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Abstract 

Purpose:  Hospital readmission prediction uses historical patient visit data to train machine learning models to 
predict risk of patients being readmitted after the discharge. Data used to train models, such as patient demograph-
ics, disease types, localized distributions etc., play significant roles in the model performance. To date, many methods 
exist for hospital readmission prediction, but answers to some important questions still remain open. For example, 
how will demographics, such as gender, age, geographic, impact on readmission prediction? Do patients suffering 
from different diseases vary significantly in their readmission rates? What are the nationwide hospital admission data 
characteristics? and how do hospital speciality, ownership, and locations impact on their readmission rates? In this 
study, we carry systematic investigations to answer the above questions, and propose a predictive modeling frame-
work to predict disease-specific 30-day hospital readmission.

Methods:  We first implement statistics analysis by using National Readmission Databases (NRD) with over 15 million 
hospital visits. After that, we create features and disease-specific readmission datasets. An ensemble learning frame-
work is proposed to conduct hospital readmission prediction and Friedman test and Nemenyi post-hoc test is used to 
validate our proposed method.

Results:  Using National Readmission Databases (NRD), with over 15 million hospital visits, as our testbed, we sum-
marize nationwide patient admission data statistics, in related to demographic, disease types, and hospital factors. 
We use feature engineering to design 526 representative features to model each patient visit. Our studies found that 
readmission rates vary significantly from diseases to diseases. For six diseases studied in our research, their readmis-
sion rates vary from 1.832 (Pneumonia) to 8.761% (Diabetes). Using random sampling and voting approaches, our 
study shows that soft voting outperforms hard voting on majority results, especially for AUC and balanced accuracy 
which are the main measures for imbalanced data. Random under sampling using 1.1:1 for negative:positive ratio 
achieves the best performance for AUC, balanced accuracy, and F1-score.

Conclusion:  This paper carries out systematic studies to understand US nationwide hospital readmission data statis-
tics, and further designs a machine learning framework for disease-specific 30-day hospital readmission prediction. 
Our study shows that hospital readmission rates vary significantly with respect to different disease types, gender, age 
groups, any other factors. Gradient boosting achieves the best performance for disease specific hospital readmission 
prediction.

Keywords:  Nationwide readmissions database (NRD), Disease-specific hospital readmission prediction, Classification, 
Ensemble learning
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Introduction
Hospital readmission is a process or episode when a 
patient discharged from a hospital is readmitted within a 
specific time interval, say 30 or 90 days, since the previous 
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discharge [1]. With annual costs reaching $41.3 billion 
for patients readmitted within 30 days after discharge, 
readmission is one of the costliest episodes to treat in the 
United States [2]. The large annual costs not only imply 
unsatisfactory hospital quality, but also hinder resources 
available for other attention-required government pro-
grams and erode US industrial competitiveness [3]. To 
minimize the negative impact of high readmission rate, 
since 2012, a Hospital Readmissions Reduction Program 
(HRRP) has been developed by Centers for Medicare & 
Medicaid Services (CMS) aiming to improve the quality 
of patient care and reduce healthcare expenditures by 
imposing fines on hospitals with higher readmission rates 
than expected rate [4]. Hospitals across the US are under 
scrutiny of this program and have increased the invest-
ment in order to enhance their discharge process, result-
ing in the drop of readmission rate from 21.5 to 17.5%, 
from 2007 to 2015 [5]. Despite of this encouraging drop, 
the expenses on developing an effective discharge pro-
cedure including better medication prescription, patient 
education, discharge follow-up and so on is extremely 
high and time consuming [6]. Development of readmis-
sion risk analysis tools has increased dramatically for 
accurate identification of high-risk patients. Neverthe-
less, the complexity of in-patient care and discharge pro-
cess hinders the progress of building high-sensitivity and 
precise risk models, which stimulates growing research 
focusing on finding potential patterns of readmission and 
aiming to prevent avoidable readmissions.

Hospital readmission prediction
Machine learning, supervised learning in particular, 
has the unique strength to learn patterns from histori-
cal data for prediction. Accordingly, many methods have 
been proposed to train predictive models to assess read-
mission risk of individual patients, using their past visit 
records combined with other information [7–9]. For 
example, logistic regression is a commonly used model, 
due to its simplicity and transparency for prediction. 
In addition, studies also propose to use more advanced 
models, such as support vector machines and neural 
networks, for readmission analysis [10, 11]. Our previ-
ous study [1] has systematically reviewed major research 
challenges for hospital readmission.

While many methods exist for hospital readmission 
prediction, existing research has fallen short in address-
ing some major questions in the field. (1) First of all, for 
each type of disease, their causes are different, leading to 
variance in disease characteristics. Such distinctions can 
further result in patient admission, in-hospital treatment 
and discharge gap, reflected by unique patient features 
for each disease. How will demographic information, 
such as gender, age, geographic, impact on readmission 

prediction? Do patients suffering from different diseases 
vary significantly in their readmission? Many methods 
are available for prediction, but no existing research has 
provided clear answer to the above questions. (2) Sec-
ondly, readmission prediction is a compound outcome 
of many factors, including patient, disease, care provid-
ers etc. Many methods are trained by using data col-
lected from local regions or other sources, but there 
is no nationwide hospital admission data statistics to 
show how readmission rates vary with respect to factors 
beyond patient themselves, such as hospital ownership, 
speciality, payment types, and household incomes of 
served areas etc. (3) Thirdly, hospital readmission predic-
tion is essentially data driven, where features and samples 
are the key to ensure model performance. While many 
methods have been using a wide variety of patient treat-
ment data, such as patient blood tests, nutritional fac-
tors [12], treatment etc, the data privacy and the Health 
Insurance Portability and Accountability Act (HIPAA) 
[13] limit sensitive features to be used in general read-
mission prediction setting. Creating features strictly 
complying to the HIPAA and privacy regulation, and also 
effective and informative for learning, is crucial for hos-
pital readmission prediction.

The above observations motivated our research to 
study nationwide hospital admission data statistics and 
design effective ways for disease-specific 30-day hospital 
readmission prediction. We use National Readmission 
Databases (NRD), with over 15 million hospital visits, 
as our testbed, and report national scale hospital admis-
sion statistics, including readmission rate differences 
with respect to different demographic and hospital fac-
tors, such as gender, age, payment type, hospital profile, 
and disease types. After that, we create six disease spe-
cific readmission tasks for Cancer, Heart disease, Chronic 
obstructive pulmonary disease (COPD), Diabetes, Pneu-
monia, and Stroke. Random under sampling and ensem-
ble learning, including hard-voting and soft-voting, are 
used to train models for disease-specific readmission 
prediction.

Contribution
The main contribution of our work, compared to existing 
research in the field, is fourfold.

