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Abstract
This paper presents fault diagnosis and problem solving under uncertainty by a Bayesian supported knowledge-intensive case-
based reasoning (CBR) system called BNCreek. In this system, the main goal is to diagnose the causal failures behind the
symptoms in complex and uncertain domains. The system’s architecture is described in three aspects: the general, structural,
and functional architectures. The domain knowledge is represented by formally defined methods. An integration of semantic
networks, Bayesian networks, and CBR is employed to deal with the domain uncertainty. An experiment is conducted from
the oil well drilling domain, which is a complex and uncertain area as an application domain. The system is evaluated against
the expert estimations to find the most efficient solutions for the problems. The obtained results reveal the capability of the
system in diagnosing causal failures.

Keywords Bayesian network · CBR · Knowledge intensive system · Uncertain domains

1 Introduction

Fault diagnosis is a critical task in the problem-solving
process for uncertain domains. It helps to predict the fail-
ures and prepares a reliable maintenance time. As the study
field becomes more uncertain, the fault diagnosis becomes
more complex and very costly. For example, in petroleum
engineering, sometimes a small fault may cause severe dis-
ruptions or damages to the equipment. Therefore, developing
practical and effective systems to handle the uncertainties
becomes an imperative and critical task.

BNCreek, as a knowledge-intensive system, combines
case-based reasoning (CBR) and Bayesian networks (BN)
in order to conduct fault diagnosis and problem-solving in
uncertain domains.

BNCreek, in parallel with other relevant systems, utilizes
an integrated inference and reasoning method consisting of
the Bayesian network, Semantic network, and CBRmethods
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to conduct the fault diagnosis and to handle the challenge of
problem solving in uncertain domains.

Bayesian networks have shown good efficiency as a diag-
nosismethod. However, it is built based onwell-defined parts
of the domain, and increasing the network dimensions expo-
nentially increases the complexity of inference [1–3]. The
CBR method conducts a similarity-based inference process
from the input cases to the stored ones and moderates the
BN inference method’s limitations while keeping its advan-
tages. Finally, a semantic network that captures taxonomical
and other structural relations are combined with these two
methods.

The structure of the paper is as follows: Sect. 2 discusses a
number of related systems. Section 3 describes the architec-
ture of the system in the three aspects of general, structural,
and functional architectures. Section 4 explains how the three
knowledge representers, i.e., the semantic network, Bayesian
network, and the cases, are employed to represent the knowl-
edge in the system. The problem-solving algorithm and the
reasoning methods integration are described in Sect. 5. In
the first five sections, a simple domain of cooking faults is
used for illustration purposes. Section 6 briefly describes the
oil well drilling knowledge model addressing our targeted
application domain. In Sect. 7 the conducted experiment, the
experimental setups and the results are presented to assess the
quality of the developed system. Finally, Sect. 8 discusses
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the detailed advantages and weaknesses of the system and
describes how the newmechanisms can improve it. Section 9
concludes the paper.

2 Related works

In the literature, several approaches addressed fault-diagnosis
challenges and extensively investigated it. Some of the exist-
ingmethods are based on probabilistic theory. Their common
target is to embed intelligence in the problem solving pro-
cess and increase its accuracy. A brief presentation of some
examples that have proposed hybrid approaches by combin-
ingBayesian network analysiswith theCBRmethod follows.

Tirri et al. [4] presented a probabilistic framework for
case-based reasoning. Their study was motivated by han-
dling the challenges of reasoning under uncertainty in weak
knowledge domains. They used a case base to form a proba-
bilistic model of the problem domain in a way that the cases
are viewed as the component distributions that contribute to
the joint probability distribution. They provided a case adap-
tation algorithm by using the Bayesian model and utilized
the probabilities as the measures of similarity.

Silvia et al. [5] presented a technique that integrates case-
based reasoning and Bayesian networks aimed to build user
profiles incrementally. In their system, case-based reason-
ing provides a mechanism to acquire knowledge about user
actions, and BN is used to model the relationships between
the elements of interest employing the stored cases.

Bennacer et al. [6] proposed a self-diagnosis approach in
communication networks. They aimed to handle the com-
plexity of fault diagnosis techniques and to reduce human
intervention in this process. Their approach employs a com-
bination of Bayesian networks as a flexible knowledge
representation tool and case-based reasoning to reduce the
inference complexity by emphasizing the prior experiences
to solve the current problems and increase the accuracy of
root cause identification.

Moghaddass et al. [7] developed a mathematical model
that provides explanations for the physicians to reason about
cases. They aimed to get insight into medical data and
increase the accuracy and efficiency of computations and pre-
dictions. They employed the nearest neighbormethod and the
Bayesian-based Patchworks to generate the cases and con-
duct a case-based reasoningmethod to find similar previously
visited patients. In their system, the nearest neighbor method
is set up with flexibility in the number of neighbors and the
distance metric between them.

Essam et al. [8] developed a system for network fault diag-
nosis, aimed to handle its complexity, and conduct efficient
management in computer networks. They proposed a hybrid
model consisting of three layers. The first layer detects the
online faults by finding possible points of occurrence in the

network. The second layer models the faults and indicates
the abnormal situations using belief networks probabilistic
reasoning techniques. The third layer diagnoses the faults
by finding similar fault patterns stored in the case-base as a
diagnostic case.

Aamodt et al. [9] developed a knowledge-intensive case-
based system called TrollCreek. Their system combines the
CBR and a model-based reasoning component that utilizes
general domain knowledge in problem-solving and learning
in open and weak-theory domains.

Pure CBR considers the syntactical similarity assessment
between the cases to retrieve the proper cases. The com-
bination of CBR with a semantic network as a knowledge
model added the ability of the semantical similarity assess-
ment and formed the knowledge-intensive CBR system [13].
The underlying value propagation and model-based reason-
ing abilities are provided by the semantic network, but some
of its implicit and not formally defined inference and reason-
ing methods make the system analysis difficult. CBR relies
on the previously solved cases and retrieves the most similar
ones to utilize in the problem-solving process. If a similar
enough case is not found, either CBR will not have any out-
put, or it will retrieve a less similar case; both situations will
cause problems to the system performance.

