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Abstract. We consider collective choice problems where a group of agents
has to decide on the location of a public facility in a Euclidean space. A
well-known solution for such problems is the coordinatewise median of the
reported votes and additional fixed ballots. Instead of adding ballots, we
extend the median solution by allowing set-valued outcomes. This especially
applies for location problems with an even number of agents.

1 Introduction

Restrictions to the domain of single-peaked preferences have frequently been
studied for public good models. Here we consider such restrictions for prefer-
ences on a Euclidean space. The public issue(s) to decide on are represented by
points in a Euclidean space, leaving many interpretations open: locations for
a public facility, budgetary constrained investment divisions among several
public projects, bundles of public goods. We are interested in the following
class of single-peaked preference relations: every agent has an individual best
point and his preferences decline according to the distance to this best point.
Because agents might weigh coordinates differently, we assume that prefer-
ences are induced by separable-quadratic distance functions. A (collective)
choice function assigns to each tuple of reported preference relations a single-
valued outcome, a compromise point. A central property in this paper is
strategy-proofness. Strategy-proofness requires that no agent can benefit
by lying about his true preference relation. Well-known strategy-proof choice

We wish to thank two anonymous referees whose comments lead to an improvement of
the paper.
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functions are median choice functions: for the one-dimensional case, at
each preference profile the median of the reported best points is chosen,
and for higher dimensions this method is extended by taking the median
coordinatewise.

Median voting schemes were first analyzed by Black (1948) for single-
peaked preferences. Moulin (1980) characterized all strategy-proof choice
functions for one-dimensional Euclidean spaces when preferences are single-
peaked by median choice functions for which additional fixed ballots are
allowed. Berga and Serizawa (2000) consider maximal domains for rules that
in addition to strategy-proofness satisfy the so-called no vetoer condition.
Extensions of Moulin’s (1980) results to higher-dimensional Euclidean spaces
are provided by Barbera et al. (1993) and Border and Jordan (1983). Similarly
to Border and Jordan (1983), we focus on the class of separable-quadratic
preferences. For generalized median choice functions as considered by Moulin
(1980), Barbera et al. (1993), and Border and Jordan (1983) compromise
points depend on the actual position of the fixed ballots. If there is no external
reason that determines the position of these ballots, then solving the location
problem by generalized medians is as difficult as the original problem itself.
The determination of the fixed ballots, which should then be left to the agents,
is another collective choice problem. Moreover, for an even number of agents
a problem for median choice functions arises when additional fixed ballots are
avoided. In that case, it is not clear how the median should be defined. If there
is no unique median of all reported best points, then one possibility to define
the median is to choose both “median points™. In this paper, we define the
median as the closed interval between the two median points and consider so
called choice correspondences, which assign sets of compromise points to ev-
ery preference profile. For instance, the one-dimensional median choice cor-
respondence yields the closed interval between the two median points, and for
arbitrary dimensions the coordinatewise median correspondence yields the
Cartesian product of these one-dimensional choice correspondences.

In this article, we study the well-known condition of strategy-proofness for
choice correspondences. Similarly as before, strategy-proofness requires that
lying is not profitable for any agent. For single-valued choice functions this
profitability is determined by an agent’s individual preference relation. For
set-valued choice correspondences this profitability is no longer straightfor-
ward. To extend strategy-proofness for choice functions to choice corre-
spondences it is necessary to extend the “pointwise” preference relations to
“setwise” preference relations, i.e., preference relations on the power set of
compromise points. Assuming the existence of best and worst points in two
sets 4 and B, A is weakly preferred to B if the best point in B is not better than
that of 4 and the worst point in 4 is not worse than that of B. This type of
relation on sets can be seen as an extension of approaches studied by Kannai
and Peleg (1984), Bossert (1989, finite subsets), and Nehring and Puppe (1996,
compact subsets). Different approaches can be found in Ching and Zhou
(1997), Kelly (1977), and Nitzan and Pattanaik (1984). By virtue of these
extended preferences, strategy-proofness is reformulated: unilateral devia-
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tions should yield sets of compromise points that are comparable and non-
profitable with respect to the extended preferences on subsets. As these pref-
erence relations are not complete, comparability is an essential condition.

Beside strategy-proofness we consider unanimity and two so-called new-
comer conditions. Unanimity means that if all agents report the same prefer-
ence relation, then the compromise point equals the unanimous best point.
The newcomer conditions restrain the possible influence of a new agent on the
set of compromise points of a fixed coalition &V; these are the tie-breaking and
the non-decisive newcomer condition. If a choice correspondence satisfies the
tie-breaking newcomer condition, then an additional agent, who reports a
preference relation with best point in the set of compromise points of coalition
N, causes a reduction of this set of compromise points to his best point: he
breaks the tie. The non-decisive newcomer condition requires that if an addi-
tional agent reports a preference relation with best point outside the set of
compromise points of coalition N, then after joining this coalition the set of
compromise points never reduces to his best point only. Alternatively we
consider the weak non-decisive newcomer condition where we replace the set
of compromise points with its convex hull: if an additional agent reports a
preference relation with best point outside the convex hull of the set of com-
promise points of coalition N, then after joining this coalition the set of com-
promise points never reduces to his best point only. In this latter condition,
the convex hull of the set of compromise points can be seen as an extended set
of compromise points. The coordinatewise median correspondence is the only
collective choice correspondence satisfying strategy-proofness, unanimity, the
tie-breaking and the non-decisive newcomer condition. A stronger character-
ization result is obtained for the weak non-decisive newcomer condition: a
collective choice correspondence satisfies strategy-proofness, unanimity, the
tie-breaking and the weak non-decisive newcomer condition if and only if the
convex hull of each compromise set it assigns equals the set of coordinatewise
median compromise points.