Answers to important questions
With over 15 million hospital visits in national readmis-
sion databases (NRD), we are able to carry out data statis-
tics analysis and conclude answers for several important 
questions regarding hospital readmission. To find out 
the impact from demographics on hospital readmis-
sion, we explored the readmission percentage between 
gender and various age groups, from which an apparent 



Page 3 of 18Wang and Zhu ﻿Health Information Science and Systems  (2022) 10:25

readmission difference between male and female can be 
observed with male having higher readmission rate than 
female. Also, patients aged over 56 usually have larger 
risk to be readmitted into hospital. The second aspect 
we conclude is that patients suffering from diseases vary 
significantly regarding to their readmission rates. For 
example, patients with heart diseases have much more 
readmission rate than patients with pneumonia. As for 
hospital, private-owned non-profit hospitals discharged 
much more patients than government-owned hospitals 
and private-own hospitals.

Nationwide admission data statistics
Using National Readmission Databases (NRD), with over 
15 million hospital visits, as our testbed, we summarize 
nationwide patient admission data statistics, in related 
to demographic, disease types, and hospital factors. By 
separating patient visits into different cohorts, our study 
directly answers how demographic, socioeconomic, and 
diseases are reflected in the readmission. The data sta-
tistics can not only be useful for designing features for 
readmission prediction, but are also useful for policy and 
other purposes. For example, our study found that, even 
in the same disease group, patients with low incomes do 
not go/return to the hospital as the same as populations 
with higher incomes. These observations can help design 
policy to help patients vulnerable to high readmission 
risk in specific geographic locations or service areas.

Feature engineering for readmission prediction
In order to design HIPAA compliant features to char-
acterize patients, diseases, and hospitals, we use feature 
engineering to design 526 representative features to 
model each patient visit. The six demographic features, 
ten admission and discharge features, 498 clinical fea-
tures, three disease features, and nine hospital features 
are fully compliant with the HIPAA standard to support 
disease-specific readmission prediction.

Disease specific readmission prediction
Our studies found that readmission rates vary signifi-
cantly from diseases to diseases. For six diseases studied 
in our research, their readmission rates vary from 1.832 
(Pneumonia) to 8.761% (Diabetes). The high variance 
makes it inaccurate to use one model for all prediction. In 
addition, the readmission visits are a small portion of the 
patient visits, presenting a data imbalance issue for learn-
ing. Accordingly, we propose to use random under sam-
pling, combined with hard-voting and soft-voting based 
ensemble leaning. By training different ensemble models 
using disease specific datasets, and comparing their per-
formance using Friedman test and Nemenyi post-hoc 

test, our study shows the most accurate models for dis-
ease-specific readmission prediction.

US nationwide admission data statistics
US national readmission databases overview
Due to HIPAA regulations [13], patient data cannot be 
shared between researches. This creates a barrier for 
researchers to obtain hospital data for research study 
and designs. Nationwide Readmission Databases (NRD) 
provide an alternative public data source for readmission 
analysis, using all cause national scale patient level data. 
The NRD databases were first created by the Agency for 
Medical Research and Quality (AHRQ) in 2015 to pro-
vide data support for the analysis of national readmission 
rates and further improve the quality of medical care. 
AHRQ belongs to the “Health Care Cost and Utilization 
Project (HCUP)” family, which provides a collection of 
longitudinal healthcare databases combined with profes-
sional data analysis tools to promote the improvement of 
healthcare-related policies. The NRD database contains 
clinical and non-clinical elements and collects about 18 
million unweighted discharges each year with more than 
100 clinical and non-clinical variables per hospitaliza-
tion. NRD is a unique and powerful database designed to 
support various types of analysis of national readmission 
rates for all payers and uninsured. The database addresses 
a huge gap in healthcare data: the lack of nationally rep-
resentative information on hospital readmission rates for 
all age groups [14].

NRD database descriptions
The NRD database has three major tables, each includes 
information about patient, hospital, and disease, respec-
tively. Each row of the core table represents a hospi-
tal visit, and table has 103 fields, including admission, 
diagnose, and discharge information. The 103 fields in 
the table can be separated into three main categories: 
Demographics, Admission and Discharge information, 
and Clinical information [15]. Patients’ privacy are pro-
tected with de-identified KEY_NRD element and the 
dates related to their in-patient treatment are replaced 
by sequential numbers. For clinical information, ICD-
10-CM code is applied for medical diagnoses (the next 
subsection details the ICD diagnose code descriptions).

The hospital table in the NRD databases includes 
information about hospitals involved in the core table. 
The hospitals are across the whole country, with dif-
ferent types of ownership and teaching status, such as 
non-profit, government owned, or for-profit hospitals. 
In addition, hospitals are also categorized based on their 
bed sizes which reflect the scale/capacity of the hospital.

The disease severity table in the NRD databases 
includes diseases associated to each hospital visits. 
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The disease information is based on the main reason of 
each admission. In addition, the risk of mortality and 
severity of illness are also encoded in the disease sever-
ity table. The code in the disease severity table is based 
on APRDRG (All Patients Refined Diagnosis Related 
Groups) code associated to each visit.

ICD diagnose code
In the NRD database, the diagnose and treatment with 
respect to each hospital visit are recorded using ICD-
10-CM (International Classification of Diseases) code. 
The standardized coding allow stakeholders, including 
physicians, hospitals, and care givers, to classify and code 
all diagnoses, symptoms and procedures, with details 
necessary for diagnostic specificity and morbidity classifi-
cation. For each visit, a number of ICD-10-CM and ICD-
10-PCS (procedure coding system) codes are recorded 
to represent diagnose and procedures carried out during 
patient’s visit. ICD-10-CM is the Clinical Modification of 
World Health Organization’s International Classification 
of Diseases (ICD) 10th version and it is used for medical 
diagnoses. An example of the ICD-10-CM code structure 
is shown in Fig.  1. In order to sufficiently serve health 
care needs, U.S. made the transition from ICD-9-CM to 
ICD-10-CM codes [16].

As shown in Table 1, ICD-10-CM codes are very differ-
ent from ICD-9-CM codes with nearly 5 times as many 
diagnoses codes as in ICD-9-CM and it has alphanumeric 
categories instead of numeric ones. ICD-10-CM code 
sets provide more precise identification and conditions 
tracking by including laterality, severity, and complexity 

of disease conditions [16, 17]. The ICD-10-CM code 
specification has 21 chapters and it has a much longer 
index and tabular list. It uses an indented format for both 
the index and tabular list. Categories, subcategories, 
and codes are contained in the tabular list [18, 19]. ICD-
10-CM codes can consist of up to 7 characters with the 
seventh digit extensions representing visit encounter or 
sequela for injuries and external causes compared to five 
digits in ICD-9-CM codes. Figure 1 shows the meanings 
of the seven characters: characters 1–3 indicate the cat-
egory of diagnoses, characters 4–6 indicate etiology, ana-
tomic site, severity, or other clinical detail, and character 
7 is the extension. All ICD-10-CM codes begin with one 
of the alphas and they are not case sensitive. Although in 
the original version, alpha U was excluded, CDC released 
COVID-19-guidelines from April 1 2020 to Septem-
ber 30 2020 in which U07.1 is used to defined a positive 
COVID-19 test result, or a presumptive positive COVID-
19 test result [20].

