
Li et al. Health Inf Sci Syst (2017) 5:5
https://doi.org/10.1007/s13755-017-0025-x

RESEARCH

Building Diversified Multiple Trees 
for classification in high dimensional noisy 
biomedical data
Jiuyong Li, Lin Liu, Jixue Liu*   and Ryan Green

Abstract 

Purpose:  It is common that a trained classification model is applied to the operating data that is deviated from the 
training data because of noise. This paper will test an ensemble method, Diversified Multiple Tree (DMT), on its capa-
bility for classifying instances in a new laboratory using the classifier built on the instances of another laboratory.

Methods:  DMT is tested on three real world biomedical data sets from different laboratories in comparison with four 
benchmark ensemble methods, AdaBoost, Bagging, Random Forests, and Random Trees. Experiments have also been 
conducted on studying the limitation of DMT and its possible variations.

Results:  Experimental results show that DMT is significantly more accurate than other benchmark ensemble classi-
fiers on classifying new instances of a different laboratory from the laboratory where instances are used to build the 
classifier.

Conclusions:  This paper demonstrates that an ensemble classifier, DMT, is more robust in classifying noisy data than 
other widely used ensemble methods. DMT works on the data set that supports multiple simple trees.
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Introduction
Classification aims at building models with labeled data, 
and applying the models to unlabelled data to predict 
their labels. For example, a fraud detection system is 
built on known fraudulent cases and normal cases, and is 
used to predict coming fraudulent cases. A fundamental 
assumption is that the system operating environment is 
very similar to the system building environment. Unfor-
tunately, it is difficult to specify operating environment 
conditions precisely in the process of building systems. 
A system may be used in an environment that is differ-
ent from the system building environment. No system 
can work properly in an operating environment that is 
totally different from the developing environment. How-
ever, some systems are less sensitive than others regard-
ing changes in the environment.

Building models that are insensitive to the environment 
changes is generally referred to as robust classification. 
The robustness indicates the capability of dealing with 
noises and outliers of a system. The impact of noises is 
twofold.

• • noises make a data set un-learnable. No credible clas-
sifiers can be built from the noisy data. In this case, 
the source of noises needs to be discovered and data 
needs to be cleaned. This is not a focus of our study.

• • noises make a classifier unreliable. A classifier per-
forms well in the known training data, but does not 
make reliable predictions in an operating environ-
ment with noises. Our work is in this category. Cor-
recting noisy operating data is an approach to make 
the classification results reliable. In this paper we 
focus on building models for an imprecise operating 
environment without correcting noisy values.
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Robust classification has wide applicaitons. For exam-
ple, biomedical samples may be obtained from differ-
ent equipments using different processing procedures 
by different methods. However, we still wish the model 
produced from data of one experiment to be applicable 
in data of another experiment. The social environment 
changes constantly with time. We wish to use a model 
built on, say the previous five years data to the next two 
year data.

A practical setting of our discussions is based on 
biomedical data, where the dimension is normally 
very high and samples are relatively few, for exam-
ple, thousands of attributes versus tens to a few hun-
dreds of samples. Noises are unavoidable in biomedical 
experiments and can be introduced in multiple stages, 
biomedical sample preparation, experiment, data col-
lection and data processing. Since the number of 
samples is normally small, minor noises can have big 
impact. For example, it has been found that one predic-
tive gene set found from one data set performs badly on 
another data set [13].

A tree based ensemble classifier is more robust than a 
single tree on noisy test data set. A decision tree is sensi-
tive (or insensitive) to noises in a test data set depending 
on which attributes are noisy. A decision tree makes use 
of a small subset of attributes for classification. Inconsist-
encies in these attributes between the training and test 
data sets will cause a significant downgrade of the classi-
fication performance of the tree. In contrast, inconsisten-
cies outside these attributes do not affect its classification 
performance. When a classifier consists of a set of trees, 
its performance will be better than a single tree on a noisy 
test data set since the chance of all trees being affected 
by noises is smaller than the chance a single tree being 
affected by noises.