The organization of the paper is as follows. In Sect. 2 we introduce loca-
tion problems and the ‘“classical” median choice functions. The restricted
definition of the (coordinatewise) median choice function to odd numbers of
agents leads to the setting for our further discussion. In Sect. 3 we skip the
restriction on the number of agents for the median choice function by switch-
ing to set-valued choice correspondences. Now, the original model is adapted,
preferences for sets are described and the four central conditions, strategy-
proofness, unanimity, the tie-breaking and the (weak) non-decisive newcomer
condition, are introduced. In Sect. 4 we show that these four conditions
imply a monotonicity property and a weak form of Pareto optimality. In Sect.
5 we characterize the set of all choice correspondences that satisfy strategy-
proofness, unanimity, the tie-breaking and the weak non-decisive newcomer
condition. Furthermore, we show that the coordinatewise median correspon-
dence is the only choice correspondence that satisfies strategy-proofness,
unanimity, the tie-breaking and the non-decisive newcomer condition. Sect. 6
provides some comments on these results. First, we show that extending the
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set of preferences by non-separable single-peaked preferences yields incom-
patibility of the four central properties. Then, we discuss other extensions of
preferences to subsets of the Euclidean space in relation to strategy-proofness.
Finally, in Sect. 7, we discuss two closely related articles: Border and Jordan
(1983) and Ching and Zhou (1997).

2 Choice functions

A location problem is given by a finite set of agents N who have to agree
on a location, or compromise point, in some Euclidean space E. Here we
assume that E = R where M = {1,...,m}.! Each agent i € N is equipped
with a separable-quadratic preference relation p(i) over E. It is well-known
that this boils down to the following: for each agent i e N there exists a
weight vector 6(i) = (6(i),,...,0(i),) e RY, and a best point b(i) € E such
that for all x, y € E, agent i weakly prefers x to y if and only if

D800 = b(i))* < Y 6(0); (3 — b(i)))*.

jeEM jeEM

In the sequel we normalize the weight vector to length one. Note that every
separable-quadratic preference relation is completely determined by a pair
(6(i), b(i)) where 6(i) e RY, ZjeMé(i)jz =1, and b(i) € E. Let ¥ denote the
set of all separable-quadratic preference relations. For each agent i e N, we
identify the preference relation p(i) € & with its characteristic pair (3(i), b(i))
and write p(i) = (0(i),b(i)) € &. If at preference relation p(i) = (6(i), b(7))
agent i weakly prefers xe E to ye E, then we denote this by x zp(i) V.
Equivalently, we write x 2(5(1.)7 biy) V- Strict preference is denoted by x =, »,
ie,x zp(l) y and not y zp(l-) x, and indifference by x ~,) y, i.e., x zp(i) y and
y zm) x. Equivalently, we write X =), 5(i)) ¥ and x ~(s4), 5(i)) V-

It is easy to check that all separable-quadratic preference relations are
single-peaked, i.e., for p(i) € & there exists a best point, or peak, b(i) € E such
that for all x € E, x # b(i), and all 0 < A < 1, b(i) =p() Ab(i) + (1 — A)x =) X.
A geometric implication of p(i) € & being separable-quadratic is that the
corresponding indifference sets are ellipsoids around the best point b(i) with
main diagonals parallel to the coordinate axes. The closer these ellipsoids are
to b(i) the better the points on it are.

By " we denote the set of all ( preference) profiles p = {p(i)»;cy such
that for all i e N, p(i) € &. A (collective) choice function ¢ is a function that
assigns to every profile p e ¥V a point ¢(p) in E. This point is called the
compromise point. A choice function that only depends on the peaks of the
preference profiles and disregards the underlying preference relations satisfies

' By R we denote the set of real numbers, R, = {xeR|x>0}, and R, =
{xeR|x > 0}. By RM we denote the Cartesian product of | M| copies of R, indexed

by the elements of M; RY and RY, are defined similarly.
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peak-onliness.?> Choice functions that satisfy peak-onliness are called voting
schemes.

Note that the agents’ preference relations are private information. Still we
would like to find the compromise point on basis of “correct information”.
Therefore, the first property of choice functions we are interested in is
strategy-proofness: no agent ever benefits from misrepresenting his preference
relation.® Before we formulate its definition, we introduce some notation.

Let p,ge " and & # S = N. The restriction of profile p to S is denoted
by ps € 5. We write p =g ¢ if ps = gs. For finite sets X, Y, | X| denotes the
cardinality of X and X\Y = {xe X |x¢ Y}.

Strategy-proofness. A choice function ¢ is strategy-proof if for all i € N and all
profiles p,q € " with p =N} 9>

o(p) Zp(i) o(q)-

For one-dimensional location problems with an odd number of agents it is
easy to see that taking the median of all reported points is a well-defined and
strategy-proof voting scheme; see for example Moulin (1980). The definition
of the median we state here is well-defined for arbitrary finite numbers of
agents and coincides with the “classical” median whenever it exists. We define
the median of a finite set ' = IR by

med(V)E{xe]R||{veV|vsx}z L;/‘ and [{ve Vo> x| > |Z|}

If | V| is odd, then med(V) is a singleton. If | V] is even, then med(V’) is either
a singleton or a closed interval.

For higher dimensional location problems in E with an odd number of
agents, applying the median coordinatewise yields the following well-defined
choice function.

The coordinatewise median choice function. Let N be such that |N| is odd.
For all p = <6(i),b(i)Y;cy € &V, the coordinatewise median choice function is
defined by

Pmed(P) = X such that for all j € M, x; = med({b(i);|i € N}).