Readmission label
In the NRD database, the core table only records each 
hospital visits (from admission to discharge). There is 
no readmission label associated to the visits. Therefore, 
we need to derive label to determine whether a visit is 
a readmission visit or not. For this purpose, we need to 
leverage NRD_DaysToEvent (a timing variable specifies a 
number of days from a random “start date” to the current 
admission) and LOS (Length of stay) two fields in each 
record.

Each hospital visit record in NRD is kept in de-iden-
tified format in order to comply to the HIPAA regula-
tions. As a result, not only patient’s name is represented 
using NRD-VisitLink, the exact admission/discharge 
date are also adjusted using a specific random number 
for each patient. For each patient, a random “start date” 
is first selected. The admission time (NRD_DaysToEv-
ent) of the patient is then calculated by using difference 
from the “start date” to the admission day. Starting from 
2009, Centers for Medicare & Medicaid has been report-
ing each hospital’s 30-day risk-standardized readmis-
sion rate (RSRR) across the U.S to measure unplanned 

Fig. 1  ICD-10-CM code structure. For example, S06.0X1A code 
means “Concussion with loss of consciousness of 30 minutes or less, 
initial encounter”

Table 1  Comparison between ICD-9-CM and ICD-10-CM Diagnosis Code Sets

ICD-9-CM ICD-10-CM

14,025 codes 69,823 codes

3–5 characters 3–7 characters

First character is alpha or numeric First character is alpha, second character is numeric

Characters 2–5 are numeric Characters 3–7 can be alpha or numeric

Decimal placed after the first three characters Decimal placed after the first three characters

Lacks detail and laterality Very specific and has laterality
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readmissions that happen within 30 days of discharge 
from patients’ admission, which has formed a 30-day 
readmission rule as a standard for hospital evaluation 
[21]. Thus, in our research, we use 30-day criterion for 
readmission labeling. For two visits ( Va and Vb ), if the 
interval between Vb admission and Va discharge is less 
than 30 days, then visit Va will be labeled as readmission 
[15]. One example to label patient visit is demonstrated 
in Table 2, in which the patient has three visits in total. 
The time interval between two visit is calculated as the 
second NRD_DaysToEvent minus the first NRD_Days-
ToEvent and minus the LOS. For visit 2 and visit 1, the 
result is 1053− 1034 − 3 = 16 , which is less than 30 
days, therefore, we label the first visit as 1, indicating that 
this is a readmission visit. For visit 3 and visit 2, their dif-
ference is 1097− 1053− 2 = 42 , so visit 2 is labelled as 
0, meaning not a readmission. Visit 3 is also labelled as 
0 because there is no more records showing the patient 
returning to the hospital after the third visit.

By using the above labeling approach, if two consecu-
tive visits are within the defined interval (30-days in our 
setting), the first visit is labeled as the readmission visit. 
We do not label the second visit as readmission because 
we want to predict the possibility of a patient returning 
back to the hospital after being discharged from the cur-
rent visit. By doing so, we can implement the hospital 
readmission prediction at the time of patient discharge.

NRD data statistics
Demographics related statics
Table  3 reports the NRD patient admission statistics. 
The total number of readmission in NRD is 17,197,683 
in which the effective admissions is 15,722,444 exclud-
ing outliers. The number of effective admissions does not 
equal to the number of unique patients, because each 
patient has a unique NRD-VisitLin (global ID) and some 
patients will return back to the hospitals for multiple 
times. Table 3 shows that about 80% of patients only have 
a single visit, so readmissions happen to the rest 20% 
of patients. In Fig. 2, we further report the readmission 
percentages between gender and different age groups. 
Combining Table 3 and Fig. 2, we can find that although 
female patients are the majority part of hospital visits, 
the readmission rates of male population exceed that of 

female across all the age groups, especially for age group 
[18, 35], where the readmission rate of male is more than 
twice the rate of female.

The NRD databases have three main payment types, 
Medicare, Medicaid, and Private insurance, which cover 
43.40%, 21.80%, and 28.08% of payments in the data-
base, respectively. In Fig.  3, we report the readmission 
rates comparison between different payment groups. The 
results show that the top two highest readmission rates 
are from the Medicare and Medicaid patients, respec-
tively. Figure 2 shows that the readmission rates increase 
for older age groups, this partially explains why Fig.  3 
medicare and medicaid patients have higher readmission 
rates than patients from other payment groups.

Hospital related statistics
NRD hospital table includes information, such as own-
ership and teaching status, from about 2355 hospitals 
across the US. In our analysis, we categorize hospitals 
based on their bed size and ownership. Hospital bed 

Table 2  Example to label patient visit

Patient Visitlink Visit NRD_Days 
ToEvent

LOS (days) Read-
mission 
label

863245 1 1034 3 1

863245 2 1053 2 0

863245 3 1097 4 0

Table 3  A summary of NRD patient admission

Categories Number (%)

Effective admission total 15,722,444

30-Day readmission 1,834,786 (11.67%)

Not 30-day readmission 13,887,658 (88.33%)

Unique patient total 11,691,620

Patient with single visit 9,335,277 (79.85%)

Patient with multiple visits 2,356,343 (20.15%)

Patient visit total 15,722,444

Male patient visits 6,630,005 (42.17%)

Female patient visits 9,092,439 (57.83%)

Fig. 2  Gender readmission rate difference with respect to different 
age groups
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size are presented as numbers 1 to 3, indicating small, 
medium, and large respectively (this number indicates 
the capacity of the hospital). Figure 4 reports the total 
admissions/discharges in 2016 from hospitals under 
different ownership. The results show that private-
owned non-profit hospitals discharged much more 
patients than government-owned hospitals and private-
own hospitals. Overall, as the hospital capacity increase 
(from 1 to 3), the mean admission/discharge numbers 
also increase. This is quite understandable because 
large capacity hospitals can accommodate more patient 
visits. In order to validate whether hospital ownership 
plays any significant roles in readmission, we report 
the readmission rates of different types of hospitals 
on admissions with five and more days during the vis-
its. The results in Fig. 5 show that despite of the large 
difference in the total discharge, only a small variance 

is observed when comparing the percentage of admis-
sions with Length of Stay (LOS) >= 5 days.

In order to understand whether hospital ownership 
and capacity introduce significant variance to the diag-
nose and procedures carried out during the patient visits, 
we report the average number of ICD-10-CM codes and 
ICD-10-PCS codes for each visit in Figs. 6 and 7, respec-
tively. The results show that, in general, patients admit-
ted to non-federal government-owned hospitals have less 
amount of averaged ICD-10-CM/PCS codes for their in-
patient treatment, compared with patients admitted to 
private-owned not-profit hospitals and private-owned 
investment hospitals. Meanwhile, hospital bed size (or 
capacity) also play significant roles, especially in terms 
of the ICD-10-PCS. The results show an explicit rising 
trend, as the bed size increases for all kinds of hospitals. 
This is possibly because that large scale hospitals fre-
quently accommodate patients with more complicated 

Fig. 3  Readmission rate comparison with respect to different pay-
ment methods

Fig. 4  Total annual hospital discharge

Fig. 5  Percentage of admission with LOS >= 5 days

 

Fig. 6  Average number of ICD-10-CM codes in each visit
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(or severe) disease conditions, and therefore more diag-
noses and procedures are carried out on those patients.