A question is which tree based ensemble method is 
robust for classification. We demonstrate that the DMT 
approach [19] is more robust than other ensemble meth-
ods, such as AdaBoost  [14], Bagging  [6], and Random 
Forests (RF) [7], in real world biomedical data sets. DMT 
is different from those ensemble methods, which make 
use of a large number of weak classifiers to improve 
classification accuracy. DMT utilises a small number of 
strong models to improve the accuracy and robustness 
of a tree based ensemble classifier and has a better inter-
pretability than the other tree based ensemble methods. 
Note in the previous work  [19], DMT has been shown 
better or at least as good as the other well known tree 
based ensemble methods. This work will provide further 
evidence to support that DMT is a good choice for bio-
medical data classification.

Problem definition
Let D be a training data set. We build model M on D, and 
apply the model to a test data set, DT . Some values in DT 
are noisy. Noises make values in data deviate from their 
true values.

Note that noises can exist in training data set D too. 
For example, let us assume that D is noisy and DT is 
not. From model M’s viewpoint, D is its ground truth, 
and relatively DT is noisy. Therefore, the assumption of 
DT being noisy is a general one. Noises can be in both 
D and DT but we offset all inconsistencies to DT . There-
fore, we only consider noises in DT in this paper. Another 
assumption is that noises in D is not big enough to affect 
the learnability of data set D.

Noises in DT will affect classification accuracy of model 
M on DT . The research question is how to build a robust 
model M. The robustness of a model is its capacity for 
resisting noisy values in the test data. In other words, a 
more robust model will make more accurate classifica-
tions on the noisy test data than a less robust model.

Intuitively, an ensemble model containing more than 
one classification model will be more robust than a sin-
gle classification model. This is because that noisy values 
are more likely to affect a single model than two or more 
models simultaneously. In other words, a single model is 
easier to be affected by noises than an ensemble model.

Let us consider a simple vote mechanism of an ensem-
ble model. Each alternative model makes a classification. 
The final classification of the ensemble model is the most 
frequent predicted class of all alternative models. For 
example, if we have 5 alternative classifiers in an ensem-
ble model where each classifier is very accurate. For a test 
record, even if the noise affects the classification perfor-
mance of two of the five classifiers, the ensemble classi-
fier still gives the correct classification.

The core for the robustness of an ensemble model is 
that its classification is based on multiple alternative 
models. Assume that those alternative models are inde-
pendent from each other for being affected by noises. In 
other words, noises are uncorrelated among attributes of 
a data set. Assume that all models are equally accurate 
and have an equal probability being affected by noises. 
Let the probability of one model affected by noises be α . 
The probability of two models being affected by noises 
simultaneously is α2. So, two models are less likely being 
affected by noises than one model. Three models are less 
likely being affected by noises than two models and so 
forth.

The independence of models being affected by noises is 
the key for the robustness of an ensemble classifier. Let us 
assume that all attribute values have the equal chance for 
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being affected by noises. An intuitive implementation of 
independent models is to build disjunct models which do 
not share attributes in their decision logics. As a result, 
disjunct alternative models are independent from each 
other for being affected by noises. In the next section, we 
will discuss a decision tree based implementation.

Diversified Multiple Tree (DMT)
A decision tree is a popular data mining method, and is a 
form of representation of humanly understandable knowl-
edge. A decision tree employs a divide and conquer scheme 
for tree building. Each partition makes use of an attribute. 
Normally, a decision tree makes use of a subset of all attrib-
utes in decision. When the number of attributes is large, a 
decision only makes use of a small number of attributes. 
Other quality decision trees can be built on remaining 
attributes. It is easy to build a set of trees that are disjunct.

