
1

To Recurse or not to Recurse,
a Low Dose CT Study

Shabab Bazrafkan, Vincent Van Nieuwenhove, and Jan Sijbers

Abstract—Restoring high-quality CT images from low dose
CT counterparts is an ill-posed, nonlinear problem to which
Deep Learning approaches have been giving superior solutions
compared to classical model-based approaches. In this article,
a framework is presented wherein a Recurrent Neural Network
(RNN) is utilized to remove the streaking artefacts from low
projection number CT imaging. The results indicate similar
image restoration performance for the RNN compared to the
feedforward network in low noise cases while in high noise levels
the RNN return better results. The computational costs are also
compared between RNN and feedforward networks.

Index Terms—Deep Neural Networks, Recurrent Neural Net-
works, Low Dose CT Reconstruction, Deep Learning.

I. INTRODUCTION

Recurrent Neural Networks (RNN) are a set of deep
learning approaches wherein the temporal information of the
input signal is taken into account while processing the current
timeslot. In other words, RNNs contain a memory also
known as the state which changes based on their previous
state, previous output, and the current input signal. An RNN
structure allows to store, forget, or pass information from
remote time slots into the current one [1]. These networks
are used in a large number of applications including Natural
Language Processing (NLP) [2]–[4], video processing [5],
[6], trajectory prediction [7], and correlation analysis [8].

The early versions of RNNs suffer from the gradient
vanishing due to the sigmoid and tanh nonlinearities used
in the network which also made long term dependencies
nontrivial to learn. With the introduction of Long Short
Term Memories (LSTM) [9], this issue was resolved. These
processing units take advantage of gated architecture wherein
the passing or ignoring of the information flow is decided by
several blocks such as ‘forget’, ‘input’ and ‘output’ gates.
These units provide the opportunity to learn the long-distance
correlations between remote time slots. This is an important
quality for speech recognition, text processing, and NLP.

In 2014, a new recurrent processing block known as
Gated Recurrent Unit (GRU) was introduced [10] wherein,
despite its simpler architecture compared to LSTM, it delivers
comparable outcomes. These processing units are widely
used in recurrent network design and the convolutional
counterpart of these units are investigated in [11]. The RNNs

S. Bazrafkan, and J. Sijbers are with imec Visionlab, Depart-
ment of Physics, University of Antwerp, Antwerp, Belgium e-mail:
{shabab.bazrafkan},{jan.sijbers}@uantwerpen.be.

V. Van Nieuwenhove is with Agfa NV, Mortsel, Belgium email: vin-
cent.vannieuwenhove@agfa.com.

are also used in medical applications. In [12], RNNs are used
in sequence labeling in the unstructured text of Electronic
Health Record (EHR) notes which have critical health-related
applications such as pharmacovigilance and drug surveillance.
In [13], a similar approach is utilized for prognostication and
determining life expectancy from the EHR notes.

In [14], the authors present a user physical activity predictor
based on wearable sensors using the RNN approach. In [15], a
method is presented to predict lung cancer treatment over time
by investigating the cancer progression, distant metastases,
and local-regional recurrence using a mixture of CNN and
RNN taking advantage of GRU blocks. The work presented
in [16], uses an RNN based Generative Adversarial Network
(GAN) to train a deep generator for Electrocardiogram signal.
The proposed network takes advantage of both CNN and
LSTM recurrent units.

The recurrent scheme is also applied to convolutional
networks to provide higher quality outputs while preserving
spatial information. In [17], the convolutional recurrent
units are used to acquire high-grade segmentation maps for
cardiac MRI images using an architecture called recurrent
interleaved attention network, which processes the input
image in different pooling scales in a recurrent scheme.

In [18], an RNN is used in conjunction with the level set
idea wherein the network returns an evolved level set function
in each iteration. This method is used for biomedical image
segmentation use cases. Another approach presented in [19]
uses the well-known U-net [20] architecture in a recurrent
scheme to provide segmentation for medical images. In the
current article, convolutional GRUs are used as the main
recurrent processing units to remove the streaking artefact
from the low dose CT images; explained below.

Computed Tomography (CT) is a well-known, non-invasive
imaging technique to visualize the interior of object. The
basic concept of CT relies on an X-ray source and a detector
unit synchronously rotating around the object, while taking
radiographs from each angle. The acquired set of radiographs
is then preprocessed after which a 3D image is reconstructed
using mathematical reconstruction models such as filtered
backprojection or algebraic reconstruction techniques.

The quality of the reconstructed 3D CT image strongly
depends on the number of acquired radiographs during
scanning. The denser the angular sampling during rotation of
the gantry and the higher the intensity of the X-ray source,

ar
X

iv
:1

91
0.

06
56

5v
1

 [
ee

ss
.I

V
]

 1
5

O
ct

 2
01

9

2

the better the CT image quality is. However, the number of
radiographs and the X-ray intensity during the acquisition of
a radiograph is directly related to X-ray dose, which ought to
be as low as possible, especially in biomedical applications. A
straightforward way to lower the dose in X-ray CT is to lower
the number of acquired radiographs during the scan. However,
this leads to undersampling artefacts in the reconstructed
image. Many methods have been proposed in the literature
to reduce those artefacts, mainly based on computationally
expensive iterative reconstruction methods. With the uprising
of DNNs, promising deep learning approaches have been
introduced for low dose CT.

In the current study, a Recurrent Neural Network is utilized
to remove the streaking artefact of limited projection CT
reconstructions. The main motive for using RNN comes from
the fact that the streaking artefacts look similar in different
parts of the reconstructed image which allows learning such
artefacts from a patch of the image and apply it to some other
distant patches. To the best of our knowledge no recurrent
scheme has been exploited in removing low dose artefacts
from the CT reconstruction. The results are also compared to
the feedforward network as well as model-based approaches.

In the next section, the physics of the CT imaging is
discussed followed by explaining the common reconstruction
methods. The recurrent neural networks are also explained in
the next section. Network design is covered in section III and
section IV is dedicated to the databases used in this study. The
training procedure is explained in section V and results and
conclusions are presented in sections VI and VII respectively.

