Skip to main content

Advertisement

Log in

An improved structure of genetic algorithms for global optimisation

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Genetic Algorithm (GA) is one of the most general global optimisation solution methods used in countless number of works. However, like other search techniques, GA has weak theoretical guarantee of global optimal solution and can only offer a probabilistic guarantee. Having a GA capable of searching for the global optimal solution with very high success probability is always desirable. In this paper, an innovative structure of GA, in which adaptive restarting and chromosome elite transferring strategies are harmoniously integrated together, is proposed to improve the success rate of achieving global optimal solution of the algorithm. The robustness of the proposed GA structure is demonstrated through a number of case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Wang, Y., et al.: Two-stage based ensemble optimization framework for large-scale global optimization. Eur. J. Oper. Res. 228(2), 308–320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ng, C.K., Li, D.: Test problem generator for unconstrained global optimization. Comput. Oper. Res. 51, 338–349 (2014)

    Article  MathSciNet  Google Scholar 

  3. Coelho, L.D.S., Ayala, H.V.H., Mariani, V.C.: A self-adaptive chaotic differential evolution algorithm using gamma distribution for unconstrained global optimization. Appl. Math. Comput. 234, 452–459 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Hanagandi, V., Nikolaou, M.: A hybrid approach to global optimization using a clustering algorithm in a genetic search framework. Comput. Chem. Eng. 22(12), 1913–1925 (1998)

    Article  Google Scholar 

  5. Liberti, L., Kucherenko, S.: Comparison of deterministic and stochastic approaches to global optimization. Int. Trans. Oper. Res. 12(3), 263–285 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13(11), 2467–2474 (2003)

    Article  Google Scholar 

  7. Boender, C.G.E., Romeijn, H.E.: Stochastic methods. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization. Kluwer Academic Publishers, Boston (1995)

    Google Scholar 

  8. Shahlaei, M., et al.: Application of an expert system based on Genetic Algorithm-adaptive neuro-fuzzy inference system (GA-ANFIS) in QSAR of cathepsin K inhibitors. Expert Syst. Appl. 39(6), 6182–6191 (2012)

    Article  Google Scholar 

  9. Fahimnia, B., Luong, L., Marian, R.: Optimization/simulation modeling of the integrated production-distribution plan: an innovative survey. WSEAS Trans. Bus. Econ. 3(5), 52–65 (2008)

    Google Scholar 

  10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Inc, Boston (1989)

    MATH  Google Scholar 

  12. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. John Wiley & Sons, New York (1997)

    Google Scholar 

  13. He, Y., Hui, C.W.: A binary coding genetic algorithm for multi-purpose process scheduling: a case study. Chem. Eng. Sci. 65(16), 4816–4828 (2010)

    Article  Google Scholar 

  14. Deep, K., et al.: A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Qu, H., Xing, K., Alexander, T.: An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots. Neurocomputing 120, 509–517 (2013)

    Article  Google Scholar 

  16. Chen, C., et al.: Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm. Comput. Geosci. 32(2), 230–239 (2006)

    Article  Google Scholar 

  17. Dao, S.D., Marian, R.: Modeling and optimisation of precedence-constrained production sequencing and scheduling for multiple production lines using genetic algorithm. Comput. Technol. Appl. 2(6), 487–499 (2011)

    Google Scholar 

  18. Dao, S.D., Abhary, K., Marian, R.: Optimisation of partner selection and collaborative transportation scheduling in Virtual Enterprises using GA. Expert Syst. Appl. 41(15), 6701–6717 (2014)

    Article  Google Scholar 

  19. Dao, S.D., Marian, R.: Optimisation of precedence-constrained production sequencing and scheduling using genetic algorithms. In: International MultiConference of Engineers and Computer Scientists Hong Kong (2011)

  20. Esen, İ., Koç, M.A.: Optimization of a passive vibration absorber for a barrel using the genetic algorithm. Expert Syst. Appl. 42(2), 894–905 (2015)

    Article  Google Scholar 

  21. Balakrishnan, J., et al.: A hybrid genetic algorithm for the dynamic plant layout problem. Int. J. Prod. Econ. 86(2), 107–120 (2003)

    Article  Google Scholar 

  22. Maity, S., Roy, A., Maiti, M.: A modified genetic algorithm for solving uncertain constrained solid travelling salesman problems. Comput. Ind. Eng. 83, 273–296 (2015)

    Article  Google Scholar 

  23. Suresh, S., Huang, H., Kim, H.J.: Hybrid real-coded genetic algorithm for data partitioning in multi-round load distribution and scheduling in heterogeneous systems. Appl. Soft Comput. 24, 500–510 (2014)