A typical decision tree construction method is 
C4.5  [26]. C4.5 divides the training data into some dis-
joint sub data sets based on distinct values of an attrib-
ute, which is selected by the information gain ratio [26]. 
The sub data sets are then simultaneously divided by 
other attributes recursively until each sub data set con-
tains instances of one class, or nearly. In classification, a 
coming unclassified instance is traced down a path from 
the root of the decisions tree to a leaf that contains the 
majority of instances of one class. The instance is classi-
fied by the class at the leaf of the matched path.

A decision is unreliable in an operating environment 
with noises since noises in some attributes may affect 
its performance significantly. For example, a decision 
tree built on the Harvard data set (to be explained in the 
Experiments section) makes use of only a few genes out 
of 11657 genes. If the data value of a gene included in the 
tree is noised in a future data set, the model would make 
wrong predictions even though other genes can help 
make right predictions. To make a tree model robust, 
multiple trees should be used.

Multiple trees will make a tree model robust if they do 
not use the same attributes. A decision tree makes use of 
attributes for predictions explicitly, it is easy to build dis-
junct decision trees to make a tree model robust. In some 
data sets, for example gene expression data, the number 
of attributes is large, say 10,000 attributes. It can be easily 
to build trees on the data set without using overlapping 
attributes.

A method for building disjunct multiple trees, DMT, 
is depicted in Algorithm 1. The idea the DMT algorithm 
is to build a set of disjunct trees. In this process, used 
attributes by a tree are knocked off. As a result, all out-
put trees are disjunct. The base algorithm for decision 
tree construction is C4.5  [26]. The classification process 
is based on the simple vote mechanism.

Since the algorithm is self-explanatory and we do not 
explain it here.

Algorithm 1 Diversified Multiple Tree (DMT)
Training
Input: data set D, integer k
Output: ensemble model M
1: let i = 0
2: initiate ensemble model M
3: while i < k do
4: Build a C4.5 tree Ti on D
5: remove all attributes used in Ti from D
6: let i = i+ 1
7: addMi to the ensemble model M
8: end while
9: output ensemble model M .

Classifying
Input: a data record r and an ensemble modelM
Output: class label of r
1: C = ∅
2: for eachMi in ensemble model M do
3: let ci = classification result of Mi on r
4: add ci to C
5: end for
6: output the most frequent class in C
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The complexity of a decision tree construction algo-
rithm is linear to the number of attributes and the size 
of a data set, i.e. O(mn log(n)), where n is the number of 
data objects and m is the number of attributes. When we 
build k trees, the complexity becomes O(kmn log(n)). The 
algorithm is efficient.

Alternative to the simple vote, various weighting 
schemes can be used in the classification stage. One is 
based on the precision of the leaf making the classifica-
tion to integrate classifications of alternative tress. Since 
most data sets used in our experiments are small, we 
use Laplace accuracy: accL = (#tp+ 1)/(#tp+ #fp+ c), 
where #tp and #fp are the number of true positives and 
false positives, and c is the number of classes in a data set. 
This scheme gives accurate classification high weights. 
However, such weights do not consider the number of 
instances in a decision leaf. To counter such a drawback, 
a support scheme weights the ratio of instances at a deci-
sion leaf, i.e. support = #fp/n where n is the size of a data 
set. We will test both schemes in our experiments.

Unlike Bagging [6] and Random Trees [11], DMT does 
not sample instances, but makes use of different set of 
attributes to build diversified trees. Unlike Random For-
ests and Random Trees [11] which make use of attributes 
randomly, DMT utilises the attributes in a systemati-
cal way. Unlike Bagging, Boosting  [14], Random Forests 
and Random Trees which need a large tree community 
to make accurate classifications, DMT only needs a small 
number of high quality decision trees.

Experiments
Experiments are conducted in two parts. The first one is 
to test the robustness of DMT in comparison with other 
ensemble methods. The second part is to test the effec-
tiveness of various classification weighting schemes of 
DMT. All experiments are conducted on real world high 
dimensional data sets.