The formally defined inference methods of Bayesian net-
work make inference in a knowledge-intensive CBR system
more analyzable and provides more accurate fault diagnosis
possibility. The other methods summarized in this section
combine CBR with Bayesian network, but we have found
no other work that combine CBR and semantic networks
with a Bayesian network. The Bayesian method adds uncer-
tainty handling founded in probabilistic theory. It also adds
more flexibility and reliability to different sections of the
CBR cycle [14] based on its probabilistic knowledge. The
earlier work described in Aamodt et al. [15] laid out a high-
level framework for BN-supported retrieval and reuse of past
cases. Bruland et al. [16] discussed several ways of integrat-
ingCBRandBayesian networks for clinical decision support.
However, those were merely theoretical discussions that did
not lead to implemented methods.

BNCreek is inspired by TrollCreek and aims to improve
it in terms of accuracy and presents a more formal repre-
sentation by adding Bayesian network analysis. It suggests
an improved architecture for the integration of knowledge-
intensivemethods andproblem-solving inuncertain domains.
It is a fully integrated hybrid system in which the Bayesian
network component and knowledge-intensive CBR compo-
nent are tied together semantically and influence each other
in the problem-solving process. The termhybrid refers to sys-
tems that consist of one or more subsystems integrated with
different degrees. In BNCreek, as a fully integrated hybrid
system, the subsystems, i.e., the Bayesian network compo-
nent and the knowledge-intensiveCBRcomponent share data
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structures and knowledge representations, and the reasoning
is accomplished cooperatively. The main goal of integrating
the Bayesian analysis with TrollCreek includes developing
techniques to increase the efficiency and reasoning power of
it as integration of other methods, e.g., neural network, has
also attempted [17,18].

This paper focuses on estimating any future failures or
diagnosing the causality of the system failures in uncer-
tain domains. The problem-solving process in BNCreek is
supported by specialized network data structures that show
how the data are represented in the system. The system is
evaluated by experiments from the petroleum domain as a
complex, uncertain area. The domain’s knowledge model
has been developed in cooperation with Professor Pål Skalle
from the Department of Geoscience and Petroleum, NTNU,
Norway [19,20].

3 Architecture

In a general view, the BNCreek architecture has three main
components: a semantic network module, a Bayesian net-
work module, and a case base module.

A semantic network is a graph structure for represent-
ing knowledge in patterns of interconnected nodes and arcs
[22]. The semantic network module models the real domain
as a directed acyclic graph with the nodes representing the
domain concepts. Bidirectional edges constitute the relation-
ship between the concepts. Different types of relations are
defined to represent the relationship between the concepts,
for example structural relation types, like subclass-of, part-
of, and causal relations types, i.e., causes and caused by.
This module enables the system to conduct semantic net-
work inference and reasoning.

The Bayesian network encodes conditional independence
relations between random variables using an acyclic directed
graph in which its vertices are the random variables [23].
Besides the semantic network module, the Bayesian net-
work module captures and models the concepts with causal
relationships, individually. The nodes represent the domain
concepts, and the bidirectional edges represent the causal
relationships between the concepts. This module enables the
system to perform the Bayesian inferences and reasoning.

The semantic network and the Bayesian network of
domain concepts and their relationships form the general
domain knowledge model of BNCreek.

A case is a previously experienced situation, which has
been captured and learned in such a way that it can be reused
in the solving of future problems. The cases are represented
by nodes and are connected to the other twomodules through
the case features. A case feature consists of a concept from
the knowledge model, a relation type, and a relevance factor
that represents the importance of a feature for a stored case

Fig. 1 The graphical representation of the system’s general architecture
[21]

Fig. 2 The system’s structural architecture

[9]. The case base module is a set of cases that are collected
to be utilized for inference and reasoning purposes. The tight
coupling between the cases and the two networks enables
each case to be understood by the system, and the system to
perform knowledge intensive case-based reasoning.

Figure 1 illustrates the general architecture. In addition
to the three core components of the architecture, the mir-
ror Bayesian network interacts with the Bayesian network
module and is responsible for the Bayesian analysis of the
computational issues. The mirror Bayesian network is not
one of the main components of the structure and is created
to keep the implementation complexity low and to provide
scalability of the system.

The solid arrows show the connection between the cases
and the other concepts. The dotted arrows indicate the infor-
mation flow between the semantic network, the Bayesian
network, and the mirror Bayesian network.
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Fig. 3 The system’s functional
architecture

3.1 Structural architecture

Figure 2 demonstrates the system’s structural architecture
at the highest level. It consists of four nesting modules: the
inference methods, the knowledge model, the combined rea-
soning model, and the problem-solving model. The inner
ellipses prepare the necessary basis for the outer ones.

The innermost ellipsis represents the inference methods.
It is triggered by any new observations and derives infor-
mation by applying a set of inference rules to a knowledge
model. The knowledge model includes the general domain
knowledge and the previously solved cases.

The inference methods and the knowledge model prepare
the basis for the combined reasoningmodel. This model con-
sists of the three reasoning methods that are integrated to
generate knowledge and information produced by the infer-
ence methods and the knowledge model.

The problem-solving model is the outermost ellipsis. It
represents the problem-solving procedures by a set of actions
and rules. The rules are some predetermined regulations from
the domain expert, which assist the problem-solving process.

3.2 Functional architecture

Figure 3 illustrates the system’s functional architecture. The
problem-solving functions module employs the inference
and reasoning methods and executes the procedures of solv-
ing the problems. It is a combination of Bayesian reasoning
(BR), case-based reasoning (CBR), and semantic network
reasoning (SNR) modules. Two solid bidirectional arrows
represent the information flow between the reasoning mod-
ules.

