Skip to main content
Log in

On the use of different base classifiers in multiclass problems

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Classification problems with more than two classes can be handled in different ways. The most used approach is the one which transforms the original multiclass problem into a series of binary subproblems which are solved individually. In this approach, should the same base classifier be used on all binary subproblems? Or should these subproblems be tuned independently? Trying to answer this question, in this paper we propose a method to select a different base classifier in each subproblem—following the one-versus-one strategy—making use of data complexity measures. The experimental results on 17 real-world datasets corroborate the adequacy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Milgram, J., Cheriet, M., Sabourin, R.: One against one or one against all: which one is better for handwriting recognition with SVMS? In: Tenth International Workshop on Frontiers in Handwriting Recognition. Suvisoft (2006)

  2. Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429–2437 (2004)

    Article  Google Scholar 

  3. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature selection and classification in multiple class datasets: an application to KDD cup 99 dataset. Expert Syst. Appl. 38(5), 5947–5957 (2011)

    Article  Google Scholar 

  4. Forman, G.: An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res. 3(Mar), 1289–1305 (2003)

    MATH  Google Scholar 

  5. Fürnkranz, J.: Round robin classification. J. Mach. Learn. Res. 2(Mar), 721–747 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Lorena, A.C., De Carvalho, A.C.: Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 71(16), 3326–3334 (2008)

    Article  Google Scholar 

  7. Reid, S.R.: Model combination in multiclass classification. Ph.D. thesis, University of Colorado (2010)

  8. Mendialdua, Í., María Martínez-Otzeta, J., Rodríguez-Rodríguez, I., Ruiz-Vázquez, T., Sierra, B.: Dynamic selection of the best base classifier in one versus one. Knowl.-Based Syst. 85, 298–306 (2015)

    Article  Google Scholar 

  9. Kam Ho, T., Basu, M.: Complexity measures of supervised classification problems. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002)

    Article  Google Scholar 

  10. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  11. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

    Article  Google Scholar 

  13. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  14. Liepert, M.: Topological fields chunking for German with SVMS: optimizing SVM-parameters with gas. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (2003)

  15. De Souza, B.F., De Carvalho, A.C., Calvo, R., Ishii, R.P.: Multiclass SVM model selection using particle swarm optimization. In: Sixth International Conference on Hybrid Intelligent Systems, 2006. HIS’06, pp. 31–31. IEEE (2006)

  16. Lebrun, G., Lezoray, O., Charrier, C., Cardot, H.: An ea multi-model selection for SVM multiclass schemes. In: International Work-Conference on Artificial Neural Networks, pp. 260–267. Springer (2007)

  17. Kuncheva, L.I.: Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 32(2), 146–156 (2002)

    Article  Google Scholar 

  18. Liu, R., Yuan, B.: Multiple classifiers combination by clustering and selection. Inf. Fusion 2(3), 163–168 (2001)

    Article  Google Scholar 

  19. Szepannek, G., Bischl, B., Weihs, C.: On the combination of locally optimal pairwise classifiers. Eng. Appl. Artif. Intell. 22(1), 79–85 (2009)

    Article  Google Scholar 

  20. Kang, S., Cho, S.: Optimal construction of one-against-one classifier based on meta-learning. Neurocomputing 167, 459–466 (2015)

    Article  Google Scholar 

  21. Woods, K., Philip Kegelmeyer, W., Bowyer, K.: Combination of multiple classifiers using local accuracy estimates. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 405–410 (1997)

    Article  Google Scholar 

  22. Ko, A.H.R., Sabourin, R., Souza Britto Jr., A.: From dynamic classifier selection to dynamic ensemble selection. Pattern Recognit. 41(5), 1718–1731 (2008)

    Article  MATH  Google Scholar 

  23. Dos Santos, E.M., Sabourin, R., Maupin, P.: A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 41(10), 2993–3009 (2008)

    Article  MATH  Google Scholar 

  24. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recognit. 46(12), 3412–3424 (2013)

    Article  Google Scholar 

  25. Morán-Fernández, L., Bolón-Canedo, V., Alonso-Betanzos, A.: Selection of the best base classifier in one-versus-one using data complexity measures. In: Conference of the Spanish Association for Artificial Intelligence, pp. 110–120. Springer (2016)

  26. Cano, J.-R.: Analysis of data complexity measures for classification. Expert Syst. Appl. 40(12), 4820–4831 (2013)

    Article  Google Scholar 

  27. Morán-Fernández, L., Bolón-Canedo, V., Alonso-Betanzos, A.: Can classification performance be predicted by complexity measures? A study using microarray data. Knowl. Inf. Syst. 51(3), 1067–1090 (2016)

    Article  Google Scholar 

  28. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991)

    Google Scholar 

  29. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

  30. Ho, T.K., Bernadó-Mansilla, E.: Classifier domains of competence in data complexity space. In: Data Complexity in Pattern Recognition, pp. 135–152. Springer (2006). doi:10.1007/978-1-84628-172-3_7

  31. Bache, K., Linchman, M.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml/. Accessed February 2017

  32. Statnikov, A., Aliferis, C., Tsardinos, I.: Gems: gene expression model selector. http://www.gems-system.org/. Accessed February 2017

  33. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  34. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  MATH  Google Scholar 

  35. Tukey, J.W.: Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research has been financially supported in part by the Spanish Ministerio de Economía y Competitividad (Research Project TIN2015-65069-C2-1-R), by European Union FEDER funds and by the Consellería de Industria of the Xunta de Galicia (Research Project GRC2014/035). Financial support from the Xunta de Galicia (Centro singular de investigación de Galicia accreditation 2016–2019) and the European Union (European Regional Development Fund—ERDF) is gratefully acknowledged (Research Project ED431G/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Morán-Fernández.

Appendix

Appendix

This appendix reports the experimental results achieved in this work. Table 4 depicts the classification accuracy obtained by the different approaches (OVO-kNN, OVO-SVM and CSC) with the three decoding techniques—Weighted voting (WV), Hamming (H-dec) and Loss-based (LB-dec)—for the 17 multiclass datasets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morán-Fernández, L., Bolón-Canedo, V. & Alonso-Betanzos, A. On the use of different base classifiers in multiclass problems. Prog Artif Intell 6, 315–323 (2017). https://doi.org/10.1007/s13748-017-0126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-017-0126-4

Keywords

Navigation