The robustness of DMT on noisy test data
Data sets come from three laboratories studying the same 
type of lung cancer, called Harvard [4], Michigan [3], and 
Stanford  [16]. They have been obtained from different 
patient samples and from two different Microarray plat-
forms. There are some inconsistencies among the data 
sets because of different experimental environments. For 
one data set, another data set is noisy. We will test how 
DMT improves the classification accuracy when a classi-
fier is trained by the data in one laboratory and tested on 
the data from another laboratory. A brief description of 
three data sets is listed in Table 1.

We have preprocessed the Harvard, Michigan and 
Stanford data sets to make models built on them com-
parable. This includes removing duplicated genes in the 

data sets since they correspond to different fragments of 
a gene and are unable to match across labs at the name 
level, and removing genes that could not match genes 
from another laboratories. Finally, 1963 genes are kept in 
all the three data sets. Three data sets are normalised by 
z-scores.

We firstly test the robustness of DMT in comparison 
with a single decision tree and other randomisation 
based ensemble methods, namely AdaBoost  [14], Bag-
ging  [6], Random Forests (RF)  [7], and Random Trees 
(RT)  [11]. The number of interactions of AdaBoost is 
100. The number of trees of Bagging, Random Forests 
and Random Trees is 100 respectively. We have used 
Weka implementation of these methods [17] for experi-
ments. Our DMT has also been implemented as an API 
and plugged to Weka. The number of diversified trees 
is set as 3, 7, 13 and 21 respectively. In the experiment, 
each classifier is trained on a data set and then tested 
on two other data sets respectively. Because of differ-
ent laboratory environments, test data sets are consid-
ered as noisy. The experiment results are summarised in 
Table 2.

In Table  2, we see that accuracies of the single trees 
trained on Harvard and tested on Michigan or vice versa 
are higher than other single trees since both laborato-
ries have utilised the same Microarray platform, and 
the inconsistencies between them are small. In contrast, 
inconsistencies between other training and test data set 
pairs are larger, and the accuracies of the single trees are 
lower too. DMT and all other ensemble methods improve 
accuracies over the single tree. The improvement of 
DMT is the most significant. To further confirm this 
conclusion, we have conducted Wilcoxon signed ranks 
test [29] to compare the performance of these methods. 
Demšar  [10] has recommended that Wilcoxon signed 
ranks test is a robust non-parametric test for statisti-
cal comparisons of different classifiers. Wilcoxon signed 
ranks test results are listed in Table  3. We see that the 
DMT tree is more robust than all other methods at sig-
nificance level of 0.05%. The second most robust method 
is Bagging, but it is not significantly more robust than 
AdaBoost and Random Forests. Interestingly, AdaBoost 
is sensitive to noises. Its performance will deteriorate 
greatly with the increase of noises as shown in the follow-
ing experiment.

Table 1  Data set description

Name   #Attr     Size     Classes     Comments  

Harvard (H) 11,657 156 139/17 Affymetric

Michigan (M) 6357 96 86/10 Affymetric

Stanford (S) 11,985 46 41/5 cDNA
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To further test the robustness of DMT and various 
ensemble models, we have added noises on 5, 10, 20, 
30, and 50% of randomly selected attributes. The added 
noises follow a (0, σ) normal distribution, where σ is the 
standard deviation of a selected attribute, implemented 
according to Box Muller transformation  [5]. A reported 
result is the average of 100 tests on the noised test data 
sets. Test results of robustness of 7-DMT with other 
ensemble methods are listed in Fig. 1 and the test results 
of robustness of various DMT trees are listed in Fig. 2.