The problem-solving functions module communicates
with theknowledgebasemodule bybidirectional information
passing. The knowledge base module has two sub mod-
ules. The underlying model of general domain knowledge
is referred to as conceptual knowledge. It represents the gen-
eral definitions of the domain concepts and relations. The
specific experiences (solved cases) are integrated into the
conceptual knowledge in the form of the domain concepts.

The information flows between: 1. CBR module and the
knowledge base, 2. SNR module and the knowledge base,
and 3. BR module and the knowledge base are represented
by bidirectional dotted arrows, dashed arrows, and dashed
dotted arrows, respectively.

InBNCreek, data are entered into this systemas a newcase
description. There are three main subprocesses to generate
a proper solution for an input case: 1. Bayesian subprocess,
2. matching and adaptation subprocesses, and 3. generating
explanation subprocess.

The Bayesian subprocess dynamically updates the sys-
tem’s beliefs based on any new information. The process
starts from the BR module, with the main function to acti-
vate the probabilistic beliefs calculator. The process follows
by knowledge passing between the conceptual model and
the probabilistic beliefs calculator in different steps of the
problem-solving function. In each step, the updated beliefs
pass to the explanation generator, matching and adaptation
modules.

The matching and adaptation subprocesses carry the main
goal of the system. They aim to generate a proper solu-
tion for the new input case by adapting the solutions of the
best matched cases. It is triggered by the CBR module and
followed by passing the relevant information between the
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conceptualmodel and the twomodules ofmatching and adap-
tation in different steps of problem-solving function. In each
step, the information from the probabilistic beliefs calculator
and the explanation generator is employed.

The generating explanation subprocess aims to explain the
partial similarity or relevance between concepts of the knowl-
edge base. This subprocess follows one of the two scenarios,
depending on whether the CBR task is retrieve or reuse: 1.
It is initiated by the SNR module and passes the relevant
information to the conceptual model, explanation generator,
and similarity assessment. 2. It is initiated by the SNR mod-
ule and passes the relevant information to the conceptual
model, explanation generator, and adaptation. This subpro-
cess works in different steps of problem solving function;
in each step, the updated information from the probabilistic
beliefs calculator is employed.

An expressive and flexible knowledge representation lan-
guage is required to achieve a common consensus between
the expert and the system about the knowledge interpretation.

The representation language based on combining the
semantic network and Bayesian network was assessed to
give the highest degree of flexibility, expressiveness, and user
transparencywhile avoiding the limitations imposed by logic
and rule-based representation formalisms. The semantic net-
work and Bayesian network are well-defined extendible
representation languages in which the properties of a new
concept can be added into the network without imposing a
heavy change to the rest. Also, for big domains, the net-
works could split up and distribute between the individual
systems [21]. This makes the network representation lan-
guage a good candidate for a knowledge-based designer to
model the knowledge.

A run-through toy example from the cooking domain is
presented through this and the following chapters to clarify
the system processes andmethods. The problem is fault diag-
nosis in making a dinner course, and the knowledge model
focuses on the ingredients and failures. Figure 4 is part of the
cooking domain knowledge model. It consists of 46 cooking
domain concepts and more than 43 relations between them.
The knowledge model is divided into the semantic network
layer, Bayesian network layer, and partial descriptions of
three cases that are connected to the networks (dashed edges).
The relation types and their strengths are written along the
edges. HS and HSt stand for Has subclass and Has status,
respectively. In this example, for simplicity, the reverse rela-
tionships are not displayed and the strengths of a relationship
and its reverse are considered to be 0.9. The causal relation-
ships are exceptions. The causal relations present the failures
of using an inappropriate amount of ingredients. To keep the
figure simple, most of the concepts’ names are abbreviated.
The ShCE, BCE, and FCE stand for shrimp cooked enough,
beef cooked enough, and fish cooked enough, respectively.
TheUC,OC,L,M, andE stand for undercooked, overcooked,

little, much, and enough, respectively, and followed by the
first letter of its parent. For example, UCSh stands for under-
cooked shrimp and MP stand for much pepper.

4 Knowledge representations

4.1 Representing knowledge with the semantic
network

The semantic network as a declarative graphical represen-
tation language is introduced as a specialized approach for
representing deep and shallow domain knowledge in a struc-
tured way. The general definition of a concept is part of the
semantic knowledge representation. It enables an explicit
definition for each type of concept in the domain. Also, it
allows for the definition of any type of relation and provides
a general structural inference mechanism.

The semantic network knowledge representation is partly
developed on the basis of the CreekL representation lan-
guage with some modifications and extension. CreekL is a
frame-based language with some implemented basic infer-
ence methods, such as frame-matching, default inheritance,
spreading activation, and constraint satisfaction [24,25].

The network is represented as an edge labeled directed
graph such that nodes are domain concepts, and edges
demonstrate the relationships between concepts. The nodes
and edges are associated with labels that name the relation
type and the strength that reflects the frequency of holding
the relationship.

Formally, given a finite set of domain concepts (C),
relation types (T), and the relationships (R), the BNCreek
semantic network (BSN) is defined by a triple of BSN = (C,
T, R). Definition 1 demonstrates the formalism of the BSN.
At this level of formalization, all the domain objects, includ-
ing the relation types, are considered as concepts. The set
of concepts is denoted by the upper-case letter C, and its
instances are denoted by lower-case letters, c. The relation-
ships are identified by a quadruple of (C, T, S, C) consisting
of two concepts and a relation type that connects them and
S representing the relation strength. The instances of the
relationships are denoted by the lower-case letter r and its
identification is (cs, t, s, ce), such that cs is the start concept,
t is the relation type, ce is the end concept and s is the strength
of the relationship.

Definition 1 (BNCreek semantic network) The BNCreek
semantic network (BSN) is a triple of BSN=(C, T, R), such
that:

– C is a finite set of domain concepts.
– T ⊆ C is a set of relation types.
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Fig. 4 The figure illustrates parts of the cooking area knowledgemodel.
The relation types and strengths are written along the edges. Reverse
relationships are not included. HS and HSt stand for has subclass and
has status, respectively. BCE, FCE, and ShCE stand for beef cooked
enough, fish cooked enough, and shrimp cooked enough, respectively.