Disease related statistics
Disease and the level of severity are the two important 
factors associated to readmission. The disease severity 
table in the NRD database records the illness measure-
ment of each patient in the core table, where each row 
is the description of patient’s classification according to 
their admission reason, risk of mortality and severity of 
illness. One major disease is identified for each admis-
sion. The coding is based on the APRDRG (All Patients 
Refined Diagnosis Related Groups) code.

In order to understand the readmission difference 
between different disease specific patient cohorts, we 
comparatively study top leading disease to death as well 
as the top diseases for admission. There are 320 APRDRG 
code in total and 38% patients are diagnosed as “Mod-
erate loss of function”. We extracted the top 10 most 
frequent reasons for hospital admission based on the 
APRDRG code for each visit. In addition, we also report 
the top seven leading diseases to death according to CDC 
[22] to analyse the readmission rate and revisit rate. 
Tables  4 and 5 report the statistics of top 10 APRDRG 
coded diseases/reasons and top seven leading disease of 
death, respectively.

The results from Tables  4 and 5 show that readmis-
sion rates of patients suffering from different diseases 
vary significantly in their readmission rates. For exam-
ple, vaginal delivery and cesarean delivery are the two 
APRDRG coded top reasons for admissions, but these 
visits have very small readmission rates. For the top seven 
leading diseases to death, their readmission rates also 
vary significantly, where diabetes have the highest read-
mission rates (8.761%) and pneumonia has the lowest 

readmission rates (1.832%). Overall, readmission rates 
and revisit rates for leading diseases to death are much 
higher than the 10 most common admissions. This is due 
to the nature of the diseases and their complications.

In order to study the readmission rate variance with 
respect to socioeconomic factors, we report the read-
mission rates of the seven leading diseases of death 
with respect to the family incomes, which are coded by 
ZIP 1 to Zip 4 meaning low to high incomes. Readmis-
sion rates for four ZIP code areas categorized by the 
estimated median household income of residents in 
the patient’s residence for the seven leading disease are 
shown in Fig.  8. The results show that area gap can be 
observed explicitly: for every disease, readmission rates 
for patients from lower income families (ZIP 1 and ZIP 
2) are higher than those from high-income families (ZIP 
3 and ZIP 4). Table 6 summarizes factors of interest ana-
lyzed in this paper as for demographic, hospital and dis-
ease respectively.

Fig. 7  Average number of ICD-10-PCS codes in each visit

Table 4  Readmission distributions for the top 10 APRDRG 
in NRD

Admission reason Readmis-
sion rate 
(%)

Revisit rate (%)

Vaginal delivery 0.048 0.168

Septicemia & disseminated infections 3.983 9.184

Neonate birthwt > 2499 g, normal new-
born or neonate w other problem

0.848 0.847

Cesarean delivery 0.013 0.062

Heart disease 8.696 19.500

Knee joint replacement 0.392 5.775

Other pneumonia 1.800 4.654

Chronic obstructive pulmonary 
disease(COPD)

6.990 16.684

Hip joint replacement 1.088 5.222

Cardiac arrhythmia & conduction 
disorders

3.662 7.868

Table 5  Readmission distributions for the top seven lead-
ing diseases of death

Leading diseases Readmission rate 
(%)

Revisit rate (%)

Heart disease 8.092 17.873

Stroke 2.448 3.770

Pneumonia 1.832 4.738

COPD 6.990 16.684

Cancer 6.823 12.275

Diabetes 8.761 14.372

Nephritis & nephrosis 7.019 10.595
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Disease specific hospital readmission prediction
Based on the nationwide hospital admission data statis-
tics, we design five types of features, demographics fea-
tures, admission and discharge features, clinical features, 
disease features, and hospital features, and use ensemble 
learning, combined with under random sampling, for 
disease specific readmission prediction.

Feature engineering
Table  7 lists five types of features created using feature 
engineering to capture patient, disease, and hospital 
information. In the following, we briefly describe each 
type of features, and explain why they were chosen for 
readmission prediction.

Demographics features
Demographic is a combination of population demog-
raphy and socioeconomic information, which includes 
patient gender, age, average income of the community, 
patient medical record and so on. A generalization of a 
specific geography’s population can be concluded based 
on a sampling of people in that geography and pro-
foundly affect how important decisions are made. In 
medical institution, statistical results obtained from the 

patient allow for the identification of a future patient and 
the categorization, such analysis will enhance the devel-
opment of high pertinence medical policy.

Admission and discharge features
Informative materials about patient in-hospital activities 
can be obtained from admission and discharge informa-
tion. There are time-related message indicating the exact 
time of the patient admission and length of stay (LOS) for 
treatment, admission nature-related information such 
as whether the patient was hospitalized through emer-
gency or not and so on. This kind of information offers a 
comprehensive view of the procedures a patient received 
from the healthcare providers, how patient’s condition 
improve, and whether the treatment is adequate and 
effective to prevent readmission.

Clinical features
Clinical features are used to characterize diagnoses and 
treatments patient received during the hospital visit. 
Because each patient’s medical condition varies and there 
are tens of thousands of subcategory disease types, medi-
cal treatments, procedures etc., finding good clinical fea-
tures to represent patients is a significant challenge,

An essential challenge of using ICD-10-CM codes as 
clinical features to represent patients is that the total 
number of unique ICD-10-CM codes is very large (about 
70,000), making it ineffective and computationally expen-
sive for learning. Accordingly, we employ ICD-CCSR 
transformation [15] to convert ICD-CM code to CCSR 
code. CCSR stands for Clinical Classification Software 
Refined, which is used to aggregate ICD-10-CM/PCS 
codes into clinically meaningful categories. Figure  9 
shows CCSR code structure, where the first three let-
ters mean the body system category and the last three 
numbers are CCSR categories numeric sequence of indi-
vidual CCSR category starting at “001” within each body 
system [23]. In the code assignment, each CCSR code is 
designed to match to at least one or multiple ICD-10-CM 
code categories. Table  8 shows an example of many-to-
one CCSR mapping, where multiple ICD-10-CM codes, 
corresponding to “displaced fracture of shaft of left clavi-
cle”, are mapped into one CCSR code [23]. The alphabetic 
correspondence between ICD-10-CM code and CCSR 
code is listed in Table 9, where the alphabetic conversion 
follows defined rules, and the numeric part also follows 
the user guide [23]. In Fig. 10a and b, we report the ICD-
10-CM code distributions for Pneumonia disease and 
the mapped CCSR code distributions. In the figure, the 
y-axis shows the logarithm of the code frequency sorted 
in a descending order, and the index of the correspond-
ing code is shown in the x-axis. For ICD-10-CM codes, 
the log scale of the code frequency still follows a negative 