Figure  1 shows that DMT is consistently more robust 
than other ensemble classifiers with the increase of added 
noises. A statistical test has confirmed that DMT classi-
fiers are significantly more accurate than other ensemble 
methods in noise added data. Among the four ensemble 
methods, Random Forests and Bagging are the best. The 
performance of Random Forests is very stable with the 
increase of noises. Bagging is not as stable as Random 
Forests but its average accuracy is as high as that of Ran-
dom Forests. The performance of Random Trees is also 
stable but it has a lower accuracy than Bagging and Ran-
dom Forests. Adaboost performs inconsistently in noisy 
data and this is consistent with previous results  [22]. 
Adaboost sometimes performs badly, for example, in 
Michigan to Stanford pair. Considering that the num-
ber of DMT trees is small and each alternative tree is the 
heuristically best possible one on the complete data set, 
the interpretability of DMT trees is good. In contrast, 
a Bagging model contains 100 trees on the randomly 

sampled data sets and a Random Forests contains 100 
random trees. The interpretability of each alternative 
tree in a Bagging model and a Random Forests is not as 
good as an alternative tree in DMT. Therefore, DMT is 
more robust and has better interpretability than the other 
ensemble methods.

Figure  2 shows that all DMTs with different sizes are 
more robust than a single decision tree. Added noises 
do not affect their classification accuracies much. Look-
ing at the two results of training on Harvard and testing 
on Michigan and vice versa, the performance of a single 
decision tree is quite good since both laboratories make 
use of the same Microarray platform and both data sets 
are quite consistent when there is no added noises. How-
ever, with the increase of added noises, the accuracy of 
a single tree reduces greatly. In contrast, DMT trees 
maintain a similar accuracy as for that of no noise added 
data. Added noises make slight difference in classification 
accuracies for DMTs, and hence DMT trees are robust.

The robustness of DMT trees does not necessarily need 
a large number of alternative trees. In overall, 7-DMT 
and 13-DMT are the best among all DMTs. This has been 
typified in results of Stanford to Harvard and Standard 
to Michigan. Theoretically, a large number of diversified 
tees will increase the robustness. However, there may not 
be the same high quality trees as the first few trees on a 
data set when the number of trees increases. Low qual-
ity trees reduce classification accuracies. Therefore, the 
number of DMT trees should not be large.

A counter example
A base of the robustness of DMT trees is that a data set 
supports a number of quality alternative trees. Thus is 
true for many high dimensional biomedical data sets. 
When this is not true, we should expect that DMT does 
not work well. We have identified an example and show it 
in Fig. 3.

The Madelon data set from UCI ML repository [24] is 
an artificial dataset containing data points grouped in 
32 clusters placed on the vertices of a five dimensional 
hypercube and randomly labeled as two classes. The data 

Table 2  A comparison of test accuracies on data sets of different laboratories

Accuracies are in percentage. The highest accuracy in each row is highlighted

Training Test   C4.5   7-DMT   Ada     Bag     RF     RT  

Harvard Michigan 99.0 99.0 99.0 99.0 93.8 85.4

Harvard Stanford 84.8 95.7 89.1 84.8 91.3 82.6

Michigan Harvard 96.8 98.7 96.8 98.7 89.1 89.1

Michigan Stanford 54.3 95.7 54.3 93.5 89.1 78.2

Stanford Harvard 80.8 92.9 80.8 89.7 89.1 84.6

Stanford Michigan 85.4 94.8 85.4 85.4 89.6 86.5

Ave 83.5 96.1 84.2 92.3 90.3 84.4

Table 3  Wilcoxon signed ranks test for various methods

The alternative hypothesis is that the method to the left is more accurate than 
one at the top. Significant test results at 95% confidence level are highlighted

p value   C4.5     Ada     Bag     RF     RT  

7-DMT 0.030 0.030 0.050 0.016 0.016

Ada 0.5 – – – –

Bag 0.05 0.14 – 0.28 0.016

RF 0.22 – – – –

RT 0.58 – – – –
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points are described by 500 features (attributes). The 
training data set contains 2000 data points (1000 in each 
class) and the test data set contains 1800 (900 in each 
class) data points. The performance of MDT is bad in all 
aspects. The accuracy of un-noised and noised test data 
of DMT is lower than a single decision tree.