The OC, UC, L, M, and E stand for overcooked, undercooked, little,
much, and enough, respectively, and are followed by the first letter of its
parent. For example, LS stands for little salt [https://doi.org/10.1007/
s13748-020-00223-1]

– R ⊆ (C, T , S,C) is the set of relationships in the net-
work where S demonstrates the relation strength by a
number between [0...1].

A visual example of a semantic network as a part of the
cooking domain is presented in Fig. 4. The formal syntax
description of its leftmost branch is as follows:

C = { f ood, meat , bee f , OCB, BCE , UCB, Has sub-
class, Has status}
T = {Has subclass, Has status}
R = {r1, r2,r3, r4, r5}, where

r1 ={ f ood, Has subclass: 0.9, meat}
r2 = {meat , Has subclass: 0.9, bee f }
r3 = {bee f , Has status: 0.9, OCB}
r4 = {bee f , Has status: 0.9, BCE}
r5 = {bee f , Has status: 0.9, UCB}

For each relationship, there is an inverse that demonstrates
a kind of relationship in the opposite direction between the
concepts. The inverse relationship of (cs, t, ce, x) will be
(ce, t ′, cs, y), such that the t ′ and y are relation type and
strength, respectively, which are predetermined by the expert
during constructing the domain semantic network.

4.2 Representing knowledge with a Bayesian
network

A Bayesian network as a probability network in the form
of a directed acyclic graph is able to represent a large uncer-

tain domain probability distribution compactly. In aBayesian
representation, the variables of interest are represented as
the nodes, and the direct causal relationships among them
are represented by the edges [10–12]. The semantic of a
Bayesian network represents a unique probability distribu-
tion over its variables, and the conditional probabilities of
the domain variables quantify the strength of the dependen-
cies between the variables and their parents in the Bayesian
network [26,27].

Bayesian network knowledge representation is a novel
extension to the Creek-type knowledge-intensive systems.
The representation language and formalisms for representing
causal knowledge by a Bayesian network and taking advan-
tage of its inference methods were inspired by Pearl [28] and
Darwiche [29].

Formally, a Bayesian network is a directed acyclic graph
over variables BC. BC stands for Bayesian concepts and is
a finite set of the domain concepts that are the Bayesian net-
work variables. The roots of the Bayesian networks represent
the basic faults in the domain, and the target nodes could be
the mid-level faults or the probable symptoms.

Definition 2 defines the Bayesian Variables (BC) in a way
that each variable BCi has a finite number of values Bci and
ω = {Bc1, Bc2, . . . , Bcn} is a possible instantiation of BC
for the Bayesian network. Definition 3 defines the BNCreek
Bayesian network(BBN) over variables BC as a quadruple,
i.e., the Bayesian variables, the set of Bayesian relation types
(BT) consisting of causes and caused by, Bayesian rela-
tionships (BR) and the conditional probabilities. The BR is
identified by a quadruple of (BC, BT, BC, [0...1]) and con-
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sists of two Bayesian concepts, a Bayesian relation type that
connects them, and a degree for the Bayesian relation that
in this context is called Bayesian relation strength. The con-
ditional probabilities from each variable BC to its parent U
are sets of conditional probability tables (CPTs), which is
denoted by ΘX |U .

Finally, Definition 4 defines the probability distribution
over variables BC , Pr(BC) = ∏

ΘBci |u:Bci u∼u
ΘBc|u .

Definition 2 (Bayesian variables) BC ⊆ C is the set of
Bayesian variables {BC1, BC2, . . . , BCn}, such that:

– Each variable BCi has a finite number of values Bci .
– ω = {Bc1, Bc2, . . . , Bcn} is a possible instantiation of
BC.

– Ω is the set of all possible ω.

Definition 3 (BNCreek probabilistic Bayesian network)
The BNCreek Bayesian network(BBN) over variables BC

is a quadruple of BBN = (BC, BT , BR,Θ), such that:

– BC = {BC1, BC2, . . . , BCn} is a finite set of the
Bayesian variables.

– BT ⊆ BC, BT = {causes, causedby} is a set of
Bayesian relation types.

– BR = (BC, BT , BC, [0...1]) is the set of the Bayesian
relationships in the network.

– Θ is a set of conditional probability tables (CPTs),
from each variable BCi to its parent BC j , denoted by
ΘBCi |BC j .

Definition 4 (Probability distribution)
Pr(BC) = ∏

ΘBc|u:Bcu∼u
ΘBc|u is a probability distribu-

tion over variables BC .

The causal relations in Fig. 4 show part of a simplified
Bayesian network from a knowledge model. The formal syn-
tax description of the sample domain is as follows:

BC = {LG, LO , not properly cooked, not f lavored
enough, smelly f ood, causes}
BT = {causes}
BR = {BR1, BR2,BR3, BR4}, where

BR1 = {LG, causes: 0.99, not properly cooked}
BR2 = {LG, causes: 0.99, not f lavored enough}
BR3 = {LO , causes: 0.5, not f lavored enough}
BR4 = {not f lavored enough, causes: 0.8, smelly
f ood}

For each Causal relationship (Bcs, causes, Bce, x), there
is an inverse relationship (Bce, causedby, Bcs , y) that is not
shown in Fig. 4. The x and y are the relation strengths that are
predetermined by the expert during constructing the domain

Bayesian network and are not necessarily identical numbers.
The Bayesian network layer is formed by the causal relations
and their relevant concepts. The Bayesian network layer is
considered as an individual component, and at the same time,
it is part of the semantic network component, as well. This
overlap enables interaction between the two networks.

4.3 Representing knowledge with cases

A case illustrates a specific situation of the domain. It is
described by a list of features (F), Case = (F1, F2,…, Fn).
Features are the triple of relationships (R), values (V), and
relevance factors (RF) as a number that indicates the impor-
tance of a feature for a stored case, feature = (R, V, RF).