II. MATERIALS

A. CT Imaging

Computed tomography (CT) is well-known imaging tech-
nique that allows for non-invasive visualization of the interior
of an object. It is widely used in many applications such
as medical imaging [21], [22], non-destructive testing [23],
industrial metrology [24], food industry [25], [26], and security
[27]. In CT, X-ray radiation is used to acquire a number of
two dimensional (2D) images of an object from many different
view points. From these images, cross-sections (tomograms)
of the object’s internal structure are computed using a recon-
struction algorithm and subsequently analyzed. In this section,
we will shortly describe the principle of X-ray CT imaging and
image reconstruction.

B. X-rays: matter interaction and detection

When an X-ray beam passes through an object, its intensity
decreases due to physical mechanisms such as the photo-
electric effect or elastic or inelastic scattering. Let I0 denote
the intensity of a monochromatic X-ray beam that leaves the
X-ray source. Then the intensity of the X-ray beam at position
s on the detector after passing through the object along a line
L oriented at angle θ is given by:

Iθ(s) = I(0)e−
∫
L
µ(η)dη. (1)

Eq. (1) describes the relationship between the observed inten-
sity at the detector side and the unknown attenuation coeffi-
cients µ the X-ray beam passed through. Log-normalization
of this detected intensity yields the projection value

pθ(s) = − ln

(
Iθ(s)

I0

)
=

∫
L

µ(η)dη. (2)

which linearly relates to the (unknown) attenuation coefficients
of the object.

The main purpose of CT reconstruction methods is to
recover the object’s attenuation coefficients µ(.) from given
projection data p(.). In what follows, we describe commonly
used reconstruction methods to recover the object’s attenuation
values from projection data pθ(s) measured by directing the
X-ray beam at different angles θ through the object.

C. Analytical reconstruction methods

In the analytical approach, the object’s attenuation distribu-
tion is described as a function f : R× R→ R that maps the
spatial coordinate (x, y) to its corresponding local attenuation
coefficient µ.

The Filtered Back Projection (FBP) is a commonly used
analytical reconstruction method, based on the following ana-
lytical formula:

f(x, y) =

∫ π

0

{∫ ∞
−∞

Pθ(q)|q|e2πiq(x cos θ+y sin θ)dq

}
dθ.

(3)
where Pθ(q) denotes the Fourier transform of the projection
data pθ(s). As can be observed from Eq. (3), the FBP formula
gives rise to a two step approach for calculating a reconstruc-
tion of the scanned object based on the measured projection
data [28]: 1) Filter the Fourier transform of the projection
pθ(s) by a ramp filter to account for the radial sampling
in Fourier space. 2) For a particular pixel (x, y), sum up
all the filtered projection data that corresponds to the lines
x cos θ + y sin θ with θ ∈ [0, π].

The analytical representation (3) assumes that projection
data is available from a sufficiently large and densely sampled
angular range. Under this condition, FBP generally leads to
high quality reconstructions. In case of limited angle scanning
or related missing data problems, severe streaking artefacts
appear in the reconstructed image.

D. Algebraic reconstruction methods

Another popular class of reconstruction methods are al-
gebraic reconstruction methods. These methods rely on a
discrete model of the object x = {xj}, as shown in figure. 1.
Their basic scheme is to iteratively minimize the difference
between the computed forward projection of the discrete image
p = {pi} with the observed projection data p̃ = {p̃i}, where
the object is updated based on the backprojected difference.
Thereby, pi =

∑
j wijxj , with W = wij denoting the

contributions of object pixel xj to the detector pixel pi.

3

x1 x2

xN

pi =
∑
j wijxj

θ

wij

Fig. 1. The Discrete Projection Model for a parallel beam.

A commonly used algebraic reconstruction method is the
SIRT algorithm, in which, in each iteration k, the current
estimate of the image, {xkj }, is updated as follows:

x
(k+1)
j = x

(k)
j +

1∑
i wij

∑
i

(
wij(pi −

∑
h wihx

(k)
h)∑

h wih

)
(4)

An important advantage of algebraic reconstruction methods
is that, if prior knowledge is available, this information can
be easily integrated in such an iterative reconstruction scheme
(cfr. Fig. 2).

Fig. 2. Iterative reconstruction scheme.

As a result, the quality of the reconstructed image
can substantially be improved compared to FBP. Another
advantage is that data consistency, being the minimization of
the difference between the forward projection of the object
{xj} with the measured projection data {p̃i}, is explicitly
enforced. One of the most important drawbacks, however, is
their computational load and slow convergence, which is the
main reason why they are not commonly used in industrial
applications.

Internal State

RNN

Internal State

RNN

Input

Output

Internal State

RNN

Input

Output

Fig. 3. Recurrent unit accepts an input, previous timestep output, and internal
state.

E. Feedforward vs Recurrent Neural Networks

Feedforward neural networks are vastly used in machine
learning solutions where the output of the network solely
depends on the current input. In other words, these networks
do not consist of any internal memory and they do not
remember their previous states. They are used in still signal
processing including both classification and regression
problems. But these architectures are not suitable for
addressing every scenario like the problems where a signal
changes by time and/or the output at the current stage is
highly correlated with the input and output of the previous
time slots. For example, in Natural Language Processing
(NLP) use cases, the decisions at each step are related to the
words in previous time steps. These problems are handled
with a set of neural networks known as Recurrent Neural
Networks (RNN) (see figure 3). In general, recurrent units in
each step accept the input of that time step, the output, and
the internal state of the previous step and return the output
and internal state for the next timestep.

These networks could be considered as feedforward net-
works with an added internal memory. This memory is also
known as the state of the network. Figure 4 gives an illustration
of how RNNs could be considered as feedforward networks
unrolled over time.