Let us compare the size of trees in the MDT classifiers 
of Madelon and of Harvard in Table  4. We see that the 
tree sizes for Madelon are large in the first four trees, and 
are very small after the fourth tree. Firstly, a large tree 
indicates that it is difficult to build a good classifier on the 
training data. The size increases in the subsequent trees 
and this shows that the classification becomes even more 
difficult in the remaining attributes. Secondly, a tree of 

size one classifies a test instance to the largest distributed 
class. In this data set, the classification of a tree of size 
one is a random choice since both classes are equally dis-
tributed. With the above knowledge, we can easily under-
stand Fig. 3. The first tree is the most accurate one and 
all subsequent trees are less accurate than their previous 
tree in the first four trees. Therefore, all DMT classifiers 
are less accurate than the first decision tree. Further, a 
large tree is more likely affected by noises than a small 
tree. DMT performance deteriorates with the increase 
of noises. For DMTs whose sizes are greater than 8, their 
classification accuracy is around 50%.

In contrast, trees built with the Harvard data set are 
consistently small. This means that many alternative trees 

Fig. 1  Test accuracy of MDTs in comparison to various methods at different noise level



Page 7 of 10Li et al. Health Inf Sci Syst (2017) 5:5

are very good for the classification of Harvard data set. 
Many quality small trees make DMT work well. However, 
when good classification attributes are inadequate, alter-
native trees are significantly worse than the first tree. As a 
result, DMT does not work for the Madelon data set.

Variations of DMT
We have discussed a number of possible variations 
for the construction of DMT classifiers: simple vote, 
weighted vote with Laplace accuracy at a predictive leaf, 
and weighted vote with the support at a predictive leaf.

We test these variations on the 10 data sets with 3, 5, 11 
and 21 trees. The 10 data sets have obtained from Kent 
Ridge [21] (the first six) and research literature [9, 23, 25, 

Fig. 2  Test accuracy of different sizes of MDTs at different noise levels

Fig. 3  DMT does not work on Madelon data set
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28] (the last four). A brief description of the data sets is 
listed in Table  5. The 10 cross validation accuracies of 
various variations are listed in Fig. 4.

From Fig. 4, we see that the difference between simple 
vote and the Laplace weighted vote is marginal, and that 
the support weighted vote is worse than both. Therefore, 
simple vote is a simple yet accurate choice. In addition, all 
DMT classifiers in this experiment are significantly more 
accurate than a single decision tree without noises.

Related work
The data sets used in this paper are of high-dimension 
and low-sample-size (HDLSS). For this type of data sets, 
dimensional reduction and ensemble classification meth-
ods are widely used. PCA, QR factorisation and nonlinear 
transformation are often used for dimension reduction 
for HDLSS data [8, 12, 30]. However, we believe that an 
ensemble method is more suitable for biomedical appli-
cation since it gives better interpretability of the results, 
for example, linking a classification of cancer to specific 
genes. Our method is an ensemble method and in this 
section we review other ensemble classification methods 
used in this paper.

Bagging  [6], Boosting  [15], Random Forests  [7] and 
Random Trees  [11] are four major randomisation based 
ensemble classification methods in the machine learn-
ing field. We present a brief discussions for each in the 
following.

Bagging was proposed by Breiman  [6]. Bagging uses 
a bootstrap technique to re-sample a training data set. 
Bootstrap sampling is random sampling with replace-
ment. A set of alternative trees are built on a set of re-
sampled data sets. Each tree will gives a predicted class 
to a coming test instance. The final predicted class for 
the test instance is determined by the majority predicted 
class by all alternative trees.

Boosting method was first developed by Freund and 
Schapire [15]. Boosting trains a sequence of classifiers on 
a set of data sets with different distribution ratios. The 
first classifier is constructed from the original data set 
where every record has an equal distribution ratio of 1. 
In the following training data sets, the distribution ratios 
are assigned differently among records. The distribution 
ratio of a record is reduced if the record has been cor-
rectly classified, and is increased otherwise. A weighted 
voting method is used in the committee decision.