Note that the coordinatewise median choice function is strategy-proof; see
for example Border and Jordan (1983). Because the coordinatewise median
choice function only depends on the individual best points, we also refer to it
as to the coordinatewise median voting scheme.

2 A choice function ¢ is peak-only if for all p = <5(i),b(i)dicn, P’ = <5 (D), 0" (i) Dien
€ & such that for all i € N, b(i) = b’ (i),

o(p) =o(p").

3 In game theoretical terms, a choice function is strategy-proof if in the direct revela-
tion game form it is a weakly dominant strategy for each agent to announce his true
preference relation.
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3 Choice correspondences

Since later on we also admit variations of the set of agents, we consider a set
of potential agents denoted by N. By ./ we denote the class of non-empty and
finite subsets of N. We call N € A" a coalition. A (collective) choice corre-
spondence Y is a function that assigns to every coalition N € /" and every
profile p e " a subset Y (p) of E. We call Y (p) the set of compromise
points.* Choice correspondences that satisfy peak-onliness are called voting
correspondences.

Because the set of compromise points assigned by a choice correspondence
might generically be empty, we formulate the following property.

Nonemptiness. A choice correspondence s is nonempty if for all N € 4" and all
pes”,

v (p) # .

For (6,b) € &, (9, b)N denotes the unanimous profile {(9,b),...,(d,b))
e V. Next, we focus on choice correspondences that assign to each unani-
mous profile the “unanimous best point”.

Unanimity. A choice correspondence  is unanimous if for all N € /" and all
(0,b) e 7,

v ((6,0)") = {b}.

The next conditions we introduce describe the influence of an additional
agent, a “newcomer’’, on the set of compromise points. Let i be a choice
correspondence, N be a coalition, and p be a profile in &". Then we can in-
terpret the set of compromise points /" (p) as the set of alternatives among
which coalition N is unable to make any further restriction. In some sense,
according to N, all compromise points in " (p) are equally good. Now,
consider a newcomer k ¢ N who joins N at profile p and reports preference
relation p(k) € & with best point b(k) contained in the set of compromise
points ¥ (p). Then agent k is in favor of point b(k) whereas N is indifferent
between all compromise points in ™ (p). If the choice correspondence sat-
isfies the tie-breaking newcomer condition, then agent k breaks the tie in favor
of his best point.

Let Ne /', k¢ N, pe YN, and p(k) = (6(k),b(k)) € . Then, {p, p(k))>
e NV denotes the profile where each agent i € N reports p(i) and agent k
reports p(k). With some abuse of notation we write ¥V} (p, p(k)) instead

of YN ((p, p(k)Y).

4 For convenience, we will identify any choice function ¢ on &V with a (N-voting)
correspondence ¢? by identifying compromise points with singleton compromise sets:
forall pe Y, 9" (p) = {o(p)}.
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Tie-breaking newcomer condition. A choice correspondence  is tie-
breaking for newcomers if for all N e A", all p e &V, and all k ¢ N with p(k)
= (0(k),b(k)),

b(k) ey (p) implies ¢ ¥ (p, p(k)) = {b(k)}.

Young (1974, 1975) introduced a stronger condition to characterize score
rules, called consistency, which implies the tie-breaking newcomer condition.
Young’s consistency notion requires the following. Let N, N’ € .4 be disjoint,
pesN and p'e SN YN (p) n N () # B, then VN (p, p') = ¥ (p)
Ay (p).

The non-decisive newcomer condition discussed next limits the decisiveness
of newcomers and implies non-dictatorship. Consider the situation described
above with one difference, namely that the newcomer k ¢ N who joins N at
profile p reports a preference relation p(k) € & with best point b(k) not con-
tained in the set of compromise points /" (p). Then the non-decisive newcomer
condition requires that the set of compromise points is not reduced to the best
point b(k) of agent k’s reported preference relation. Hence, the newcomer £ is
not decisive.

Non-decisive newcomer condition. A choice correspondence V is non-decisive
for newcomers if for all Ne./, all pe ", and all k¢ N with p(k) =

(0(k), b(k)),
b(k) ¢ ™ (p) implies YV ¥ (p, plk)) # {b(k)}.

A weakening of the non-decisive newcomer condition is the following weak
non-decisive newcomer condition where a newcomer k¢ N who joins N at
profile p and reports a preference relation p(k) € % with best point b(k) not
contained in the convex hull conv(y"(p)) of the set of compromise points
Y (p) is not decisive. Here, we interpret conv(y" (p)) as an extended set of
compromise points.

Weak non-decisive newcomer condition. A choice correspondence  is weakly
non-decisive for newcomers if for all N e A", all pe &Y, and all k ¢ N with

p(k) = (0(k), b(k)),
b(k) ¢ conv(y™ (p)) implies Y (p, p(k)) # {b(k)}.

In the sequel we often use the contrapositive of the latter implication:

YN (p, p(k)) = {b(k)} implies b(k) e conv(y" (p)).
It is easy to check that the non-decisive newcomer condition implies the weak
non-decisive newcomer condition. Note that for convex valued choice corre-
spondences the weak non-decisive newcomer condition coincides with the non-
decisive newcomer condition.

Finally, we extend strategy-proofness, already defined for choice functions,
to correspondences. Again, strategy-proofness should guarantee that no agent
ever benefits from misrepresenting his preferences. Given a choice function, it
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is clear that an agent can only benefit from lying if he strictly prefers the
compromise point when lying to the compromise point when telling the truth.
Given a choice correspondences, agents have to compare sets of compromise
points in order to evaluate possible benefits from lying. Hence, in order to
define strategy-proofness, we need to extend the agents’ preference relations on
E to preference relations on the power set of E, denoted by 2. Several of
these extensions are studied in the literature (see our references later on). Here,
we focus on one of these possible extensions. However, as we will explain in
Sect. 6, this choice is not arbitrary and our results depend very much on this
specific extension.