F. Recurrent Neural Networks

In general, the network in each time step accepts the input
of that specific slot as well as the output and the network state
of the previous step. Based on these sets of data, the current
state is updated and a new output is generated. In practice,
the network needs to remember the state throughout the time
span. In order to pass the state to future time slots, the most
convenient way is to project and update the network state in
each step using the following equation:

ht = φ(Wxt + Uht−1) (5)

wherein ht and xt are the network state and input at time
step t, ht−1 is the state at the time step t− 1, W and U are
input and state parameters and φ is the activation function
which is usually sigmoid or tanh.

The biggest issue with this approach is what is known as
vanishing gradients. The reason behind the vanishing gradient

4

Internal State

RNN

Internal State

RNN

Input(1)Input(1)

Internal State

RNN

Internal State

RNN

Input(2)Input(2)

Internal State

RNN

Internal State

RNN

Input(3)Input(3)

Internal State

RNN

Internal State

RNN

Input(n)Input(n)

Output(1) Output(2) Output(3) Output(n)

Internal State

RNN

Input(1)

Internal State

RNN

Input(2)

Internal State

RNN

Input(3)

Internal State

RNN

Input(n)

Output(1) Output(2) Output(3) Output(n)

Fig. 4. The unrolled schematic of the network in Figure 3.

Conv

3x3

Conv

3x3

Conv

3x3

Conv

3x3

Conv

3x3

Conv

3x3

xt

ht-1

sigmoid

sigmoid

tanh

+

+

+

+ +

x

x

x

x

-1

1

ht

Fig. 5. Convolutional GRU block.

is the fact that when the network gets deeper in time, ht
in the equation 5 vanishes due to successive multiplication
of the sigmoid or tanh activation function. This causes
the network to lose the information of remote states. This
problem has been solved by introducing the Long Short Term
Memories (LSTM) [9] in the mid-90s which takes advantage
of gated memories in designing the block. The gated memory
helps the network to forget the irrelevant information in each
state and pass the important states from previous time slots
without causing the vanishing gradient issue. The LSTM
blocks consist of a cell state c, a hidden state h which is also
known as the block output, and three gate operations: input
gate, output gate and forget gate.

Forget gate decides on how much information from the
previous cell state should be passed/ignored while updating
the current cell state. The input gate is responsible for how
much of the input signal contributes to the current cell state.
Finally, the hidden state (output) of the LSTM cell is updated

based on the current state of the network and the output gate.
The LSTM cell is given by:

ft = σg(Wfxt + Ufht−1 + bf) (6)
it = σg(Wixt + Uiht−1 + bi) (7)
ot = σg(Woxt + Uoht−1 + bo) (8)
ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc) (9)
ht = ot � σc(ct) (10)

wherein ft, it, and ot are the forget gate, input gate and
output gate values, ct and ht are the unit’s internal state and
output at time step t, respectively. W , and U are the learnable
parameters of each equation and b is is the bias. σg and σc
are sigmoid and tanh functions respectively. � is Hadamard
multiplication, and xt is the input at time step t.

Gated Recurrent Units (GRU) [10] are another implemen-
tation of RNNs which has been presented in 2014 and is
a simpler implementation of LSTM. It consists of an input

5

gate and a forget gate. The cell state and hidden state are
merged as a single variable. This RNN block contains fewer
parameters compared to LSTM while providing similar results
[29]. GRU is similar to LSTM in the sense that it consist of
forget gate but not an output gate. In the current work, the
GRU implementation is investigated in CT reconstruction use
case. The GRU cell is given by:

zt = σg(Wzxt + Uzht−1 + bz) (11)
rt = σg(Wrxt + Urht−1 + br) (12)
kt = Uh(rt � ht−1 + bh) (13)
ht = (1− zt)� ht−1 + zt � σh(Whxt) + kt (14)

wherein zt and rt are known as update and reset gate vectors.
xt is the input at time step t and ht is the unit’s output. W , and
U are the learnable parameters of each equation and b is the
bias. σg and σh are sigmoid and tanh functions respectively,
and � is Hadamard multiplication.

G. RNNs for Image Processing

The conventional GRU and LSTM units are designed to
process text data and not images. Giving images to these units
without applying any changes causes two main issues: since
these units exploit fully connected layers in their structure,
in the image processing use cases the network will contain
a large number of parameters which is challenging to train
and susceptible to overfitting. The other issue is that turning
the images into 1-dimensional vectors loses their spatial and
structural information. In order to overcome these problems,
the authors in [11] proposed a convolutional GRU wherein the
dot products in GRU equations are replaced with convolutional
operations. This unit is represented by:

zt = σg(Wz ∗ xt + Uz ∗ ht−1 + bz) (15)
rt = σg(Wr ∗ xt + Ur ∗ ht−1 + br) (16)
kt = Uh ∗ (rt � ht−1 + bh) (17)
ht = (1− zt)� ht−1 + zt � σh(Wh ∗ xt) + kt (18)

wherein ∗ is a 4D convolutional operation mapping a 3D tensor
to another 3D tensor. Note that in the current implementation
all the convolutions are using 3× 3 kernels.

Figure 5 illustrates a convolutional GRU which accepts the
input at time step t and the state/output of the previous unit
and returns the state/output at time step t.

H. Prepare data for RNN

The modern recurrent units are able to choose to remember
any representative information in their current time step and
pass it to the output or the next time slot. This gives the
opportunity of incorporating remote time slot information in
any further steps and also forget any noncooperative signal
throughout the process.

The observations on the limited angle CT reconstruction
scenarios show the similarities between the streaking artefacts
in different parts of the image. Figure 6 illustrates this matter
wherein there are obvious similarities between the streaks

in different patches. This gives the justification of using the
recurrent units to learn and remove these undesired features.
Figure 6 shows the proposed technique to prepare the data
stream to be compatible with the RNN’s pipeline. In other
words, the image is sliced into several patches and each of
these patches is considered as the network input in a specific
time slot. For example, if the image size is 512× 512, and it
is sliced into 128×128 patches, then the designed RNN needs
to accept 16 time slots and returns 16 outputs (Figure 7). The
idea behind this design is that the network learns to remove
the artifacts from early patches and transfers the knowledge
to further patches since they are affected by a similar type of
artefact.