There are three specific relation types for the cases: has
status, has symptom, and has failure. These relationships link
the case concept into the values represented by concepts in
the knowledge model and do not have any reverse, and then
a case can be viewed as a subgraph of the domain model.

There is no limit on the number of case features. Any num-
ber of observations, measurement results, or related concepts
and values could be reported as a feature. The features of a
case are in two types:

1. The observed features that are entered into the case by the
user (the raw case features).

2. The inferred features that are entered into the case by the
system.

An observed or an inferred feature could be part of the symp-
tom features (symptoms), the status features (status), or the
failure features (failures).

The dashed relationships in Fig. 4 illustrate parts of case1,
case2, and case3. The full descriptions of the three cases are
illustrated in Fig. 5.

5 Problem solving

The problem-solving process in BNCreek is described
from the CBR point of view in a two-step model of retrieve–
reuse. The details of the process are presented based on the
three main subprocesses, which are explained in the func-
tional architecture (Fig. 3). Algorithm 1 presents the process
in detail. The input of the algorithm is a new failed case, and
the output is the list of most probable failures as a solution for
that case. The run-through example from the cooking domain
elaborates the process further.

The process starts with the retrieve part of the matching
and adaptation subprocesses, which attempts to gather and
infer sufficient information about the problem. The reuse part
of thematching and adaptation subprocesses uses the retrieve
results to achieve the main goal of the problem-solving pro-
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Fig. 5 The three changing steps for the case1 consist of the raw new case1 (a), the pre-processed case1 (b), the solved case1 (c) and the solved
case2 and case3 in (d, e), respectively

Fig. 6 The dependencies and information flow between the three sub-
processes from the functional architecture

cess. Figure 6 shows the dependencies and information flow
between the three subprocesses. In an example of the cooking
domain, the goal of the retrieve step could be diagnosing the
causes of a smelly f ood symptom, and the goal of the reuse
step to present a solution for the case utilizing the diagnosed
causes.

Thefirst part of the retrieve process focuses on the problem
(case) description in order to establish the initial understand-
ing of it. The initial understanding of a case is performed
in two steps: First, the Bayesian subprocess is triggered and
information from the case description (raw case) transfers
into the knowledgemodel and updates its beliefs. Second, the
processed information inferred from the knowledge model
updates the case description and the Bayesian subprocess is
concluded.

The second part of the retrieve process focuses on a simi-
larity assessment aimed to retrieve the most similar cases.
This step triggers the Generating explanation subprocess,
which explains the partial similarity between the coupled
features, retrieves the most similar cases, and concludes the
Generating explanation subprocess.

Algorithm1 (lines 1 to 11) describes the retrieve process as
the first part of the Matching and Adaptation subprocesses.
The system considers the symptoms of the raw input case
and computes the Bayesian posterior beliefs given the symp-
toms. The raw input case description is modified by adding
the extracted causes as the inferred features and adjusting
the relevance factors of the existing features, if necessary.
Finally, the causal strengths in the semantic network mod-
ule are adjusted. As the next step, the similarity between the
input case and the cases from the case base are assessed and
a list of the matched cases are presented as the output of the
retrieve phase.

As an example, consider part (a) from Fig. 5 as a raw
input case. The case describes a failed Roasted Shrimp dish.
It consists of the ingredients and a symptom that indicates
the dish status. The matching and adaptation subprocesses
consider the smelly f ood symptom as an input. It trig-
gers the Bayesian subprocess, propagates the symptom, and
updates the knowledge model beliefs. Then, the matching
and adaptation subprocesses in an interaction with the con-
ceptual model extract the not f lavored enough concept
as the cause of the smelly f ood and adds it to the case
description. The other features of the case aremodified based
on the updated beliefs, and the result is presented in part
(b) of Fig. 5 under the name of the pre-processed case. In
order to find the most similar case, the matching and adap-
tation subprocesses interacts with the solved cases module
and examines all the cases. Parts (d) and (e) of Fig. 5 demon-
strate the solved case2 and solved case3, which are the best
matched cases to case1. The generating explanation subpro-
cess is triggered and explains partial similarities between
the features of the pre-processed case1 and the solved
case2 and solved case3. Consider LG–>garlic–>EG and
LG–>garlic–> f lavoring–>garlic–>EG, which are two
examples of the explanation paths between (EG, LG) cou-
pled features. The problem-solving process continues and
the total similarities between (case1, case2) and (case1,
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case3) becomes 56% and 71%, respectively. Case3 is the
most similar case to case1 that is retrieved by the first part
of the matching and adaptation subprocesses.

The first part of the reuse process generates or gathers
the potential solutions. This step employs the most similar
cases’ solutions, triggers the second round of the Generating
explanation subprocess, and infers more potential solutions
from the Knowledge model.

The second part of the reuse process refines the potential
list and identifies the final solution. This step utilizes some
predefined rules from the expert regarding the domain char-
acteristics and some systematic thresholds and generates the
final solution.

Algorithm 1 (line 12 to 18) describes the reuse process as
the second part of the matching and adaptation subprocesses.
The system considers the solutions of the first n best similar
cases as the potential solutions and modifies the relevance
factors of the cases’ features by the corresponding causal
strengths from the knowledge model. Then, it generates the
causal explanation path with maximum length m from each
feature of the new case to its nearest failure, infers the fail-
ures, and adds them into the potential solution list. Finally,
the potential solution list is modified by applying the remov-
ing rules from an expert and the less probable failures are
removed from the list. The finalized failure list is presented
as the reuse phase output.

The matching and adaptation subprocesses in the reuse
part follow by considering {li t tle garlic, li t tle onion}
which is the solution of case3 as a potential solution for
case1. The generating explanation subprocess is triggered,
and the not f lavored enough concept is inferred from the
knowledge model and is added to the list. Then, the less
probable failures are removed and the modified solution is
presented as {li t tle garlic, li t tle onion, not f lavored
enough}. Then, the expert predefined rules removes the little
onion from the list, as it is not even one of the ingredients.
The finalized list is presented as the solution of case1: {li t tle
garlic, not f lavored enough}.