Fig. 8  Readmission rate for leading diseases of death with respect 
median household incomes (ZIP 1 to 4 denotes an increasing level of 
incomes)

Table 6  Factors of interest analyzed in NRD database

Aspect Factors of interest

Demographic Gender; age; payment (insurance)

Hospital Bed size; ownership

Disease Disease type; ZIP code (household income)
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exponential function, meaning that ICD-10-CM code 
frequency follows an exponential to the power of expo-
nential decay, and a few ICD-10-CM codes have very 
high frequency. The converted CCSR code frequency 
follows an exponential decay (so the logarithm function 

is close to a linear line). The ICD-10-CM to CCSR con-
version not only preserves similar node frequency pat-
terns, but also reduces the clinical feature dimension 
in our experiments from about 70,000 to around 498 as 
shown in “Feature size and domain” in Clinical Feature 
in Table 7. As a result, the clinically meaningful catego-
ries, with respect to each disease, are provided to detail 
diagnoses and treatments implemented during patient 
in-hospital visit.

Disease features
In addition to the CCSR code specified clinical features, 
three disease-level features are also added. The first fea-
ture is called APR−DRG, which represents the patient 
admission reason. Because a disease may include multiple 
subgroups, we select all APR-DRG codes related to one 
disease, and then use a numeral number to encode the 

Table 7  Features created for disease specific hospital readmission prediction

Feature type Feature Description Feature size and domain

Demographics feature AGE Patient’s age R
1 ∈ R+

FEMALE Patient’s gender (binary, ‘1’ is female) N
1 ∈ {0, 1}

PAY1 Payment method N
1 ∈ {1, 2, 3, 4, 5, 6}

PL_NCHS Patient’s location (based on NCHS Urban-Rural Code N
1 ∈ {1, 2, 3, 4, 5, 6}

ZIPINC_QRL Estimated median house income in the patient’s zip code N
1 ∈ {1, 2, 3, 4}

RESIDENT Patient’s location (‘1’: the patient is from same state as hospital) N
1 ∈ {0, 1}

Admission and discharge feature AWEEKEND Admission Day (‘1’: the admission day is a weekend) N
1 ∈ {0, 1}

MONTH Patient’s discharge month N
1 ∈ {1, 2, 3, · · · , 12}

QUARTER Patient’s discharge quarter N
1 ∈ {1, 2, 3, 4}

DISPUNIFORM Disposition of patients N
1 ∈ {1, · · · , 7, 20, 21, 99}

LOS Length of the hospital stay N
1 ∈ N

ELECTIVE Binary, ‘1’ represents elective admission N
1 ∈ {0, 1}

REHAB Binary, ’1’ is rehab transfer N
1 ∈ {0, 1}

WEIGHT Weight to discharges in AHA universe R
1 ∈ R+

CHARGES Patient’s inpatient total charges R
1 ∈ R+

1st VISIT Binary,’1’ means the first hospital visit N
1 ∈ {0, 1}

Clinical feature CCSR Code Clinical categories N
498 ∈ N

Disease feature APR−DRG Patient admission reason N
1 ∈ N

RISK The mortality risk N
1 ∈ {0, 1, 2, 3, 4}

SEVERITY The severity of illness N
1 ∈ {0, 1, 2, 3, 4}

Hospital feature BEDSIZE Hospital bed size N
1 ∈ {1, 2, 3}

CONTROL Hospital ownership N
1 ∈ {1, 2, 3}

URU​ Hospital urban−rural designation N
1 ∈ {1, · · · , 9}

AVE_CHARGE Average charge amount per patient visit of the hospital R
1 ∈ R+

AVE_CM Average number of ICD-CM per patient visit of the hospital R
1 ∈ R+

AVE_PCS Average number of ICD-PCS per patient visit of the hospital R
1 ∈ R+

PER_LOS Percentage admission with LOS larger than 5 days R
1 ∈ R+

DIS/UNI Sample discharges/Universe discharges in NRD_STRATUM R
1 ∈ R+

DIS/BED Total hospital discharges/num bed size of hospital R
1 ∈ R+

Fig. 9  CCSR (Clinical Classification Software Refined) code structure. 
For example, INJ008 code indicates Traumatic brain injury (TBI); con-
cussion, initial encounter
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feature value. Table 10 lists the APR-DRG codes selected 
for all six diseases in our study. For example, “Heart Dis-
ease” has six sub-groups (each has one APR-DRG code). 
We then use six integers, 10, 11, 12, 13, 14, 15, to encode 
them. By doing so, we are encoding APR-DRG codes as 
numerical values within similar range, allowing some 
learning algorithms, such as logistic regression to better 
leverage the code value.

RISK is the second extracted disease-level feature 
representing the risk of patient mortality. There are five 
different levels (0 to 4) indicating patient’s likelihood of 
dying where level 4 mortality means the highest risk. The 
last feature is SEVERITY standing for the severity of ill-
ness and the degree of loss of function. Similar to RISK, 
degree zero to extreme severity is represented by number 
0 to 4.

Hospital features
Hospital features are created to characterize hospital 
ownership, bed size (capacity), locations, and patient 

body admitted to the hospitals. For example, hospital bed 
size tells us the hospital scale, the ownership represents 
the control of the hospital, and the geographic locations 
of the hospitals specify the patient demographic. In addi-
tion to simple statistics, we also create several statistics 
features, such as the average charge amount and the aver-
age number of ICD-CM codes for each visit. For feature 
DIS/UNI, the universe discharge is the total number of 
inpatient discharges in the universe of American Hospi-
tal Association (AHA) excluding non-rehabilitation and 
Long-Term Acute Care Hospitals (LTAC) for the stratum. 
These features provide specific understanding of patient 
in-hospital treatment in order to discover the effect of 
different treatment provided by hospitals towards hospi-
talized patients’ recovery.

Prediction framework
Six disease-specific datasets are extracted (we focus on 
the leading diseases of death as given in Table 5), includ-
ing cancer, heart disease, chronic obstructive pulmonary 

Table 8  An example of ICD-10-CM to CCSR mapping

ICD-10-CM code ICD-10-CM code description CCSR category CCSR description

S42022D Displaced fracture of shaft of left clavicle, subsequent 
encounter for fracture with routine healing

INJ041 Fracture of the upper limb; subsequent encounter

S42022G Displaced fracture of shaft of left clavicle, subsequent 
encounter for fracture with delayed healing

INJ041 Fracture of the upper limb, subsequent encounter

S42022K Displaced fracture of shaft of left clavicle, subsequent 
encounter for fracture with nonunion

INJ041 Fracture of the upper limb, subsequent encounter

S42022P Displaced fracture of shaft of left clavicle, subsequent 
encounter for fracture with malunion