Preferences on subsets of E. For all X, Y € 2% and all (J,b) € &,
X ZonY
if and only if

(i) for all x € X there exist y € Y such that x Zs,5) ¥ and
(ii) for all y € Y there exist x € X such that x Zo.5) V-

In words, we say that an agent with best point b and weight vector 6 weakly
prefers X to Y if for every point in Y there exists a point in X which is at least
as good for him and for each point in X there is a point in Y which is at least
as bad for him. If X and Y are compact sets of compromise points, then an
agent with best point b and weight vector 0 weakly prefers his best points in X
to his best points in Y. Furthermore, he weakly prefers his worst points in X to
his worst points in Y.*> Hence, for points x, y € E it follows that x 2, , » if
and only if {x} % » {»}. In this sense the relation “2; ;) on E” is extended
to a relation “; ;) on 257,

The extension of a preference relation on a set to its power set we propose
here generalizes extensions analyzed in Kannai and Peleg (1984), Barbera et
al. (1984), Bossert (1989), and Nehring and Puppe (1996). Kannai and Peleg
(1984) discuss an extension of a linear order on a finite set by comparisons of
best and worst points. Bossert (1989) provided an axiomatic characterization
of this extension. For finite subsets of £ our extension coincides with those
discussed in Kannai and Peleg (1984), Barbera et al. (1984), and Bossert
(1989). Nehring and Puppe (1996) study an extension of preferences on E to
compact subsets of E. Their extension coincides with our Z; , on these
compact subsets.

It is easy to see that any preference relation 5(5_ p) ON 2F defined by
(0,b) € Z, is reflexive but need not be complete (e.g., for the closed intervals
X =1[0,3], Y = [1,2], neither X 2, ¥ nor ¥ ;o X). Furthermore, by the
definition of ; ;) on E and transitivity of <, transitivity of Z; , on 2F fol-
lows easily.

Now, similarly as before, we can formalize strategy-proofness for choice
correspondences.

> For compact sets, best and worst points with respect to (J,5) do exist.



Choice correspondences 135

Strategy-proofness. A choice correspondence Y is strategy-proof if for all
Ne .V, allie N, and all p,q e " with p =w\{i} ¢

N N
¥ (p) ?p(f) ¥ (q).
Note that our notion of strategy-proofness also contains the require-
ment that the sets of compromise points before and after any unilateral devi-

ation are comparable. The following lemma is an immediate consequence of
strategy-proofness and unanimity.

Lemma 1. Let the choice correspondence W satisfy unanimity and strategy-
proof-ness. Then \y is nonempty.

Proof. Let N € 4 and assume, without loss of generality, that N = {1,... n}.
Let p = (6,b)" be a unanimous profile. By unanimity, Y~ (p) # &5. We have
to show that for all ge .Y, YV (q) # &. Let ¢ = {¢(1),...,q(n))> and for
1€40,...,n}, ¢" =<q(1),...,q(1),p(Il+1),...,p(n)>. Note that ¢° = p and
q" =gq. For [ =1 it follows that p =m 1 g'. Hence, by strategy-proofness,
YN (p) =, Y (¢"). Thus, for all x° e Y™ (p) there exists x' e " (¢!) (such

~p(1)
that x* .zp(l) x1).° ?vince q' =N\{2} g, by strategy-proofness, for x! E'l//N((]l)
there exists x> € " (¢*). Similarly, for each /€ {3,...,n} there exists x’ e
¥ (q"). Hence, Y (¢") =" (q) # &. O

In situations where all agents of a subcoalition report the same preference
profile, strategy-proofness can be adapted as follows. Intermediate strategy-
proofness requires that unanimous subcoalitions cannot gain by strategic be-
havior.

Intermediate strategy-proofness.” A choice correspondence V is intermediate
strategy-proof if for all N e A", all S N, all (§,b) e ., and all p,ge &V
with p =ys ¢ and pgs = (6,b)°,

'ﬂN(P) E(a.b) l//N(Q)~

The following lemma corresponds to a result for voting schemes; see Peters
et al. (1992), Lemma 2.4.

Lemma 2. A choice correspondence Vs is strategy-proof if and only if it is inter-
mediate strategy-proof.

Proof. By definition, intermediate strategy-proofness implies strategy-
proofness.

In the remainder of the proof we show that strategy-proofness implies
intermediate strategy-proofness. Let N € A/~ and S < N. Assume, without
loss of generality, that N ={1,...,n} and S ={l,...,s}. Furthermore,
let (0,b) e, p,ge SN with p=mysq and pg=(d,h)°. We prove that
‘//N(P) 2(5,1;) WN(‘])'

6 Note that in fact we are only interested in the existence of such an x!' e YV (g").
7 See Peters et al. (1992) for intermediate strategy-proofness of voting schemes.
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For 1e{0,...,s}, ¢'=<q(1),...,q(1),p(I+1),...,p(n)>. Note that
" =p and ¢* =q. For [€{0,...,s—1} it follows that ¢/ =y 1)¢""".
Hence, by strategy-proofness, y" (q') Z 5.5 " (¢"!). Thus, y¥ (p) = ¢V (¢")

~(

Z5,6) vV (q") Zo.b)" " R0.b) ¥ (g*) = ¥ (q). So, by the transitivity of Z(5,6)>
v (p) Z5.0) v (q). U

A choice correspondence that satisfies all conditions for choice corre-
spondences we introduced in this section is the coordinatewise median corre-
spondence. It assigns to each preference profile the Cartesian product of the
coordinatewise medians.