III. NETWORK DESIGN

Deep neural networks contain different types of processing
units also known as layers. These layers are convolution,
deconvolution, pooling, unpooling, or fully connected units.
There are also regularization actions throughout the network
such as drop-out [30], and batch normalization [31] which act
as regularization terms in the training stage and also skipped
connections which facilitate the information flow inside the
network. The fully convolutional deep neural networks are
a subset of DNNs wherein no fully connected layers exist
in the network architecture. These networks are widely used
in problems where the input and the output of the network
are both images, such as segmentation, depth estimation, and
denoising applications. In the current work, the presented net-
work is a fully convolutional recurrent neural network which is
inspired by a fully convolutional feed-forward network known
as MultiScale Dense (MSD) neural network presented in [32]
explained in the following section.

A. MultiScale Dense DNN
The MSD network is a fully convolutional DNN wherein

each layer accepts input from all previous layers and returns
a single channel output. This network takes advantage of the
dilated convolution operation. In this type of convolution,
the kernel is expanded by the insertion of zero in between
its parameters. For example figure 8 shows a 1-dilated and
2-dilated 3 × 3 convolutional kernel. The main advantage of
this technique is to increase the field of view of the kernel
without increasing the number of the parameters which
causes overfitting and/or adding pooling layers which induce
blurring to the final results.

The MSD network is shown in figure 9a wherein all the
layers use 3 × 3 convolutional kernels and the dilation of
each kernel is specified by the layer number. The ReLU [33]
activation function is applied after each convolution. The last
layer is a 1× 1 convolutional layer with no nonlinearity [34].
This network proved to be effective in removing the streaking
artefacts from the limited angle CT reconstructions. In [34],
this network has been applied to FBP reconstructed images
and in [35] it has been used alongside the SIRT method in
an iterative manner. In the current work, this network is used
to remove streaking artefact from SIRT reconstruction. The
results are used to compare to the RNN approach.

6

Similar

Similar

Similar

512 pixles
128 pixels

slice

slice

(a)
(b)

(c)

Patch 1

Patch 2

Patch 3

Patch 16

Patch 4

Patch 5

Fig. 6. a) The input image is divided into smaller parts. b) The streaking artefact is similar in different blocks. c) The patches are placed as a sequence to
be given to an RNN.

Recurrent

Neural

Network

Fig. 7. RNN scheme to restore low dose CT image to a high quality CT
image.

B. MultiScale Dense RNN

Inspired by the feed-forward MSD, in the current work an
RNN MSD has been designed wherein each layer consists
of a GRU block instead of the convolutional units used in
the original MSD. This architecture is shown in figure 9b.
In this model, each of the GRU units takes advantage of the

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12 a13

a21 a22 a23

a31 a32 a33

0 0 0 0 0 0 0

0 a11 0 a12 0 a13 0

0 0 0 0 0 0 0

0 a21 0 a22 0 a23 0

0 0 0 0 0 0 0

0 a31 0 a32 0 a33 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 a11 0 a12 0 a13 0

0 0 0 0 0 0 0

0 a21 0 a22 0 a23 0

0 0 0 0 0 0 0

0 a31 0 a32 0 a33 0

0 0 0 0 0 0 0

1 dilate kernel

2 dilate kernel

Fig. 8. 3× 3 kernels. Left: 1 dilate. Right: 2 dilate.

dilated convolution as well. In other words, the convolutional

7

Convolution

3x3; 1 Channel

Dilate: mod(layer# , p)

Activation:

ReLU

Concatenation in

channel dimension

Convolution

3x3; 1 Channel

Dilate: mod(layer# , p)

Activation:

ReLU

Concatenation in

channel dimension

Concatenation in

channel dimension

Convolution

1x1; 1 Channel
...Input

image
Output

(a) MSD Deep Neural Network architecture for the feed forward network

GRU

1 Channel output

Dilate: mod(layer# , p)

Concatenation in

channel dimension ...Input

sequence

Output

sequence...
...

...
...

...
...

GRU

1 Channel output

Dilate: mod(layer# , p)

Concatenation in

channel dimension

......

...
...

... ...

...

...

...

... ...

..
.

..
.

......

...

..
.

...

...
...

......

...
...

...

...

... ...

..
.

..
.

...

..
.

...
... ...
...

...
...

...
...

Concatenation in

channel dimension

GRU

1 Channel output

Dilate: mod(layer# , p)

(b) RNN counterpart of the MSD architecture. Each arrow represents a patch of the input image

Fig. 9. Feedforward and RNN networks designed to remove streaking artefacts from low dose CT images.

layers inside the GRU (see figure 5) exploit the same dilation
operation as presented in feed-forward MSD. Given a 512 ×
512 image as the original input, based on the discussion in
section II-H, each GRU processes 16 images of size 128×128
and returns the same number of images at its output. These
images are then concatenated with the output of every previous
layer in the channel dimension and fed to the next GRU. It is
worthwhile to mention that in the practical implementation of
the RNN, the input data and also the signal between layers are
5-dimensional tensors in the order (sample#, patch, channel,
height, width).

IV. DATABASE

In the machine learning and deep learning communities,
it is common to divide a single database into three subsets:
Training, Validation and Test. The first two are used in the
training stage and the last one is used for inference in testing.
Since all the subsets are taken from a single parent database
and share the same property distributions, the generalization
of the trained network is not completely investigated [36] in
the testing stage. In the current work, the inter database testing
method is utilized in order to provide a realistic overview of
the evaluations. In this approach, networks are trained and
validated on a database known as a training database and the
testing is performed on a different database knows as a test
database. Databases used in our work are explained below:
• Train Database: The database used in the training and

validation stages is the National Cancer Institutes Clinical
Proteomic Tumor Analysis Consortium Pancreatic Ductal
Adenocarcinoma (CPTAC-PDA) which consists of more
than 45000 Pancreas images from CPTAC phase 3 pa-
tients. Images are different sizes which are all resized
to 512times512 for the current study. Several imaging
modalities exist in this database including CT and MRI
from 45 radiology and 77 pathology subjects.