INJ041 Fracture of the upper limb, subsequent encounter

Fig. 10  a Distributions of ICD-10-CM code of all Pneumonia disease patient visits. The x-axis denotes the ICD-10-CM codes ranked in a descend-
ing order according to their frequency. The y-axis denotes the frequency of each code in log scale. b Distributions of CCSR codes converted from 
ICD-10-CM codes in a. The x-axis shows the CCSR code ranked in a descending order according to their frequency. The y-axis denotes the frequency 
in log-scale
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Table 9  Correspondence between ICD-10-CM and CCSR Categories by Body System

ICD-10-CM Body system description CCSR

A, B Infectious and parasitic diseases INF

C Neoplasma NEO

D Neoplasms, blood,blood-forming organs BLD

E Endocrine, nutritional, metabolic END

F Mental and behavioral disorders MBD

G Nervous system NVS

H Eye and adnexa, ear and mastoid process EYE/EAR

I Circulatory system CIR

J Respiratory system RSP

K Digestive system DIG

L Skin and subcutaneous tissue SKN

M Musculoskeletal and connective tissue MUS

N Genitourinary system GEN

O Pregnancy, childbirth and the puerperium PRG

P Certain conditions originating in the perinatal period PNL

Q Congenital malformations, deformations and chromosomal abnormalities MAL

R Symptoms, signs and abnormal clinical and lab findings SYM

S/T Injury, poisoning, certain other consequences of external causes INJ

U no codes listed, will be used for emergency code additions

V, W, External causes of morbidity (home- EXT

X, Y care will only have to code how patient was hurt; other settings will also code where injury occurred, what 
activity patient was doing)

Z Factors influencing health status and contact with health services (similar to current “V-codes”) FAC

Table 10  APR-DRG codes selected for the six studied diseases

Disease Components APR-DRG Feature

Heart &/lung transplant 2 10

Major cardiothoracic repair of heart anomaly 160 11

Heart Cardiac defibrillator & heart assist implant 161 12

Disease Permanent cardiac pacemaker implant w AMI, heart failure or shock 170 13

Perm cardiac pacemaker implant w/o AMI, heart failure or shock 171 14

Heart failure 194 15

Nervous system malignancy 41 20

Respiratory malignancy 136 21

Digestive malignancy 240 22

Malignancy of hepatobiliary system & pancreas 281 23

Cancer Musculoskeletal malignancy & pathol fracture d/t muscskel malig 343 24

Kidney & urinary tract malignancy 461 25

Malignancy, male reproductive system 500 26

Uterine & adnexa procedures for ovarian & adnexal malignancy 511 27

Female reproductive system malignancy 530 28

Intracranial hemorrhage 44 44

Stroke CVA & precerebral occlusion w infarct 45 45

Nonspecific CVA & precerebral occlusion w/o infarct 46 46

Pneumonia Bronchiolitis & RSV pneumonia 138 138

Other pneumonia 139 139

Diabetes Diabetes 420 420

COPD COPD 130 30
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disease (COPD), diabetes, pneumonia, and stroke. All six 
datasets are imbalanced due to the nature of the read-
mission [15]. In the six datasets, the ratios of non-read-
mission visits (negative samples) to readmission visits 
(positive samples) all exceed 10 (with the largest value 
53). This imbalanced distribution causes the machine 
learning model to be more biased towards majority (neg-
ative) samples, which in our case, non-readmission sam-
ples and causes poor classification of minority (positive) 
classes. As a result, the model will give a high false nega-
tive value, which means a patient is not considered that 
he will be readmitted to the hospital but actually he is. 
Such classification performance will not only hinder the 
application of machine learning models but also will not 
be able to detect potential illness in advance, which goes 
against our intent, because one of the reasons AI models 
are applied to healthcare is to anticipate potential risks, 
to prevent patients suffering from pain, to reduce the 
burden on patients and the burden on the healthcare sys-
tem [24].

In order to tackle the class imbalance, Random Under 
Sampling (RUS) is applied to balance the ratio between 
positive and negative samples. RUS is employed to gener-
ate various versions of relatively balanced training sets, in 
which positive samples have a higher percentage than the 
original dataset. During this process, the sampling radio 
applied to the data is critical, and will impact on the algo-
rithm performance. In addition, RUS changes the sample 
distributions, and inevitably introduces bias to the train-
ing data. In order to address the above challenges, we 
propose to employ three solutions as follows:

•	Sampling Ratios We will employ different sampling 
ratios to the random under sampling to balance the 
positive vs. negative samples, valid the algorithm per-
formance, and choose the best sampling ratios for 
readmission prediction.

•	Ensembles We will carry out random under sampling 
for multiple times on the training data. The classifi-
ers trained from each copy of the sampled data are 
combined to form an ensemble for prediction. This 
will alleviate the bias and improve the overall perfor-
mance.

•	Soft vs. hard voting We will validate two ways to com-
bine classifiers trained from random under sampled 
data, hard voting vs. soft voting. Assume �t() denotes 
a trained classifier in a classifier ensemble E , Eq. (1) 
defines the binary prediction of the classifier on a test 
instance x, where Pr�t (c|x) define the class distribu-
tion (i.e., conditional probability) of the classifier pre-
dicting instance x to class c. Hard voting predicts the 
final class label with the most agreed votes by sum-
ming the predictions for each class label from mod-

els, as shown in Eq. (2), where I(�t(x) = c) returns 1 
if classifier �t(x) predicts instance x to be class c, or 
0 otherwise. Soft voting, defined in Eq.  (3), summa-
rizes the predicted class probabilities for each class 
from models and predict the classes with the largest 
summed probability.

The detailed algorithm procedures for disease-specific 
hospital readmission prediction are listed in Algorithm 1.

Experiments
Experimental settings
We create six disease-specific readmission datasets 
from NRD databases (2016 version). The datasets and 
their simple statistics are reported in Table  11. Using 
feature engineering approaches, we created 526 fea-
tures for each instance (which represents a hospital 
visit). The list of features are summarized in in Table 7. 
Among all features, AGE, TOTAL CHARGES, and 

(1)�t(x) = arg max
c∈{P,N }

Pr�t (c|x)

(2)ŷx = arg max
c∈{P,N }

|E|
∑

t=1

|I(�t(x) = c)|

(3)ŷx = arg max
c∈{P,N }

|E|
∑

t=1

Pr�t (c|x)
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AVE_CHARGE are normalized to range [0, 1] by divid-
ing each value by the maximum value in the column.

In order to evaluate the performance between differ-
ent random under sampling ratios and different voting 
approaches, including hard voting vs. soft voting, for 
disease-specific readmission prediction, we will need to 
repeat experiments for a large number of times. There-
fore, for three large datasets (COPD, Heart Disease, 
and Pneumonia), we randomly sample 300,000 records 
from each of them, and use the sampled datasets to val-
idate the parameter settings. For the remaining experi-
ments, the whole datasets are used for each disease.

All experiments use 10-fold cross validation. For each 
fold, RUS is applied to the training data, using different 
sampling ratios, where the ratios between negative vs. 
positive classes vary from 0.5:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 
1.1:1, 1.2:1, 1.5:1, 2:1, 3:1, 4:1, to 5:1. Instead of using 
1:1 balanced sampling, like most existing methods do, 
we intentionally vary the class ratios to a large range, to 
study how will class distributions impact on the read-
mission prediction results.