The coordinatewise median correspondence. For all N e 4/ and all p=
(i), b(i)y;eny € SV the coordinatewise median correspondence .4 is
defined by

Vimea(P) = @ med({b(0); |i e N}).

jeM

Note that although the coordinatewise median correspondence is defined
as choice correspondence, we can also interpret it as a voting correspondence
that only depend on the peaks of the reported profiles.

Lemma 3. The coordinatewise median correspondence \.,..q satisfies unanimity,
strategy-proofness, the tie-breaking and the non-decisive newcomer condition.

The straightforward proof of Lemma 3 is left to the reader.

4 Monotonicity and coordinatewise Pareto optimality

In this section we show that choice correspondences that are unanimous,
strategy-proof, tie-breaking and weakly non-decisive for newcomers satisfy a
monotonicity condition and a weak form of Pareto optimality. Furthermore,
we show that the correspondence that associates with each set of compro-
mise points the smallest closed set of compromise points inherits unanimity,
strategy-proofness, the tie-breaking and the weak non-decisive newcomer con-
dition from the original correspondence.

First, we discuss monotonicity. The monotonicity condition we introduce
here resembles the well-known strong positive association introduced by
Muller and Satterthwaite (1977). Loosely speaking, monotonicity requires the
following. Consider p,q € " and x € E. If " (p) = {x} and for all agents i
in N, x “improves” by going from profile p to profile ¢, then " (¢) = {x}. In
order to formalize monotonicity, we introduce some notation.

Letie N, p(i) = (6(i),b(i)) € &, and x € E. The weak upper contour set of
p(i) at x, denoted by C(x, p(i)), equals the set of all y € E such that y Zp(i) X-
So, C(x, p(i)) is the ellipsoid, with centre b(i) and weight vector 6(i) through
x, plus its interior:
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C@mﬁ»{yeEZZM%UVJWMZSE:N%O%—M%V}

jeM jeM

The strict upper contour set ofp( /) at x, denoted by C°(x, p(i)), equals the set
of all y € E such that y -, x. So, C°(x, p(i)) is the interior of C(x, p(i)):

C(x, (i) = {y € B a0y, — b(i))* < 3 8(i); 0 - b(f)_jﬁ}.

jeM jeM
For a finite set V' we define the box of V by

box(V) = {yeE|forall]eM mly v <y < max uj}
ve

Now consider b(i) € box({h(i), x}) such that for all je M, b(i /); = x; only if
b(i); = x;. For each such b(i) there is a vector of weights 6(i) su ch that at x the
elliptic boundaries of the weak upper contour sets of p(i) = (6(i), b(i)) and

p(i) = (9(i), b(i)) are tangent to each other and C(x, (i) = C(x, p(i)). So, if

b(i) # b(i), then C(x,p(i))\{x} < C°(x, p(i)). Note that going from p(i) to

p(i) location x improves, i.e., for all y € E, x Z,,) y implies x 25 ».
Summarizing, we say that (i) = (5(i),b(i)) € & is an x-improvement of

p(i) = (6(i),b(i)) e 7 if

o b(i) € box({h(i),x}) is such that for all j e M, I;(i)j = x; only if b(i); = x;
and

* J(i) is a weight vector such that the ellipsoid with centre b(i) and weight
vector o(7) is tangent at x to the ellipsoid with centre b(i) and weight
vector 0().

Monotonicity. A choice correspondence Y is monotonic if for all N e .47, all
xeE and all p = <5(i),b(i)Yicn, P = <0(i),b(i)D;cy € &V such that for all
i € N, either p(i) = p(i) or (i) is an x-improvement of p(i),

¥ (p) = {x} implies ¥"(p)={x}. )

Lemma 4. Let the choice correspondence \ satisfy strategy-proofness, unani-
mity, the tie-breaking and the weak non-decisive newcomer condition. Then,

(i) ¥ is monotonic.
(ii) for all xe E and all p = {5(i),b(i)Yicn, P = <0(i),b(i)>ien € N such
that for all i € N, either p(i) = p(i) or p(i ) is an x-improvement of p(i),
)-

xey(p) implies xeconv(y®(p)
b

Proof. Let Ne .V, xe E, and p = 5(i),b(i)Dicn, P = 6(i),b(i)D;cy € IV
be such that for all i e N, either p(i) = p(i) or p(i) is an x-improvement
of p(i).

(i) We have to prove that " (p) = {x} implies " (5) = {x}.

Let " (p) = {x}. We assume, without loss of generality, that for some
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ieN, p=nyyp-If p(i) = p(i), then p = p and we are done. Let p(i) # p(i).
Since p(i) is an x-improvement of p(i), b(i) # b(i) and 6(i) # 6(i). Hence,

Clx, p()\{x} = C(x, p(i)). (2)

Now, by strategy-proofuess, Y™ (p) Z (i) YN (p) and ¥ (p) Z) ¥ (p). Since
¥ (p) = {x}, for all y e y"(p),

X Zpn v and y Zs;x (3)

By (3). ¥ (5) A C°(x, p(i)) = & and y*(p)  T(x, (). Hence, by non-
emptiness (Lemma 1) and (2), " (p) = {x}.

(ii) We have to prove that x € " (p) implies x € conv(y™ (p)).