• Test Database: For testing purposes, the Visible Human
Project CT Datasets was used. This dataset contains

more than 2900 CT images from 10 cases. It consists
of samples from the ankle, head, hip, knee, pelvis, and
shoulder from both male and female subjects. Images are
512× 512 therefore no resizing was applied.

In order to simulate the limited angle reconstructions, the
following geometry was considered:
• Beam: Parallel beam.
• Projections: 20 equiangular projections between 0 and

180 degrees.
• Number of detectors: 512.
• Projector type: Linear.
• Reconstruction method: SIRT, 100 iterations.
The geometry definition, forward projection, and SIRT

reconstruction were conducted using ASTRA Toolbox 1 [37]–
[39] for both train and test sets.

V. TRAINING

The designed feed-forward MSD in this work exploits 15
convolutional layers with dilate range p=5. In other words,
the dilation value is increased linearly in each layer and reset
to 1 in every 5 layers. The RNN is designed in the same
way wherein 15 GRUs are used in the design. And the same
dilate range p=5 is also used in this model. Both networks
are initialized uniformly in the range [-0.25,0.25], and the
Adam optimized [40] with learning rate, β1, β2 and ε equal to
0.0001, 0.9, 0.999, and 10−8, respectively was used to update
the network parameters. Both networks were trained using a
single GPU of an Nvidia DGX station. MXNET 1.3.0 2 [41],
was used on python 2.7 as the deep learning framework for
training. The batch size 5 was used in the training and both
models were trained for 150 epochs. The Mean Square Error
given below is used as the loss function, returning a distance
between the output of the network with its corresponding
ground truth.

1https://www.astra-toolbox.com/
2https://mxnet.apache.org/

8

Loss =
1

BsHW

Bs∑
k=1

H∑
j=1

W∑
i=1

(
O(i, j, k)−t(i, j, k)

)2
, (19)

where W , H , and Bs are the width, height, and the batch
size of the input signal, respectively. The training set was
divided into two subsets wherein 80% of the samples were
used for training and 20% for validation. The training and
validation losses for both feed-forward and RNN are shown
in figure 10. The original MSD network is called DNN and
the RNN is referred to as GRU. At the early stages of
training, the feedforward network shows faster convergence
compared to the RNN, but in the later epochs, the RNN gives
smaller loss value for the training set. The validation losses of
both networks are very close to each other while RNN gives
marginally better validation loss.

VI. RESULTS

The common approach in testing a learning-based method
widely accepted and used in the literature is to divide
the database into train, validation and test subsets. Since
the network is trained and tested on the same database, the
generalization of the learning-based methods is not completely
investigated. In order to provide an honest comparison between
model-based and learning-based methods and also between
learning-based methods, the inter-database evaluation method
has been employed. In this approach, the neural networks
are trained on a specific database and tested on a different
dataset. This method accounts for any biasing on particular
data distribution. The train and test datasets are discussed in
section IV.

In this section, the output of the trained feed-forward and
RNN networks are evaluated on 10 different subsets of the
test dataset and the visual and numerical results are provided
alongside with model-based methods FBP, SIRT, CGLS, and
TVmin. The sinogram noise evaluations are also presented in
section VI-B.

A. Numerical and Visual Results

In this section, the results of the noiseless simulations are
compared between different model-based and learning-based
methods on the test set. The numerical results are provided
using Peak Signal to Noise Ratio (PSNR), Mean Squared
Error (MSE) and Structural Similarity Index (SSIM) [42]
measurements. Tables 1 and 3 correspond to the PSNR
and MSE measurements. The TVmin and CGLS methods
return the best values for these two measurements amongst
the model-based methods. Since PSNR and MSE return
pixel-level correctness and ignore the structural information,
we used the SSIM to evaluate the structural correctness
between different reconstruction methods. In table 2 the
SSIM measurements are shown for different methods. In this
table, the TVmin method provides marginally better structural
correctness compared to CGLS and iterative methods return
higher scores compared to FBP.

Considering learning-based algorithms the feedforward
network gives marginally better measurements compared to
the recurrent approach for PSNR, SSIM, and MSE. In general,
the learning-based methods provide higher quality numerical
measurements compared to the model-based methods.

Figures 11 and 12 provide visual results for all methods.
The FBP reconstruction returns the sharpest results while it
highly suffers from the streaking artefact. The SIRT and CGLS
methods produce less streaking artefact but at the same time,
they introduce blurring to the reconstruction. The result of
the TVmin method provides the sharpest output but most of
the details are entangled into a cartoon shape artefact. The
SIRT+DNN method which is the feedforward network applied
to the SIRT output is able to remove a large amount of
streaking artefact but suffers from the loss of fine details due
to blurring. The SIRT+GRU approach successfully removes
the streaking artefact from SIRT and the results are sharper
than SIRT+DNN method.

B. Evaluations with acquisition noise

In the current work, the noise realization is accomplished
by adding a Poisson distribution to the sinogram signal.
This is implemented in the ASTRA toolbox wherein the
noise is added using the photon count information. In other
words, the noise is realized based on the number of photons
interacting with each detector pixel. This is also known as
X-ray intensity. In this work, this intensity is varied between
1000 and 50000 photons per pixel. The lower the X-ray
intensity the higher the noise and vice versa. The performance
of different reconstruction methods with noise are shown
in figures 13 to 15. In these figures, the horizontal axis
represents the X-ray intensity and the vertical axis shows the
PSNR, SSIM and MSE measurements. The values are the
average between all test samples in all test sets.

It has been shown that in the presence of sinogram noise, the
learning-based methods return higher quality numerical results
compared to the model-based approaches. Between learning-
based methods, in high X-ray intensities, the feedforward
network gives better results compared to the recurrent model.
But in high noise cases, the recurrent method manages to
return more honest reconstructions especially for the SSIM
measurement which is related to the structural consistency
compared to the ground truth.