6 Application domain

The real application domain focused in this study is oil
well drilling. The oil and gas industry is a complicated area
that faces challenges and uncertainties to keep its efficiency
as high as possible. The natural complication of this area
is accompanied by the geological factors, temperature, and
pressure. This makes understanding the process and achiev-
ing the objectives very complex for drilling engineers and
causes drilling operations to encounter failures frequently.

Oil wells are holes with an approximate diameter of 12 cm
to 1meter drilled into the earth aimed to extract petroleum oil
hydrocarbons and natural gas and bring them to the surface.

Algorithm 1: Problem solving in BNCreek
Input : An input raw case.
Output: A solution for the input case consisting of a list of most probable

failures.
1 Consider the symptoms of the input raw case.
2 Compute the Bayesian posterior beliefs given the symptoms.
3 Extract the symptoms’ causes.
4 Modify the raw input case description.

- Add the extracted causes as the inferred features.
- Adjust the existing features if necessary.

5 Employing the posterior distribution, adjust the causal strengths in the
semantic network module.

6 while not all the case-base is tested do
7 Consider one case from the case-base.
8 Compute the explanation strength between any pair of input and

retrieved case features.
9 Compute the similarity between input and retrieved case.

10 end
11 List the matched cases.
12 Consider the solutions of the first n best similar cases as the potential

solutions.
13 Modify the relevance factors of the cases’ features by the corresponding

causal strengths from the Knowledge model.
14 Generate a causal explanation with maximum length m from each feature of

the new case to its nearest failure.
15 Add the inferred failures into the potential solution list.
16 Modify the potential solution list by applying the removing rules from an

expert.
17 Remove the less probable failures from the list.
18 Present the modified list as the input case solution.

Usually, the main goal in this process is to optimize produc-
tion from the well and to manage the potential failures.

These facts make the oil well drilling process a good case
study for us to test our system capabilities in diagnosing the
potential failures of new cases in this area.

The feasibility of combining CBR with some form of
general domain knowledge for oil well drilling was demon-
strated by the DrillEdge system [30]. The drilling domain
model we are using describes the drilling process concepts,
properties, and relationships, such as hierarchical structures,
functional relations, and causalities. It constitutes the knowl-
edge fundament of the domain and gives detailed knowledge
and understanding of the system that helps an efficient fault
diagnosis [31].

The drilling operation is a widespread process contain-
ing approximately 300 properties described by observable
or measurable descriptors. Some of the concepts describe
simple internal properties (e.g., cuttings on shaker); the oth-
ers represent non-normal situations, i.e., symptoms (e.g.,
cuttings initial concentration high) and their causes/failures
(e.g., accumulated cuttings). There are about 20 or so sig-
nificant single causes for about 100 non-normal drilling
operation situations and many relevant combinations. Diag-
nosing failures is a complicated challenge because the values
of drilling properties are interdependent. Besides, one symp-
tom may have more than one cause that led to the diagnosis
of more than one failure. This situation introduces a level of
complexity that is difficult to handle with traditional meth-
ods. Figure 7 illustrates a pre-processed oil well drilling case.
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Fig. 7 A pre-processed oil well drilling case

7 System evaluation

The main goal of BNCreek is diagnosing the failures that
result in a new case and presenting them as its solution during
the problem-solving process. The process is based on the first
two phases of the CBR cycle [14]: 1. retrieve phase and 2.
reuse phase.

In the retrieve phase, the system aims to retrieve the most
relevant cases from the case base. The results of the retrieve
phase are evaluated in two perspectives: 1. The NDCG and
precision–recall metrics are utilized to measure the system’s
ability to retrieve similar cases in the correct rank. 2. The root-
square error (RSE) and weighted error (WE) are applied to
measure the accuracy of the similarity degrees. The results of
the Retrieve phase evaluation are presented in [21] [https://
link.springer.com/article/10.1007/s13748-020-00223-1].

In the reuse phase, the system aims to generate a solu-
tion for the input case employing the previous phase results,
which is the final goal of the problem solving process in our
system. The current publication has focused on evaluating
the BNCreek results of the Reuse phase.

7.1 Evaluationmetrics

In the conducted experiment, a set of failures, which are the
causes of the input case’s symptoms, form a solution. A com-
pletely correct solution, which is the ideal situation, is when
the system presents the same failure list with the expert’s list
for the input case. As most of the solutions partially match
the expert solutions, we investigate the correctness of a solu-
tion by considering a kind of confusionmatrix. In away, each
member of the solution could take four situations: 1. It is also

a member of the expert solution (TP), 2. it is not a member of
the expert solution (FP), 3. failure is neither a member of the
system solution nor the expert solution (TN), and 4. failure
is not a member of the system solution, but it is in the expert
solution (FN).

For more clarification, suppose { f 1, f 2, f 3, f 4, f 5} is
the set of all possible failures in our domain. Now assume
that the BNCreek solution for case 1 is { f 1, f 2, f 3} and
the expert solution for case 1 is { f 1, f 2, f 4}. Therefore,
the presented solution for case 1 is partially correct. The
confusion matrix terms for case 1 are TP = 2, TN = 1, FP =
1, FN = 1. The confusion matrix of the 45 solutions for the
cases being studied is calculated and presented in Table 1.

To evaluate the reuse phase’s accuracy in generating the
closest solution to the expert solutions, the F1 − score, sen-
sitivity, and specificity are applied. The metrics calculate the
accuracy and stability of the system. The same experiment
is conducted on a related system, TrollCreek, and the results
are compared.

Among the evaluation metrics that have been derived
by the confusion matrix, sensitivity (recall), specificity, and
precision metrics are utilized to evaluate the validity of
BNCreek. Sensitivity and specificity metrics both address
how often the system presents reliable answers.

Sensitivity shows the ability of the system to detect actual
failures. In other words, sensitivity shows how often the sys-
temmeasures what it claims tomeasure. In Eq. 1, TPR stands
for the true positive rate that shows the system’s Sensitivity.
It investigates the degree of the actual failures that are cor-
rectly diagnosed as failures (TP) or mistakenly considered as
a not failure (FN).