    Article  Google Scholar 

  24. Tang, P.H., Tseng, M.H.: Adaptive directed mutation for real-coded genetic algorithms. Appl. Soft Comput. 13(1), 600–614 (2013)

    Article  Google Scholar 

  25. Deep, K., Thakur, M.: A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193(1), 211–230 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin Heidelberg (1996)

    Book  MATH  Google Scholar 

  27. Faghihi, V., Reinschmidt, K.F., Kang, J.H.: Construction scheduling using genetic algorithm based on building information model. Expert Syst. Appl. 41(16), 7565–7578 (2014)

    Article  Google Scholar 

  28. Aiello, G., Scalia, L.G., Enea, M.: A non dominated ranking multi-objective genetic algorithm and electre method for unequal area facility layout problems. Expert Syst. Appl. 40(12), 4812–4819 (2013)

    Article  Google Scholar 

  29. Castelli, M., Vanneschi, L.: Genetic algorithm with variable neighborhood search for the optimal allocation of goods in shop shelves. Oper. Res. Lett. 42(5), 355–360 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zhao, J., Wang, L.: Center based genetic algorithm and its application to the stiffness equivalence of the aircraft wing. Expert Syst. Appl. 38(5), 6254–6261 (2011)

    Article  Google Scholar 

  31. Boudissa, E., Bounekhla, M.: Genetic algorithm with dynamic selection based on quadratic ranking applied to induction machine parameters estimation. Electr. Power Compon. Syst. 40(10), 1089–1104 (2012)

    Article  Google Scholar 

  32. Yun, Y., Chung, H., Moon, C.: Hybrid genetic algorithm approach for precedence-constrained sequencing problem. Comput. Ind. Eng. 65(1), 137–147 (2013)

    Article  Google Scholar 

  33. Wang, N.F., Zhang, X.M., Yang, Y.W.: A hybrid genetic algorithm for constrained multi-objective optimization under uncertainty and target matching problems. Appl. Soft Comput. 13(8), 3636–3645 (2013)

    Article  Google Scholar 

  34. Shokouhifar, M., Jalali, A.: An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing. Expert Syst. Appl. 42(3), 1189–1201 (2015)

  35. Akpınar, S., Bayhan, G.M., Baykasoglu, A.: Hybridizing ant colony optimization via genetic algorithm for mixed-model assembly line balancing problem with sequence dependent setup times between tasks. Appl. Soft Comput. 13(1), 574–589 (2013)

    Article  Google Scholar 

  36. Mahmoodabadi, M.J., et al.: A novel combination of particle swarm optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model. Appl. Soft Comput. 13(5), 2577–2591 (2013)

    Article  MathSciNet  Google Scholar 

  37. Shokouhifar, M., Jalali, A.: A new evolutionary based application specific routing protocol for clustered wireless sensor networks. Int. J. Electron. Commun. (AEÜ) 69, 432–441 (2015)

    Article  Google Scholar 

  38. Dao, S.D., Marian, R.: Genetic algorithms for integrated optimisation of precedence-constrained production sequencing and scheduling. In: Ao, S.-I., Gelman, L. (eds.) Electrical Engineering and Intelligent Systems, pp. 65–80. Springer, New York (2013)

    Chapter  Google Scholar 

  39. Dao, S.D., Marian, R.: Modeling and optimisation of precedence-constrained production sequencing and scheduling using multi-objective genetic algorithms. In: The World Congress on Engineering. London (2011)

  40. Yang, K., El-Haik, B.: Design for Six Sigma: A Roadmap for Product Development. McGraw-Hill, New York (2003)

    Google Scholar 

  41. Dao, S.D., Abhary, K., Marian, R.: Maximising performance of genetic algorithm solver in Matlab. Eng. Lett. 24(1), 75–83 (2016)

    Google Scholar 

  42. Hall, M.: A cumulative multi-niching genetic algorithm for multimodal function optimization. Int. J. Adv. Res. Artif. Intell. 1(9), 6–13 (2012)

    Google Scholar 

  43. Nasir, A.N.K., Tokhi, M.O.: Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation. Appl. Soft Comput. 27, 357–375 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The first author is grateful to Australian Government for sponsoring his Ph.D. study at the University of South Australia, Australia, in the form of the Endeavour Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Son Duy Dao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, S.D., Abhary, K. & Marian, R. An improved structure of genetic algorithms for global optimisation. Prog Artif Intell 5, 155–163 (2016). https://doi.org/10.1007/s13748-016-0091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-016-0091-3

Keywords

Navigation