C. Considerations on processing power

Each GRU block consists of six convolutional layers, three
of which accept the input from that specific time slot and
other three accept the signal with the shape of the previous
block’s output. In the current implementation, the number of
the input channels increases with the depth of the network as
explained in section III, and the output of each GRU block is
a single-channel image.

9

1 10 50 100
Epochs

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
L

os
s

TrainLoss DNN
ValidationLoss DNN
TrainLoss GRU
ValidationLoss GRU

10 50 100
Epochs

2

2.2

2.4

2.6

2.8

3

L
os

s

10-3

Fig. 10. Train and validation losses for GRU based and feedforward DNN.

Ankle F Head F Hip F Knee F Pelvis F Shoulder F Head M Hip M Pelvis M Shoulder M

Model based
FBP 27.7±0.7 27.7±1.8 25.7±1.3 27.7±0.5 23.2±0.2 24.3±1.0 26.2±1.2 24.8±0.7 23.4±0.7 23.4±1.2

SIRT 36.7±0.7 35.4±1.8 34.6±0.9 36.6±0.6 32.6±0.4 33.8±0.8 35.1±1.6 34.0±0.5 32.3±0.5 32.5±1.1

CGLS 37.0±0.6 35.6±1.8 34.9±0.8 36.8±0.6 32.9±0.4 34.1±0.9 35.4±1.6 34.3±0.4 32.6±0.5 32.7±1.0

TVmin 36.9±0.7 35.7±1.8 35.0±0.9 36.9±0.5 32.8±0.4 34.0±0.8 35.4±1.7 34.4±0.5 32.7±0.5 32.8±1.1

Learning based
SIRT+DNN 39.2±0.5 37.1±1.8 36.2±1.2 38.7±0.7 34.1±0.5 35.1±0.8 37.0±1.6 35.8±0.4 34.5±0.4 34.6±1.0
SIRT+GRU 38.9±0.4 37.0±1.7 35.9±1.0 38.3±0.6 33.9±0.4 34.9±0.8 36.8±1.5 35.5±0.4 34.2±0.3 34.4±0.9

TABLE I
PSNR

Consider the image of the size S1 × S2 with c channels
which is divided into b1×b2 blocks. Each GRU block consists
of

NPGRU
= 33 × c+ 33 (20)

parameters compared to the feedforward network convolu-
tional layer which consists of

NPDNN
= 32 × c (21)

parameters. At the same time, each GRU unit at each timeslot
has

NMGRU
=
S1

b1
× S2

b2
× 33 × c+ S1

b1
× S2

b2
× 33 (22)

multiplications in the convolution operations, compared to

NMGRU
= S1 × S2 × 32 × c (23)

for the feedforward convolutional layer. At each time step,
the GRU block needs less processing power compared to the
feedforward network. But after unrolling the recurrent unit,
there are b1 × b2 GRU units which result in

NMGRUunrolled
= S1 × S2 × 33 × c+ S1 × S2 × 33 (24)

multiplications in the convolution operations for the recur-
rent implementation. In other words, the number of multipli-
cation with respect to the number of input channels grows
(b1 × b2)/3 times faster for feed-forward network compared
to the single time slot GRU and grows 3 times faster for the
unrolled GRU compared to the feedforward network. Consid-
ering the similar outcomes of both methods (see section VI-A)
in low noise cases, the GRU method is able to be implemented
as b1 × b2 separate blocks, each contains (b1 × b2)/3 times
fewer multiplications than the feed-forward method. In the
use cases where the unrolled recurrent network is calculated
as a single bock, the feed-forward network needs almost three
times fewer resources.

VII. CONCLUSIONS

In this article, the use of RNN in image restoration for
low dose CT use cases has been investigated and results
have been compared to corresponding feedforward network
and model-based reconstruction algorithms. The approach is
to divide the input image into several patches and use each

10

Ankle F Head F Hip F Knee F Pelvis F Shoulder F Head M Hip M Pelvis M Shoulder M

Model based
FBP 0.33±3e-2 0.27±7e-2 0.29±1e-2 0.30±2e-2 0.26±2e-2 0.29±4e-2 0.27±6e-2 0.29±1e-2 0.27±2e-2 0.27±3e-2

SIRT 0.76±2e-2 0.72±6e-2 0.73±2e-2 0.76±2e-2 0.68±1e-2 0.72±2e-2 0.73±5e-2 0.70±1e-2 0.64±2e-2 0.65±3e-2

CGLS 0.78±3e-2 0.74±6e-2 0.74±2e-2 0.77±2e-2 0.70±1e-2 0.73±3e-2 0.73±5e-2 0.72±2e-2 0.66±2e-2 0.67±3e-2

TVmin 0.78±2e-2 0.74±6e-2 0.75±2e-2 0.78±2e-2 0.70±1e-2 0.74±3e-2 0.74±5e-2 0.74±2e-2 0.67±2e-2 0.68±3e-2

Learning based
SIRT+DNN 0.91±7e-3 0.92±9e-3 0.89±1e-2 0.91±4e-3 0.85±7e-3 0.86±1e-2 0.90±1e-2 0.89±6e-3 0.86±6e-3 0.86±1e-2
SIRT+GRU 0.89±8e-3 0.91±1e-2 0.87±2e-2 0.90±5e-3 0.83±9e-3 0.85±1e-2 0.88±2e-2 0.88±6e-3 0.85±7e-3 0.85±2e-2

TABLE II
SSIM

Ankle F Head F Hip F Knee F Pelvis F Shoulder F Head M Hip M Pelvis M Shoulder M

Model based
FBP 6e-3±1e-3 7e-3±3e-3 1e-2±4e-3 6e-3±7e-4 2e-2±1e-3 1e-2±3e-3 9e-3±2e-3 1e-2±2e-3 2e-2±2e-3 2e-3±4e-3

SIRT 8e-4±1e-4 1e-3±4e-4 1e-3±3e-4 8e-4±1e-4 2e-3±2e-4 1e-3±3e-4 1e-3±4e-4 1e-3±2e-4 2e-3±3e-4 2e-3±5e-4