T PR = T P

FN + T P
(1)

Specificity shows the ability of the system to detect the
failures that are not part of the current case’s solution. Equa-
tion 2 shows the systemSpecificity. It investigates the number
of not relevant failures that are correctly diagnosed as not
relevant failures (FP) or mistakenly considered as a relevant
failure (FP).

Speci f ici t y = T N

T N + FP
(2)

Precision in a classification model is the number of items
that are correctly labeled as the positive class divided by the
total number of items labeled as the positive class. Equa-
tion 4 illustrates Precision. The TP stands for the number of
true positives, and the FP stands for the number of false posi-
tives. A Precision score of 1.0 illustrates all the items labeled
correctly as the positive class.

123

https://link.springer.com/article/10.1007/s13748-020-00223-1
https://link.springer.com/article/10.1007/s13748-020-00223-1


Progress in Artificial Intelligence (2021) 10:245–258 255

Precision = T P

T P + FP
(3)

The F1 − score measures the accuracy of a system utiliz-
ing precision and recall. Precision could be considered as the
probability that a retrieved failure is a relevant one.Therefore,
the recall is the probability that a relevant failure is retrieved.
Taking the (weighted) harmonic average of the precision and
recall specifies the F1−score. Thus, the F1−scoremeasures
a balance between precision and recall by taking both false
positives and false negatives into account. The highest pos-
sible value of F1 is 1, indicating perfect precision and recall,
and the lowest possible value is 0, if either the precision or
the recall is zero [32–34].

F1 = 2.
Precision ∗ Recall

Precision + Recall
(4)

7.2 Experimental setup

The oil well drilling knowledge model utilized in this experi-
ment is a detailed ontology consisting of 350 drilling domain
concepts and more than 1000 relationships between them.
Forty-five artificial drilling failure cases are generated by the
expert and are utilized as the queries (input cases) for testing
the system.

We conducted an experiment from the oil well drilling
application domain utilizing LOOCV (leave-one-out cross-
validation) to test the performance of BNCreek. In each turn
of the experiment, one case was picked out as the test case.
The other cases were regarded as training cases and their
solutions were utilized to generate a solution for the testing
case. The generated solutionswere presented as theBNCreek
results and evaluated against the expert predictions.

The experiment follows two goals. The main goal is to
evaluate the BNCreek ability to solve fault diagnosis prob-
lems. The other goal is to find out the best system tuning to
achieve the best performance, based on the current knowl-
edge model.

In the current version of BNCreek, there are two parame-
ters to set; both depend on the targeted application domain.

The first parameter addresses the boundaries for the
explanations’ strengths. The second parameter relates to the
number of retrieved cases that would be involved in the reuse
process. In order to investigate different possibilities, three
situations called Types 1, 2, and 3 are investigated. Type 1
utilizes the first most similar case in the reuse process. The
Types 2 and 3 utilize the two and three most similar cases for
the reuse process, respectively. The experiment results are
presented in the form of bar charts.

Table 1 The true positive (TP), false positive (FP), false negative (FN),
and true negative (TN) values resulted from the conducted experiment
on BNCreek system in the Types 1, 2, and 3, respectively

Type 1 Actual results: P Actual results: N

Predicted results: P TP: 233 FP: 18

Predicted results: N FN: 62 TN: 498

Type 2 Actual results: P Actual results: N

Predicted results: P TP: 256 FP: 38

Predicted results: N FN: 39 TN: 477

Type 3 Actual results: P Actual results: N

Predicted results: P TP: 267 FP: 63

Predicted results: N FN: 28 TN: 452

7.3 BNCreek results

The results of a fault diagnosis test can be evaluated by mea-
suring its attributes utilizing confusion matrixes’ terms. The
confusion matrixes for Types 1, 2, and 3 are illustrated in
Table 1. The TP term for Types 1, 2, and 3 is {233, 256,
267}, respectively, which show the number of true positive
failures. The TN term for Types 1, 2, and 3 is {498, 477,
452}, which show the number of true negative failures. The
FN term for Types 1, 2, and 3 is {62, 39, 28}, which show
the number of false negative failures. Finally, the FP term for
Types 1, 2, and 3 is {18, 38, 63}, which show the number
of false positive failures. The true positive and true negative
terms show the consistency of the fault diagnostic test.

Along with the description of the confusion matrix terms,
sensitivity and specificity are utilized to quantify how good
the test is at detecting a positive failure and estimating how
likely not failures can be correctly ruled out, respectively. The
upper side of Fig. 8 illustrates the sensitivity and specificity
of BNCreek for Types 1, 2, and 3 in the form of bar charts.
The sensitivity value for Types 1, 2, and 3 are {0.789, 0.867,
0.905}, respectively. The specificity value for Types 1, 2, and
3 is {0.965, 0.926, 0.877}, respectively. A fault diagnosis test
with both high sensitivity and specificity values is a more
reliable test.

We also tested the system’s accuracy by utilizing the
F1 − score. The F1 − score measures the balance between
precision and recall. The precision and recall measure the
trade-off between the number of relevant identified failures
against the sensitivity. The precision and recall degrees for
Types 1, 2, and 3 are {0.92, 0.87, 0.80 } and {0.78, 0.86,
0.90}, respectively. Outcome of the precision and recall, the
F1 − score for Types 1, 2, and 3 is {0.84, 0.86, 0.84}. In the
upper side of Fig. 8, the third bars in each category of Types
1, 2, and 3 demonstrate the F1 − scores.
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Fig. 8 The bar charts in the upper side demonstrate the sensitivity,
specificity and the F1 − score in percent resulted from the conducted
experiment on the BNCreek system for Types 1, 2, and 3. The bar charts
in the lower side demonstrate the samemetrics for theTrollCreek system

7.4 TrollCreek results

The experiment is repeated with the TrollCreek system, and
the confusion matrixes’ terms for Types 1, 2, and 3 are illus-
trated in Table 2. The TP term for Types 1, 2, and 3 is {93,
111, 129}, respectively, which show the number of true pos-
itive failures. The TN term for Types 1, 2, and 3 is {328, 316,
295}, which show the number of true negative failures. The
FN term for Types 1, 2, and 3 is {202, 184, 166}, which show
the number of false negative failures. Finally, the FP term for
Types 1, 2, and 3 is {187, 200, 223}, which show the number
of false positive failures.