Let x e "V (p). Let k ¢ N and p(k) = (5(k),x) € &. Since \ is tie-breaking
for newcomers, yN " (p, p(k)) = {x}. So, by monotonicity, Y™ (p, p(k))
= {x}. Hence, by weak non-decisiveness for newcomers, x € conv(y™ (p)). [

Next, we introduce a necessary condition for Pareto optimality.® This
weaker form of Pareto optimality, called coordinatewise Pareto optimality,
requires that every coordinate of a compromise point is bounded from below
(and above) by some best point belonging to an individual preference relation.
Hence, in each coordinate, we have Pareto optimality.

Coordinatewise Pareto optimality. A choice correspondence V is coordinate-
wise Pareto optimal if for all N € 4" and all p = <5(i), b(i)d;cy € LV,

Y™ (p) < box({b(i) |ie N}).

Border and Jordan (1983) and Peters et al. (1992) show that there exist no
strategy-proof, anonymous, and Pareto optimal choice functions when the
number of agents is even. For choice correspondences this incompatibility
does not hold. The coordinatewise median correspondence is Pareto optimal
in terms of the extended preferences even if the number of agents is even.®

Now we prove that a choice correspondence s satisfying strategy-
proofness, unanimity, and both newcomer conditions is coordinatewise Pareto
optimal. The proof is by induction on the number of different prefer-
ence relations at a profile. For p e " we denote this number by u(p) =

{p(i)|ie N}

8 As usual, a set of compromise points is Pareto optimal if there exists no other set of
compromise points such that all agents are weakly better off and at least one agent is
strictly better off.

Both, the choice of the preferences and the choice for set-valued outcomes makes it
difficult to find a (simple) description of all Pareto optimal sets of compromise points.
Sufficient conditions for Pareto optimality strongly depend on the weight vectors of the
individual preferences.
® Note that a set that is Pareto optimal in terms of the extended preferences might
contain compromise points that are itself not Pareto optimal in terms of the original
(“pointwise”’) preferences on E.
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Lemma 5. Let the choice correspondence s satisfy strategy-proofness, unani-
mity, the tie-breaking and the weak non-decisive newcomer condition. Then \ is
coordinatewise Pareto optimal.

Proof. Since  is nonempty (Lemma 1), for all p e ¥, y(p) # &. By induc-
tion on x € N we prove that for all Ne A" and all p=<d(i),b(i)Dicn
e 9N with u(p) = «,

Y™ (p) = box({b(i)|i e N}).

Induction basis. k = 1.
If u(p) = 1, then p is a unanimous profile. We are done by unanimity.

Induction hypothesis. For all N e A" and all p = <6(i), (i) ;cy € ¥V,

w(p) <wx implies ¥ (p) < box({b(i)|ie N}). (4)

Induction step. k — k + 1.
Let N € A" and p = {(i),b(i)D;cy € ¥ be such that u(p) = x + 1. Suppose,
by contradiction, that Y (p) & box({b(i) |i € N}). Since x > 1 it follows that
u(p) = 2. Let Ty, T, .., T,y be the partition of N in subcoalitions such that
in each subcoalition 7,, /e {l,...,k+ 1}, all members have the same
preference relation at p. Because Y (p) & box({h(i)|ie N}), there exists
xey™(p) and j e M such that either for all i € N, x; < b(i); or for all i e N,
x> b(i)j. We assume, without loss of generality, that for all i e N, x; < b(i)j
and T} = {1,2,...,t}.

Let y € C°(x, p(1)) such that for all m e M\{j}, xm = yn and x; < y; <

min;ey b(i);. Because C°(x,p(l)) is an open set there is an open
e-neighborhood around y, say N.(y) = {ze€E| djem(zi— yj)2 < &%}, such
that N,(y) < C°(x, p(1)). Let e = ﬁ Then for all i € N, there exists b(i) €

box({x,b(i)}) N Nz(p) such that for all /€ M, b(i), = x; only if b(i), = x;.
Note that box({b(i)|ie N}) = N,(y).

Forall /e {l,...,k+ 1} and all ij,i € Ty, b(i;) = b(i»). Hence, without
loss of generality, for all # € {1,...,x+ 1} and all ij,i» € Ty, b(i1) = b(ir).
Now consider p € &" such that for all i € Ty, p(i) = p(i) and for all i € N\ T},
p(i) = (6(i), b(i)) such that either p(i) = p(i) or p(i) is an x-improvement
of p(i). Since x e Yy (p), by Lemma 4 (ii), x € conv(yy™ (p)). Thus, by x ¢
C°(x, p(1)) and the convexity of C°(x,p(l)) it follows that there exists
% ey (p) such that X ¢ C°(x, p(1)).

Let s € 75, which exists because u(p) > 2. Consider ¢ € " such that for
all ie Th and se Ty, q(i) = p(s) and ¢ =y\7, p. Note that by construction,
u(p) <xk+1 and u(q) < k. Therefore, by the induction hypothesis (4),
le(q) < box({h(i)|i e N\T;}). Thus, sz(q) < N.(y) < C°(x, p(1)). Hence,
forall ze Y™ (q), z=p) X.

Next, recall that for all i € Ty, p(i) = p(1), q(i) = p(s), and p =n 7, ¢. So,
by intermediate strategy-proofness, " (p) Zp(1) " (g). Thus, there exists
z ey (qg) such that ¥ Z,p(1) 2 This yields the desired contradiction. O
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Finally, we define the closure ¥ of any correspondence . Note that for
any subset X of E, the set X denotes the closure of X (with respect to the
standard Euclidean topology). Thus, X is the smallest closed set in E that
contains X.

Closure of . For any correspondence s the corresponding closure 1 is defined
as follows. For all N e 4" and pe &V, YV (p) =y (p).