Four learning algorithms are used in the experiments, 
including Decision Tree, Random Forest with 500 trees, 
Logistic Regression. and Gradient Boosting.

Performance metrics and statistical test
Four performance metrics, Accuracy, Balance Accu-
racy, F1-score, and AUC, are used in our experiments. 
The purpose of using other three measures, in addition 
to accuracy, is to take class imbalance into considera-
tion for validation.

We use Friedman test [25] to validate statistical dif-
ference between four models trained on the six data-
sets. For each measurement, the classifiers are ranked 
according to their performance in a descending order. 
The classifier with the best score is ranked as 1 and 
the one with the lowest is ranked as 4. Two classifiers 
present the same measurement performance score are 
ranked with the average rank.

Assume that Rj denotes the average rank of a classifier j 
and rji is the rank of classifier j on dataset i, Eq. (4) defines 
the average ranking.

The average rankings of the algorithms are compared by 
the Friedman test. The Friedman statistic is defined as χ2

F 
as shown in Eq. (5) where N means the number of data-
sets and k is the number of classifiers. After the calcula-
tion of the Friedamn test statistic, the χ2

F value is used 
to calculate the p-value, and decide whether the null-
hypothesis is valid, where the null-hypothesis states that 
all algorithms are equal, meaning there is no statistical 
difference between their ranking Rj.

A Nemenyi post-hoc test will be performed for perfor-
mance pairwise comparisons if the null-hypothesis is 
rejected. Critical difference (CD) is used to determine 
the classifiers’ average ranking difference and Eq.  (6), 
in which qα is the Studentized range statistic divided by √
2 [25]. In this study, with four classifiers and α =0.05, 

qα =2.569, therefore, CD =1.9148. The performance dif-
ference between classifiers is plotted using CD diagrams 
(detailed in the experiments).

Results
Hard voting vs. soft voting results
Figure  11 compare the performance between hard vot-
ing and soft voting, with respect to four measurements, 
Accuracy, F1-socre, AUC, and Balanced Accuracy, on all 
six disease specific datasets. For each plot, the x−axis and 
y−axis represent the measurement values of a classifier, 
trained using one sampling ratio and using soft voting 
vs. hard voting, respectively, on all six datasets. Because 
there are 12 different sampling ratios (from 0.5:1 to 5:1), 
four classifiers, and six disease datasets, each plot has 12 
× 4 × 6=288 points. Points below the y = x line are those 
performing better with soft voting and points above the 
line means hard voting outperforming soft voting. The 
head-to-head comparison plots allow us to directly com-
pare soft voting vs. hard voting on all experimental set-
tings and benchmark data. The Accuracy comparisons 
in Fig.  11a show that the number of data points above 
and below the y = x line are 167 and 121, respectively, 
meaning hard voting achieves better performance than 

(4)Rj =
1

N

N
∑

i=1

r
j
i

(5)χ2
F = 12N

k(k + 1)

[

∑

j

R2
j −

k(k + 1)2

4

]

(6)CD = qα

√

k(k + 1)

6N

Table 11  Total sample number and sample ratio in six dis-
ease datasets

Datasets Total sample number Negative:positive 
sample ratio

COPD 327,269 10.88

Heart disease 582,058 10.16

Cancer 171,495 12.3

Diabetes 183,726 10.4

Pneumonia 358,001 7.38

Stroke 273,395 45
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soft voting, but majority of achievements are from using 
Decision Tree classifier. There is no obvious performance 
difference between soft voting vs. hard voting with 
respect to other three classifiers, Gradient Boosting clas-
sifier, Logistic Regression, and Random Forest classifier, 
in terms of accuracy. Ensemble models are know to ben-
efit from unstable base classifiers, such as decision trees. 
Since decision trees are much more unstable than other 
three classifiers, the results in Fig. 11a confirm that using 
decision trees combined with hard voting can boost the 
classification accuracy.

The AUC value comparisons in Fig.  11c show that 
majority points (217 points) are below the y = x line, and 

additional 68 points are right located on the y = x line 
(points on the y = x line mean that soft voting and hard 
voting deliver the same prediction performance). There 
are only three points (288− 217− 68 = 3) that hard vot-
ing outperforms soft voting in terms of AUC values. In 
addition, the point color in Fig. 11c also show that deci-
sion trees using soft voting and hard voting have similar 
performance, whereas there is a significant AUC perfor-
mance gain using soft voting for gradient boosting, logis-
tic regression, and random forest. AUC is calculated by 
using posterior probability values of the ensemble clas-
sifier on a given test instance. Hard voting uses 0/1 fre-
quency count to calculates final posterior probability of 

Fig. 11  Hard voting vs. soft voting performance on all six disease-specific datasets and 12 sampling ratios. Points are color coded by different classi-
fiers, and shape coded by different datasets. Points above y = x diagonal lines denote hard voting outperforming soft voting, and vice versa
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the ensemble, whereas soft voting uses average of the 
base classifier’s posterior probability as the ensemble 
classifier’s posterior probability. This observation shows 
that for 0/1 loss based measures, such as accuracy, hard 
voting may outperform soft voting, whereas for continu-
ously loss based measures, soft voting frequently outper-
forms hard voting.

For F1-score and balance accuracy in Fig.  11b and d, 
the performance of soft voting and hard voting do not 
differ significantly. For F1-score, there are 137 points 
below the y = x line, 14 less than that above the line. For 
balanced accuracy, 173 points are below the y = x line, 
58 points more than points above the y = x line. Because 

soft voting shows better performance majority of times, 
and for imbalanced datasets, AUC and balanced accuracy 
are more objective measures, we choose soft voting in all 
remaining experiments.

Imbalanced learning results
Figure  12 reports the performance of all four classifiers 
on six disease specific datasets, using soft voting and dif-
ferent sampling ratios. Each plot in Fig. 12 reports perfor-
mance measure ( y-axis) of four classifiers on six datasets 
(so there are 4 × 6 = 24 curves in each plot), by using 
different sampling ratios ( x-axis).

Fig. 12  Performance comparisons using soft voting and different sampling ratios. Points are color coded by different datasets, and shape coded by 
different classifiers. Each curve denote one classifier’s performance on a specific dataset, using different sampling ratios
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In the accuracy measure plot in Fig. 12a, the larger the 
sampling ratio, the higher the classification accuracy each 
classifier achieves. This partially demonstrates the class 
imbalance challenge. Because sampling ratio denotes the 
ratio between negative vs. positive samples, the larger 
the sampling ratio (e.g. 5:1), the more negative samples 
the training set has (the ratio in the original datasets are 
all more than 10:1, as show in Table 5). Figure 12a shows 
that as negative samples gradually dominate training set, 
the trained classifier intends to classify more samples to 
be negative, in order to achieve a higher accuracy. The 
higher accuracy, however, does not assure useful clas-
sification results, as shown in F1-score, AUC, and bal-
ance accuracy, where all three plots show a downward/
decreasing trend, after sampling ratios pass certain ratio 
values.