CGLS 7e-4±1e-4 1e-3±4e-4 1e-3±2e-4 8e-4±1e-4 2e-3±2e-4 1e-3±3e-4 1e-3±4e-4 1e-3±2e-4 2e-3±3e-4 2e-3±4e-4

TVmin 8e-4±1e-4 1e-3±4e-4 1e-3±2e-4 8e-4±1e-4 2e-3±2e-4 1e-3±3e-4 1e-3±4e-4 1e-3±2e-4 2e-3±2e-4 2e-3±5e-4

Learning based
SIRT+DNN 4e-4±6e-5 8e-4±3e-4 9e-4±2e-4 5e-4±8e-5 1e-3±1e-4 1e-3±2e-4 8e-4±3e-4 1e-3±1e-4 1e-3±1e-4 1e-3±3e-4
SIRT+GRU 5e-4±5e-5 8e-4±3e-4 1e-3±2e-4 5e-4±8e-5 1e-3±1e-4 1e-3±2e-4 8e-4±2e-4 1e-4±1e-4 1e-3±1e-4 1e-3±3e-4

TABLE III
MSE

patch as a timeslot input of the RNN. The network learns the
streaking at early patches and applies it to the next parts of
the input image. The inter-database testing approach has been
applied to the network wherein the train and test databases
are gathered from different sources. The results show similar
numerical outcomes for RNN compared to the feedforward
network and slightly sharper reconstructions for RNN. The
processing power is also investigated which shows that the
RNN contains almost 3 times more multiplications compared
to the feedforward network, while there are more opportunities
for serialization in RNN in the case of low processing power
hardware. Considering the noisy input, the RNN gives better
numerical results in high noise conditions where most of the
methods fail to provide reasonable outputs.

ACKNOWLEDGMENT

This work is financially supported by VLAIO (Flemish
Agency for Innovation and Entrepreneurship), through the
ANNTOM project HBC.2017.0595.

REFERENCES

[1] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee,
“Recent advances in recurrent neural networks,” arXiv preprint
arXiv:1801.01078, 2017.

[2] T. He and J. Droppo, “Exploiting lstm structure in deep neural networks
for speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016, pp.
5445–5449.

[3] W.-N. Hsu, Y. Zhang, A. Lee, and J. Glass, “Exploiting depth and
highway connections in convolutional recurrent deep neural networks
for speech recognition,” cell, vol. 50, p. 1, 2016.

[4] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural
networks for language understanding.” in Interspeech, 2013, pp. 2524–
2528.

[5] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp.
2625–2634.

[6] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik, “Action
recognition in video sequences using deep bi-directional lstm with cnn
features,” IEEE Access, vol. 6, pp. 1155–1166, 2017.

[7] F. Altché and A. de La Fortelle, “An lstm network for highway trajectory
prediction,” in 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2017, pp. 353–359.

[8] N. Mallinar and C. Rosset, “Deep canonically correlated lstms,” arXiv
preprint arXiv:1801.05407, 2018.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[10] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[11] M. Siam, S. Valipour, M. Jagersand, and N. Ray, “Convolutional gated
recurrent networks for video segmentation,” in 2017 IEEE International
Conference on Image Processing (ICIP). IEEE, 2017, pp. 3090–3094.

[12] A. N. Jagannatha and H. Yu, “Bidirectional rnn for medical event
detection in electronic health records,” in Proceedings of the conference.
Association for Computational Linguistics. North American Chapter.
Meeting, vol. 2016. NIH Public Access, 2016, p. 473.

[13] M. Beeksma, S. Verberne, A. van den Bosch, E. Das, I. Hendrickx,
and S. Groenewoud, “Predicting life expectancy with a long short-term
memory recurrent neural network using electronic medical records,”
BMC medical informatics and decision making, vol. 19, no. 1, p. 36,
2019.

[14] J.-C. Kim and K. Chung, “Prediction model of user physical activity
using data characteristics-based long short-term memory recurrent neu-
ral networks.” KSII Transactions on Internet & Information Systems,
vol. 13, no. 4, 2019.

[15] Y. Xu, A. Hosny, R. Zeleznik, C. Parmar, T. Coroller, I. Franco, R. H.
Mak, and H. J. Aerts, “Deep learning predicts lung cancer treatment

11

response from serial medical imaging,” Clinical Cancer Research,
vol. 25, no. 11, pp. 3266–3275, 2019.

[16] F. Zhu, F. Ye, Y. Fu, Q. Liu, and B. Shen, “Electrocardiogram generation
with a bidirectional lstm-cnn generative adversarial network,” Scientific
reports, vol. 9, no. 1, p. 6734, 2019.

[17] Q. Tong, C. Li, W. Si, X. Liao, Y. Tong, Z. Yuan, and P. A. Heng,
“Rianet: Recurrent interleaved attention network for cardiac mri seg-
mentation,” Computers in biology and medicine, vol. 109, pp. 290–302,
2019.

[18] A. Chakravarty and J. Sivaswamy, “Race-net: a recurrent neural network
for biomedical image segmentation,” IEEE journal of biomedical and
health informatics, vol. 23, no. 3, pp. 1151–1162, 2018.

[19] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari,
“Recurrent residual convolutional neural network based on u-net (r2u-
net) for medical image segmentation,” arXiv preprint arXiv:1802.06955,
2018.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[21] P. B. Bach, J. N. Mirkin, T. K. Oliver, C. G. Azzoli, D. A. Berry,
O. W. Brawley, T. Byers, G. A. Colditz, M. K. Gould, J. R. Jett,
A. L. Sabichi, R. Smith-Bindman, D. E. Wood, A. Qaseem, and F. C.
Detterbeck, “Benefits and Harms of CT Screening for Lung Cancer A
Systematic Review,” JAMA-JOURNAL OF THE AMERICAN MEDICAL
ASSOCIATION, vol. 307, no. 22, pp. 2418–2429, JUN 13 2012.

[22] T. Kubo, P.-J. P. Lin, W. Stiller, M. Takahashi, H.-U. Kauczor, Y. Ohno,
and H. Hatabu, “Radiation dose reduction in chest CT: A review,”
AMERICAN JOURNAL OF ROENTGENOLOGY, vol. 190, no. 2, pp.
335–343, FEB 2008.