Lemma 6. Let the choice correspondence  satisfy strategy-proofness, unani-
mity, the tie-breaking and the (weak) non-decisive newcomer condition. Then
also satisfies strategy-proofness, unanimity, the tie-breaking and the (weak)
non-decisive newcomer condition.

Proof. It follows easily that  satisfies unanimity and the (weak) non-decisive
newcomer condition.

Strategy-proofiess. Let N € A", ie N, and p,q e " be such that p =M} 4-
We have to show that §/V(p) 2, W™ (q), i.e., (i) for all x € yV(p) there exist
y € ¥V (g) such that x ;) v and (ii) for all y € "(q) there exist x € "(p)
such that x 2z, ».

(i) Let x € y"(p). Because YV (p) is the closure of " (p), there exists a
sequence {x'},_n in ¥ (p) that converges to x. By strategy-proofness of \,
there exists a sequence {y'},_x in " (g) such that for all / e N, x’ Z0 V' By

i

Lemma 5, " is coordinatewise Pareto optimal. Hence, for ¢ = <5(i), b(i)>;c v,
¥ (q) = box({h(i)|i e N}). Since box({h(i)|ie N}) is a compact set, it is
without loss of generality to assume that {y’}, . converges to a point
y ey (g). Since %, is a continuous preference relation, x',, ' for all

I e N implies x %, v. Hence, for all x e YN (p) there exist y e YV (q) such
that x 2, ; ». The proof of (i1) is similarly.

Tie-Breaking newcomer condition. Let Ne /', pe SN, and k¢ N be
such that p(k) = (6(k),b(k)) and b(k)ey™(p). We have to show that
PN (p, (k) = {B(K)}.

Because /" (p) is the closure of y" (p), there exists a sequence {x'},_y in
" (p) that converges to b(k). For all / e N, let p(k)' = (5(k)', b(k)") be such
that (k)" = x'. By the tie-breaking newcomer condition of , for all [ € N,
YV (p (k)Y = {x'}. So, for all e N, YN & (p, p(k)") = {x'}. Because
{x"},.n converges to b(k), it follows by strategy-proofiess of ¥ that

YN (p, p(k)) = {b(k)}. O

5 Two characterization results

The main objective of this section is to characterize the class of choice corre-
spondences that satisfy strategy-proofness, unanimity, the tie-breaking and the
weak non-decisive newcomer condition. We prove that the convex and closed
hull of any choice correspondence that satisfies all properties mentioned above
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equals the median choice correspondence (Theorem 1). Furthermore, if the
weak non-decisive newcomer condition is strengthened to the non-decisive new-
comer condition, then the median choice correspondence is the only corre-
spondence satisfying all the properties (Theorem 2).

Throughout this section we assume that i and  (Lemma 6) are choice
correspondence that satisfies all properties mentioned above. Hence, by Lem-
mas 1, 4, and 5,  and ¥ satisfy nonemptiness, monotonicity, and coordinate-
wise Pareto optimality.

Let x be a compromise point of  at profile p € " and j e M. First we
prove that the number of agents reporting a best point at p with its j* coor-
dinate strictly smaller than that of x is smaller than, or equal to, half of the
number of agents at p. A similar result holds for the number of agents
reporting a peak with its j” coordinate strictly greater than that of x. From
this and nonemptiness it is obvious that for any location problem with an odd
number of agents the compromise point is the unique coordinatewise median
of the reported best points. Applying the two newcomer conditions then yields
that this holds for the convex hull of the set of compromise points at any lo-
cation problem with an even number of agents. The proof of the first two steps
is by induction on w(p), the number of different preference relations reported
at a profile p. The induction step when u(p) = 2 differs from all the other
steps, therefore it is treated separately in the following two lemmas.

In Lemma 7 we proof the induction step u(p) = 2 in the special case where
the reported peaks at p are on a line parallel to one of the axis. In Lemma 8
the result is generalized to arbitrary profiles p with u(p) = 2.

Lemma 7. Let the choice correspondence  satisfy strategy-proofness, unani-
mity, the tie-breaking and the weak non-decisive newcomer condition. Let
Ne N and & #S < N. Let je M and (6,b),(8',b") € & be such that b # b’
and b =p(;y b'. Let p e &V be such that for all i € S, p(i) = (5,b) and for all
ie N\S, p(i) = (6',b"). Then, b e Yy (p) if and only if |S| > 1|N|.

Proof. The proof is by induction on |N| = «.

Induction basis. k¥ = 1.
Then, |[N| =1 and p = (6,b) € . We are done by unanimity.

Induction hypothesis. Let N € ./ be such that |N| < x and g#+S S N. Let

jeM and (8,b), (0, b)e % be such that b # b and b M\{j}b Let p e &N be
such that for all i € S, p(i) = (J,b) and for all i € N\S, p(i) = (6, b). Then,
bey™(p) if and onlyif [S| > L|N|. (5)

Induction step. k — k + 1.