Random Forests was proposed by Breiman  [7]. This 
method combines the Bagging and Random Subspace 
methods  [18]. A random forests classifier consists of a 
number of randomly generated trees. Each tree is con-
structed from a bootstrap sample of the original data 
set. At each node of a tree, the data partition attribute is 
selected from a subset of randomly chosen attributes.

Random Trees was proposed by Dietterich [11]. In ran-
dom tree construction, at each node in the decision tree 
one randomly selected attribute from the twenty best 
tests is selected to partition data at the node. With con-
tinuous attributes, it also produces twenty best splits of 
attributes, and the one used is randomly selected from 
the top 20.

All these randomisation-based ensemble methods 
are based on a large set of weak learners to improve 
classification accuracy of tree based classifiers. Their 

Table 4  Tree size of DMT on Madelon data set in comparison with Harvard data set

Tree size   1st     2nd     3rd     4th     5th     7th     13th     21th  

Madelon 259 379 409 437 1 1 1 1

Harvard 3 3 3 5 7 7 5 9

Table 5  Data set description

Name   #Att     Size     Class  

Breast Cancer 24481 97 51/46

Lung Cancer 12533 181 150/31

DLBCL 4026 47 24/23

AllAML 7129 72 47/25

Colon tumor 2000 62 40/22

Ovarian 15154 253 162/91

Central Nervous Syst 7129 60 39/21

Prostate Cancer 12600 136 102/34

BC Tamoxifen 21939 120 60/60

Liver tumor 22686 180 105/75

Fig. 4  Cross validation accuracy of MDTs of ten data sets
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performance on un-noised data has been comprehen-
sively evaluated at [2]. In contrast, DMT [19] makes use 
of a small set of disjunct strong trees and it has been 
shown to outperform AdaBoost, Bagging, and Random 
Forests for microarray data classification. In this paper, 
it has been shown to outperform AdaBoost, Bagging, 
Random Forests and Random Trees on noisy test data 
sets.

The work weakly links with model selection which 
also can deal with noise test data. Model selection in 
machine learning is to choose a model from a set of pos-
sible models obtained from a data set. A complex model 
usually fits a data set very well, but may not be adaptable 
to new data. A number of models can be generated from 
a data set with different sets of parameters and train-
ing processes. The question of model selection is that 
which model is the best for classification in future data 
set. There are a number of criteria for model selection, 
for example, AIC, An Information Criterion  [1], Mini-
mum Description Length (MDL)  [27], and cross valida-
tion [20]. If a model will be used in a noise environment, 
noise factors can be considered into the model selection 
process. However, it is normally very difficult to know the 
exact noise types or levels in a model selection process. It 
is even more difficult for one model to resist a wide spec-
trum of un-specified noise. Practically, a model construc-
tion method like DMT in this paper which does not need 
these knowledge is desirable.

Conclusions
This paper has demonstrated that a DMT approach is 
able to classify noisy test data that is deviated from the 
training data, with better performance than some widely 
used ensemble methods. We have tested DMT on three 
real world biomedical data sets from different labora-
tories in comparison with four benchmark ensemble 
classifiers, and have experimentally shown that DMT 
is significantly more robust than the other benchmark 
ensemble classifiers on noisy test data. We have also 
discussed a limitation of DMT when a training data set 
does not support many simple and quality decision trees. 
We have further demonstrated that DMT is a simple yet 
effective design among a number of possible variations. 
DMT makes use of a small number of quality trees to tol-
erate noises in test data. It is more robust than other large 
ensemble classifiers and has better interpretability. It is 
promising in many real world applications where data 
dimension is high and noises are present.

Software tool
The software tool is available at http://nugget.unisa.edu.
au/jiuyong/MDMT/MDMT.html.
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