[23] T. De Schryver, J. Dhaene, M. Dierick, M. N. Boone, E. Janssens, J. Si-
jbers, M. van Dael, P. Verboven, B. Nicolai, and L. Van Hoorebeke, “In-
line NDT with X-Ray CT combining sample rotation and translation,”
NDT & E INTERNATIONAL, vol. 84, pp. 89–98, DEC 2016.

[24] J. Hiller and P. Hornberger, “Measurement accuracy in x-ray computed
tomography metrology: Toward a systematic analysis of interference
effects in tomographic imaging,” Precision Engineering, vol. 45, pp. 18
– 32, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0141635915002238

[25] L. Schoeman, P. Williams, A. du Plessis, and M. Manley, “X-ray micro-
computed tomography (mu CT) for non-destructive characterisation of
food microstructure,” TRENDS IN FOOD SCIENCE & TECHNOLOGY,
vol. 47, pp. 10–24, JAN 2016.

[26] E. Janssens, J. D. Beenhouwer, M. V. Dael, P. Verboven, B. Nicolai, and
J. Sijbers, “Neural network based x-ray tomography for fast inspection
of apples on a conveyor belt,” in IEEE International Conference on
Image Processing, Sept 21-27 2015, pp. 917–921.

[27] P. M. Shikhaliev, “Large-scale mv ct for cargo imaging: A feasibility
study,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 904, pp. 35 – 43, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0168900218308490

[28] G. Van Eyndhoven and J. Sijbers, Iterative reconstruction methods in
X-ray CT. CRC Press, 2018, ch. 34, pp. 693–712.

[29] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[32] D. M. Pelt and J. A. Sethian, “A mixed-scale dense convolutional neural
network for image analysis,” Proceedings of the National Academy of
Sciences, vol. 115, no. 2, pp. 254–259, 2018.

[33] R. H. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and
H. S. Seung, “Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit,” Nature, vol. 405, no. 6789, p. 947, 2000.

[34] D. Pelt, K. Batenburg, and J. Sethian, “Improving tomographic recon-
struction from limited data using mixed-scale dense convolutional neural
networks,” Journal of Imaging, vol. 4, no. 11, p. 128, 2018.

[35] S. Bazrafkan, V. Van Nieuwenhove, J. Soons, J. De Beenhouwer, and
J. Sijbers, “Deep neural network assisted iterative reconstruction method
for low dose ct,” arXiv preprint arXiv:1906.00650, 2019.

[36] S. Bazrafkan, T. Nedelcu, P. Filipczuk, and P. Corcoran, “Deep learning
for facial expression recognition: A step closer to a smartphone that
knows your moods,” in Consumer Electronics (ICCE), 2017 IEEE
International Conference on. IEEE, 2017, pp. 217–220.

[37] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt,
A. Dabravolski, J. De Beenhouwer, K. J. Batenburg, and J. Sijbers, “Fast
and flexible x-ray tomography using the astra toolbox,” Optics express,
vol. 24, no. 22, pp. 25 129–25 147, 2016.

[38] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals,
K. J. Batenburg, and J. Sijbers, “The astra toolbox: A platform for
advanced algorithm development in electron tomography,” Ultrami-
croscopy, vol. 157, pp. 35–47, 2015.

[39] W. Palenstijn, K. Batenburg, and J. Sijbers, “Performance improvements
for iterative electron tomography reconstruction using graphics process-
ing units (gpus),” Journal of structural biology, vol. 176, no. 2, pp.
250–253, 2011.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[41] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[42] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

http://www.sciencedirect.com/science/article/pii/S0141635915002238
http://www.sciencedirect.com/science/article/pii/S0141635915002238
http://www.sciencedirect.com/science/article/pii/S0168900218308490

12

FBP FBP

CGLS CGLS

SIRT SIRT

TVmin TVmin

SIRT+DNN SIRT+DNN

SIRT+GRU SIRT+GRU

GroundTruth GroundTruth

Fig. 11. Reconstructions from different methods. Last row illustrates the
corresponding groundtruth.

FBP FBP

SIRT SIRT

CGLS CGLS

TVmin TVmin

SIRT+DNN SIRT+DNN

SIRT+GRU SIRT+GRU

GroundTruth GroundTruth

Fig. 12. Reconstructions from different methods. Last row illustrates the
corresponding ground truth.

13

103 104

X ray Intensity

0

5

10

15

20

25

PS
N

R

FBP
SIRT
CGLS
TVmin
SIRT+DNN
SIRT+GRU

2 3 4 5
X ray Intensity 104

27

27.5

28

28.5

29

29.5

PS
N

R

Fig. 13. Mean PSNR wrt X ray intensity for different methods.

103 104

X ray Intensity

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SS
IM

FBP
SIRT
CGLS
TVmin
SIRT+DNN
SIRT+GRU

Fig. 14. Mean SSIM wrt X ray intensity for different methods.

103 104

X ray Intensity

10-2

10-1

100

M
SE

FBP
SIRT
CGLS
TVmin
SIRT+DNN
SIRT+GRU

2 3 4 5
X ray Intensity 104

1.2

1.4

1.6

1.8

2

2.2

M
SE

10-3

Fig. 15. Mean MSE wrt X ray intensity for different methods..

	I Introduction
	II Materials
	II-A CT Imaging
	II-B X-rays: matter interaction and detection
	II-C Analytical reconstruction methods
	II-D Algebraic reconstruction methods
	II-E Feedforward vs Recurrent Neural Networks
	II-F Recurrent Neural Networks
	II-G RNNs for Image Processing
	II-H Prepare data for RNN

	III Network Design
	III-A MultiScale Dense DNN
	III-B MultiScale Dense RNN

	IV Database
	V Training
	VI Results
	VI-A Numerical and Visual Results
	VI-B Evaluations with acquisition noise
	VI-C Considerations on processing power

	VII Conclusions
	References

