2. From our hypothesis, since x1 ≤
y1, it follows that for every a1 ≥ 0, the inequality

a1x1 ≤ a1y1

holds. In the same way, x1 + x2 ≤ y1 + y2, so for a2 ≥ 0 it holds that

a2(x1 + x2) ≤ a2(y1 + y2)

In this way, for each i ∈ {1, . . . , n} we get an inequality

ai(x1 + · · ·+ xi) ≤ ai(y1 + · · ·+ yi)

for any ai ≥ 0. If we add all these inequalities up, we arrive at

(a1 + . . .+ an)x1 + (a2 + . . .+ an)x2 + . . .+ anxn

≤ (a1 + . . .+ an)y1 + (a2 + . . .+ an)y2 + . . .+ anyn

for all a1, . . . , an ≥ 0. If we define now t1 = (a1 + . . . + an), t2 = (a2 + . . . +
an), . . . , tn = an, we see that (2) holds.

The fact that (2) implies (1) is trivial, since it is enough to take t1 = t2 =
. . . = ti = 1 and ti+1 = ti+2 = . . . = tn = 0.

Using Lemma 1, we can provide the following characterization result for
UIV OWA operators associated with the lexicographical order with respect to
the first variable.

Theorem 1 Let w̃, ṽ ∈ (0, 1]n be two weighting vectors. Then the following
statements are equivalent

1. The result of UIV OWA operators associated with w̃, ṽ and the order ≤lex1
is an interval.

2.

n∑
i=1

witi ≤
n∑
i=1

viti for all ti ∈ [0, 1] such that t1 ≥ t2 ≥ . . . ≥ tn ≥ 0.

Proof. Let us show that 1. implies 2. Suppose that the result of UIV OWA
is an interval. Then, in particular, the inequality (6)

n∑
i=1

(wi − vi)X(i) ≤ 0 .
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must hold for every choice of Xi ∈ [0, 1] (i ∈ {1, . . . , n}). Since we are dealing
with an admissible order, we have that X(1) ≥ ... ≥ X(n), so we only need to
take ti = X(i) to get the result.

Let us assume now that 2. holds. Let’s take n intervals [Xi, Xi] with i ∈
{1, . . . , n}. From the definition of UIVOWA operator, we have that

UIV OWA[w,v,≤lex1]([X1, X1], . . . , [Xn, Xn]) =

(
n∑
i=1

wiX(i),

n∑
i=1

viX(i)

)
where the chain of inequalities

X(1) ≥ X(2) ≥ . . . ≥ X(n)

must hold, since we are considering the lexicographical order with respect to
the first variable, ≤lex1.

Now, if we take ti = X(i), from (2) we have that

n∑
i=1

wiX(i) ≤
n∑
i=1

viX(i)

But, as we are dealing with intervals, X(i) ≤ X(i), so the previous inequality
implies that

n∑
i=1

wiX(i) ≤
n∑
i=1

viX(i)

and the result holds.

Corollary 1 Let w̃, ṽ ∈ (0, 1]n be two weighting vectors. Then the following
statements are equivalent

1. The result of UIV OWA operators associated with w̃, ṽ and the lexicograph-
ical order with respect to the first component is an interval.

2. For every i ∈ {1, . . . , n}, it holds that

i∑
j=1

wj ≤
i∑

j=1

vj .

Proof. Straight by Lemma 1 and Theorem 1.
We can make an analogous study for the case of the lexicographical order

with respect to the second variable.

Theorem 2 Let w̃, ṽ ∈ (0, 1]n be weighting vectors. Then the following state-
ments are equivalent

1. The result of UIV OWA operators associated with w̃, ṽ and the lexicograph-
ical order with respect to the second variable is an interval.

2.

n∑
i=1

witi ≥
n∑
i=1

viti for all ti ∈ [0, 1] such that tn ≥ tn−1 ≥ . . . ≥ t1 ≥ 0.
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Proof. Analogous to that of Theorem 1.

Corollary 2 Let w̃, ṽ ∈ (0, 1]n be two weighting vectors. Then the following
statements are equivalent

1. The result of UIV OWA operators associated with w̃, ṽ and the lexicograph-
ical order with respect to the second variable is an interval.

2.

i∑
j=1

wj ≤
i∑

j=1

vj for all i = 1, . . . , n

Proof. Straight from Theorem 2.
Note that we have the following result.

Proposition 6 Let w̃, ṽ ∈ [0, 1]n be weighting vectors. Then, the following
statements are equivalent.