Because plots in Fig.  12 are color coded by different 
datasets, and shape coded by different classifiers, this 
helps understand the performance trend of each classi-
fiers. Overall, decision trees have the worst performance 
in terms of all four measures. Random forest, Logistic 
regression and Gradient boosting are comparable with 
relatively small value variance, and gradient boosting 
shows relative better performance among the three clas-
sifiers. When comparing results of all six disease types, 
Diabetes (red-colored) receive best prediction results in 
terms of all four performance measures. While diabetes 
also have the highest readmission rates among all six dis-
ease types (meaning less severe class imbalance), stroke 
(green-colored) has the second lowest readmission rate 
(Pneumonia has the lowest readmission rate). The AUC 
and balanced accuracy in Fig. 12c and d show that they 
both receive the best and second best prediction results. 
This observation indicates that the prediction results are 
not directly tied to the class imbalance rate. Our sam-
pling and ensemble learning framework is effective to 
tackle the class imbalance. Meanwhile, the readmission 
prediction performance of each disease critically depends 
on the nature and characteristics of the diseases.

Overall, the aforementioned observations for the four 
measures lead to the conclusion that sampling ratio 1.1:1 
presents the best performance of all classifiers on the six 
disease datasets. Therefore, we use 1.1:1 sampling ratio in 
the remaining experiments.

Readmission prediction results and statistical analysis
Table  12 reports the hospital readmission prediction 
results using all samples in Table 11, including four clas-
sifiers’ average performances on the six disease specific 
datasets. The bold-text denotes the best result for each 
measure-disease combination. Overall, the results show 
that gradient boosting achieves the best performance.

In order to fully understand the four classifiers’ perfor-
mance, we carry out Friedman test for each measure, and 
report the critical difference diagram plots in Fig. 13. For 
all measures, we use α = 0.05 , the χ2

F and p values cor-
responding to each measure are reported as ( χ2

F , p) value 
pair underneath each plot. For ease of comparisons, in 
each plot, a horizontal bar is used to group classifiers that 
are not significantly different, meaning that their average 
ranks do not differ by CD).

Figure 13 shows that for all four measures, the largest 
p value is 0.0129 (which corresponds to the F1-score). 
Because all p values are less than 0.05, the null-hypothesis 
(which states that all algorithms are equal and there is no 
statistical difference between their ranking) is rejected. 
This concludes that there is a statistical difference 
between different methods in terms of their performance 
ranking. Meanwhile, the χ2

F value shows the spread of the 
classifier performance. The higher the χ2

F value, the larger 
the variance of all classifiers (with respect to the current 
measure) is. For AUC and balanced accuracy (which are 
the two measures most frequently used to assess classifier 
performance under class imbalance), the gradient boost-
ing outperforms, random forest and logistic regression, 
with random forest outperforming logistic regression, 
in terms of their mean rankings. Also, although these 
three classifiers have different mean rankings, their per-
formance are not statistically different. In summary, the 
critical difference diagrams in Fig. 13 concludes that gra-
dient boosting achieves the best average ranking among 
all models, whereas decision tree has the lowest ranking.

Conclusion
This paper carries out systematic studies to under-
stand data statistics for United States nationwide hos-
pital admission, and further designs a machine learning 
framework for disease-specific 30-day hospital readmis-
sion prediction. We argued that although many meth-
ods exist for hospital readmission prediction, answers to 
some key questions, such as demographic, disease, and 
hospital characteristics with respect to admissions, still 
remain open. Accordingly, we employed national read-
mission databases (NRD), with over 15 million hospital 
visits, to carry out data statistics analysis. We identified 
factors related to three key party of the hospital remis-
sions: patient, disease, and hospitals, and reported 
national scale hospital admission statistic. Based on the 
data statistics, we created 526 features with five major 
types, including demographics features, admission and 
discharge features, clinical features, disease features, and 
hospital features. We collected six disease specific read-
mission datasets, which reflect the top six leading dis-
eases of death.
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Table 12  Readmission prediction performance comparisons using all samples (using soft voting and 1.1:1 sampling 
ratio)

Bold-text denotes best performance on each measure-disease combination (i.e. each row)

Measure Disease Decision tree Random forest Logistic regression Gradient boosting

Accuracy COPD 0.4659 0.7301 0.7317 0.7300

Cancer 0.5260 0.7509 0.7670 0.7536

Diabetes 0.6898 0.8163 0.8249 0.8070

Heart Disease 0.4631 0.6983 0.7194 0.7025

Pneumonia 0.5705 0.6964 0.7262 0.7192

Stroke 0.6261 0.8318 0.8244 0.8263

F1 score COPD 0.1791 0.2414 0.2376 0.2415
Cancer 0.1866 0.2700 0.2841 0.2814

Diabetes 0.3173 0.4201 0.4119 0.4152

Heart Disease 0.1889 0.2350 0.2209 0.2370
Pneumonia 0.2941 0.3607 0.3585 0.3648
Stroke 0.0828 0.1574 0.1482 0.1558

AUC​ COPD 0.5957 0.6767 0.6604 0.6793
Cancer 0.6568 0.7527 0.7596 0.7692
Diabetes 0.8113 0.8753 0.8543 0.8758
Heart Disease 0.5958 0.6732 0.6406 0.6768
Pneumonia 0.6919 0.7678 0.7542 0.7645

Stroke 0.7594 0.8597 0.8484 0.8667
Balanced Accuracy COPD 0.5687 0.6303 0.6250 0.6304

Cancer 0.6176 0.6882 0.6979 0.7030
Diabetes 0.7500 0.7906 0.7682 0.7956
Heart Disease 0.5691 0.6168 0.5954 0.6184
Pneumonia 0.6481 0.7057 0.6894 0.7003

Stroke 0.7023 0.7808 0.7672 0.7852

Fig. 13  Critical difference diagram of classifiers on the six disease specific hospital readmission prediction tasks (Based on results from Table 12). All 
plots use α = 0.05 . The two numerical numbers inside the parentheses denote the χ2

F  and p values for each plot, i.e., ( χ2
F  , p). Classifiers not 

significantly different, (i.e. their average ranks do not differ by CD), are grouped together with a horizontal bar
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By using random under sampling and ensemble learn-
ing, combined with soft vs. hard voting and four types 
of machine learning methods, including gradient boost-
ing, decision tree, logistic regress, and random forests, 
our experiments validate three major type of settings: (1) 
hard voting vs. soft voting, (2) random under sampling, 
and (3) disease specific readmission prediction. Experi-
ments and statistical test results show that soft voting 
outperforms hard voting on majority results, especially 
for AUC and balanced accuracy which are the main 
measures for imbalanced data. Random under sampling 
using 1.1:1 for negative:positive ratio achieves the best 
performance for AUC, balanced accuracy, and F1-score. 
Gradient boosting achieves the best performance for dis-
ease specific hospital readmission prediction, and deci-
sion trees have the worst performance.
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