The sensitivity and specificity of the experiment on the
TrollCreek system for Types 1, 2, and 3 are illustrated in the
lower side of Fig. 8. The sensitivity value for Types 1, 2, and
3 is {0.789, 0.867, 0.905}, respectively. The specificity value
for Types 1, 2, and 3 is {0.965, 0.926, 0.877}, respectively.

The system’s accuracy is tested byutilizing the F1−score.
The F1−score for Types 1, 2, and 3 is {0.32, 0.36, 0.39}. The
third bars in each category of Types 1, 2, and 3 demonstrate
the F1 − scores.

Table 2 The true positive (TP), false positive (FP), false negative (FN),
and true negative (TN) values resulted from the conducted experiment
on TrollCreek system in the Types 1, 2, and 3, respectively

Type 1 Actual results: P Actual results: N

Predicted results: P TP: 93 FP: 187

Predicted results: N FN: 202 TN: 328

Type 2 Actual results: P Actual results: N

Predicted results: P TP: 111 FP: 200

Predicted results: N FN: 184 TN: 316

Type 3 Actual results: P Actual results: N

Predicted results: P TP: 129 FP: 223

Predicted results: N FN: 166 TN: 295

8 Discussion

In BNCreek, we have utilized a combination of the seman-
tic network reasoning, the Bayesian network reasoning, and
the case-based reasoning for problem solving purposes. This
integration enables the system to cover the different aspects
of the domain complexities in problem solving, in such a
way that the more detailed and well-understood aspects of
the domain are analyzed by the Bayesian network, and the
incommensurable aspects of the problems are solved by
case-based reasoning method. The system is tested by a clas-
sification model evaluation metrics.

Sensitivity provides information regarding the related fail-
ures which are truly introduced as the failures of the current
case, while specificity focuses on the failures that are not
related to the solution of the study case and are truly intro-
duced as the not related failures for it. Therefore, it is
desirable to have a system that represents the results with
high sensitivity and specificity, which shows true detection of
related failures and not related failures at the same time. The
upper side of Fig. 8 illustrates the sensitivity and specificity
of the conducted fault diagnosis experiment. The system pro-
vided acceptable values for sensitivity and specificity in the
three investigated conditions, i.e., Types 1, 2, and 3, which
shows its reliability.

Precision shows the system’s ability to label an unrelated
failure as it truly is. Recall shows the system’s ability to find
all relevant failures. An ideal system with a high precision
and a high recall returns many correctly detected failures as
the case solution.

The F1 − score shows the overall performance of the
model as the average rate of precision and recall. Conversely,
having a low precision or recall score will dominate the F1−
score and push it to the lower score. The high value for the
F1 − score in the three investigated conditions, i.e., Types 1,
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2, and 3, shows the high accuracy of the system in generating
proper solutions for the new cases.

The lower side of Fig. 8 illustrates the sensitivity and
specificity of the conducted fault diagnosis experiment on the
TrollCreek system.The reuse phase, as part of theCBRcycle,
is not implemented in the available versions of the Troll-
Creek system. The reuse process in these versions is done
in a manual process based on the user’s decisions. There-
fore, to compare the final result of TrollCreek and BNCreek,
we focused on investigating the effect of Bayesian analysis
and considered the same reuse process for TrollCreek while
we have removed all Bayesian related parts. The sensitivity,
specificity, and F1 − score in the three investigated condi-
tions, i.e., Types 1, 2, and 3, are not so high in comparison
with the same values in BNCreek.

The low performance of TrollCreek could stem from three
reasons. 1. The problem solving in both of the systems is
based on the retrieve phase of the CBR cycle. The low perfor-
mance in retrieving the correct cases leads to not generating
the proper solutions by the reuse phase. 2. Themain structure
of the reuse process in TrollCreek is considered the same in
BNCreek. In one aspect, this similarity could be considered
a positive point, which makes the two systems more com-
parable. In another aspect, the specific techniques that could
be used based on the TrollCreek specifications and would
improve the results are missing. 3. The higher performance
of BNCreek indicates the positive effect of Bayesian analysis
in BNCreek in comparison with TrollCreek, which does not
use the Bayesian component.

For the BNCreek results in the upper side of Fig. 8,
although the F1 − score of Type 1 and Type 3 is the same,
Type 1 has higher precision but lower recall, which means
themore relevant failures are truly retrieved. Both Type 1 and
Type 3would be promising. Type 2 has the highest F1−score
despite its precision being lower than Type 1, and its recall
is lower than Type 3, but in terms of the F1 − score, Type 2,
which includes the first two best-matched cases in the reuse
phase with both high values of precision and recall, is a more
balanced tuning for the system.

The conducted experiment evaluates the system’s abili-
ties utilizing 45 artificially generated test cases. Although
the cases are well studied and generated by an experienced
expert, they cover limited types of failures in the oil well
drilling domain. An increased number of cases, including
cases from real specific drilling operations, would increase
the reliability of our results. Testing the system using real
cases would be an interesting future work for our group.

9 Conclusions

This study has focused on problem solving under uncertainty.
The developed and implemented knowledge-based system

employs Bayesian analysis to reason on the well under-
stood parts of the knowledge domain. The CBR method is
employed to handle the uncertainty of the incommensurable
parts while it incorporates the effects of Bayesian analysis
in its reasoning process. A similarity model is proposed for
assessing the similarity of the cases.

The system is evaluated by an experiment from the oil well
drilling area,whichwas our targeted application domain. The
results showedBNCreek acceptable performance to generate
a proper solution for an input failure case.
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