1.
∑i
j=1 wj ≤

∑i
j=1 vj for i = 1, ..., n− 1 (the condition for i = n is trivial).

2. 1 +

i∑
j=1

wj ≤ 1 +

i∑
j=1

vj for i = 1, ..., n− 1.

3. 1−
∑i
j=1 vj ≤ 1−

∑i
j=1 wj for i = 1, ..., n− 1.

4.
∑n
j=i+1 vj ≤

∑n
j=i+1 wj for i = 1, ..., n− 1.

Proof. It follows from a straight calculation.
So it follows that the conditions for both lexicographical orders are in fact

the same.

4 An illustrative example

In order to show the usefulness of our developments, we consider now an
illustrative example in which we make use of our theoretical developments
about UIVOWA operators.

We are going to consider a decision making problem. In such a problem we
are given a set of n alternatives, {A1, . . . , An} and we must find which is the
best one according to a set of criteria.

In this particular case, experts from three different consultants have been
asked to provide his/her preferences on whether it is better to invest some
money in one or another of four companies, {C1, C2, C3, C4}. In order to take
into account uncertainty about data, each consultant has provided a final grade
for the quality of the investment in each of the alternatives.

For instance, the first consultant has provided the following data:

A1 = {(Company 1, [0.3, 0.8]), (Company 2, [0.56, 0.72]),

(Company 3, [0.6, 0.8]), (Company 4, [0.16, 0.0, 74])}

where each of the interval has been obtained providing as lower bound the
worst of the valuations provided by the experts in the company and as upper
bound the best of the valuations provided by the experts in the company.
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The results obtained from the other two consultants are the following.

A2 = {(Company 1, [0.46, 0.58]), (Company 2, [0.4, 0.4]),

(Company 3, [0.2, 0.5]), (Company 4, [0.75, 0.8])}

A3 = {(Company 1, [0.12, 0.66]), (Company 2, [0.26, 0.42]),

(Company 3, [0.7, 0.7]), (Company 4, [0.44, 0.74])}

The first step in order to determine which is the best possible option for invest-
ment is to fuse the information coming from the three different consultants.
Once this step has been accomplished, we will use our UIVOWA operators
with respect to the lexicographical order with respect to the first component
and with the weight vectors w̃ = (0.2, 0.25, 0.55) and ṽ = (0.25, 0.35, 0.4) in
order to select the best alternative. Note that the choice of the lexicographical
order with respect to the lower bound corresponds to considering better that
solution which has obtained the best worst note, so it can be understood as a
sort of pessimistic choice. The choice of the weights, in a real-world applica-
tion, should be done via an appropriate experimental procedure, depending on
the considered problem. Note also that, with this choice, we are in the setting
of Corollary 1.

The results are

UIV OWA[w̃,ṽ,≤lex1]([0.3, 0.8], [0.46, 0.58], [0.12, 0.66]) = [0.233, 0.689]

UIV OWA[w̃,ṽ,≤lex1]([0.56, 0.72], [0.4, 0.4], [0.26, 0.42]) = [0.355, 0.488]

UIV OWA[w̃,ṽ,≤lex1]([0.6, 0.8], [0.2, 0.5], [0.7, 0.7]) = [0.4, 0.634]

UIV OWA[w̃,ṽ,≤lex1]([0.16, 0.74], [0.75, 0.8], [0.44, 0.74]) = [0.348, 0.755] .

That is, putting together the information provided by each of the consul-
tants we arrive at

Ã = {(Company 1, [0.233, 0.689]), (Company 2, [0.355, 0.488]),
(Company 3, [0.4, 0.634]), (Company 4, [0.348, 0.755])}.

Now we just need to get the Company which has got the best score. In
order to so, we must pick a linear order between intervals, since we should be
able to compare to each other any two of the alternatives. In particular, and
taking into account the way in which we have built the UIVOWA operators, it
seems natural that we choose again the lexicographical order with respect to
the first component. According to this admissible order, we have the following
ranking:

Company 3 better than Company 2 better than Company 4 better than Company 1.

That is, the best alternative in this illustrative example would be the third
one.
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5 Conclusion

In this paper we have introduced the notion of unbalanced interval-valued
OWA operator. This operator uses two different weighting vectors, one for the
lower bounds and one for the upper bounds of the considered intervals. We
have analyzed when this operator, defined in terms of admissible orders, are
in fact interval-valued aggregation functions in the case of the lexicographical
orders.

In future works we intend to consider other admissible orders, so that our
theoretical developments may be fully applied in real world applications.
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