Let N € /" be such that [N| =k + 1. Let & # S = N, (3,b),(8',b') € &, and
p e &Y be as in the lemma. Then we have to prove that b € YV (p) if and only
if |S] > 1[N

If part. |S| > L|N| implies b € YV (p).
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Suppose, without loss of generality, that b < b/ Suppose that b ¢ ™ (p).
Now, it is sufficient to prove that |S| <5 |N |. By unanimity it follows that
S # N. Because YV (p) is closed, there exists an open e-neighborhood N, (b)
such that " (p) N N,(b) = &. Consider p°e #" such that for all ie S,
p°(i) = (6,b) and for all ie N\S, p°(i) = (6",b") where b° =;(; b and
by =bj +e. _

~ First we prove that " (p®) n N,(h) = . Suppose, by contradiction,
there exists x € Y (p°) N N,(b). By coordinatewise Pareto oplimalily it follows
that bZM\{j} X =\ b° and bj X < bo Let b! =M\ % and bjl =

0

x
ming b7, b + T] and consider p' € &V such that for all ie S, p'(i) =

(6,b) and for all i e N\S, p'(i) = (6',b"'). Because of coordinatewise Pareto
optimality it follows that for all y e y¥(p'),

y=myy b=y b' and b <y <b. (6)

By (6) and intermediate strategy-proofness applied to p°, ple sV there exists
x' e YN (p') such that |b) — x;| < |b) — x/| and x] < x] Hence, x! e yV(p!)
AN, (b) and YN (p') AN, (b) # @ Next, let B2 =gy b' and b} =

1 1 !

minq b/, b} + - 5 /% and consider p?>e " such that for all ieS,

p*(i) = (6,b) and for all i e N\S, p?(i) = (¢',b*). Similarly as before it fol-
lows that "V (p?) n N,(b) # &. By repeating this argument we construct a
sequence of profiles {p’} that converges to p in finitely many steps. Further-
more, for each profile p’ it follows that y"(p') n N,(b) # &. Thus,
YN (p) n Ny(b) # &. Hence, we have a contradiction.

So, ¥ (p®) A N,(b) = J. Thus, by nonemptiness and coordinatewise
Pareto optimality it follows that YV (p°) = {h°}. Because S # N there
exists /e N\S. Thus, by the weak non-decisive newcomer condition we
have that b° € conv(y "\ (p}, y)). Furthermore, by coordinatewise Pareto

optimality, @N\{’}(p?v\{l}) < box({h,b°}). Hence, b’ € &N\{’}(pg,\{l}). Apply-
ing the induction hypothesis (5) yields [(N\{/})\S|> 1|N\{/}|. Hence,
S| < 3IN.

Only if part. b € ¥ (p) implies |S| > L|N|.

Suppose |S| < $|N|. Then we have to prove that b ¢ ¥ (p). Let T <N\S be
such that |S| = |T|. Then |S U T| < |N|. So, by the induction hypothesis (5), it
follows that b’ € ySYT(pg, 7). Hence, by the tie-breaking newcomer condi-

tion, YN (p) = {b'} and b ¢ Y™ (p). O

Lemma 8. Let the choice correspondence y satisfy strategy-proofness, unani-
mity, the tie-breaking and the weak non-decisive newcomer condition. Let
Ne A and S = N be such that |S| > L|N|. Let (6,b),(6',b") € & and pe &~
be such that for all i € S, p(i) = (6,b) and for all i e N\S, p(i) = (6',b"). Then,
v (p) = {b}.
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Proof. Let j € M. Tt is sufficient to prove that for all x e Y (p), x; = b;.

Case 1. b; = b;.
Then we are done by coordinatewise Pareto optimality.

Case 2. b; > b;.
Let (6",b") € y be such that b” =y/\(;, b and b/ = b/. Consider g € " such
that for all ie S, ¢(i) = (6,b) and for all leN\S q() (6”,b"). Because
|S| > L|N|, we conclude by Lemma 7 that bey™(q) and b” ¢ y"(¢). By
coordmatewzse Pareto opllmallty, for all x ey (q), X =\ b and b; <
< b/'. We prove that in fact vV (q) = {b} Assume, by contradiction, that
there ex1sts a compromise point xelp (¢) such that x; > b;. Consider
p' e 7Y such that for all ie S, p'(i) = (6,b) and for all leN\S p ()
(0", x). By intermediate strategy-proofness, x € " (p'). Since |N\S| < L[N,
this contradicts Lemma 7. Hence, ¢ (¢) = {b}.
So, by intermediate strategy-proofness, for all xey™(p), x¢
C°(b,(6",b")). As this is independent of the choice of weight vectors, by
considering a sequence of weight vectors {0}, x such that lim ¢F =0

(HQC

for /e M\{j} and hm 5k =1, we conclude that for all x e y” (p), either

Xj<b; or x; = 2b —b Hence by coordinatewise Pareto optimality, for
all x e 'V (p), xjfb

Case 3. bjf < b;. Similarly to Case 2. I

Now we are able to prove that the number of agents who are reporting a
peak with its j coordinate strictly smaller (greater) than that of a compro-
mise point x is bounded by half of the number of agents that are present.

For je M, Ne A, p=<(i),b(i)) € ¥V, and x € E define

L(j>x7p) = {l€N|b(l)/ < xj}§

1(j,x,p) ={ie N|b(i); = x;};

G(j,x,p) ={ie N|b(i); > x;}.
Lemma 9. Let the choice correspondence \ satisfy strategy-proofness, unani-
mity, the tie-breaking and the weak non-decisive newcomer condition. Let

NeA,jeM, p=<6(i),b(i)ey € LN, and x e YN (p). Then, |L(j,x, p)| <
2|N| and |G(j,x, p)| < 2|N‘-

Proof. Let N e V', je M, pe " with u(p) = x, and x e V¥ (p). We prove
by induction on x € N that |L(j,x, p)| < 1|N|. The proof of |G(j,x,p)| <
LIN| is similar.

Induction basis. u(p) < 2.
If u(p) = 1, then we are done by unanimity. If u(p) = 2, then we are done by
Lemma 8.

Induction hypothesis. Let Ne NV, je M, pe N such that w(p) <, and
% ey (p). Then,
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IL(j,x,p)| < 3|NJ. (7)

Induction step. k — k + 1.

Let Ne.V', je M, p=<{5(i),b(i)dicny € N be such that u(p) =x + 1> 3,
and x € YV (p). Suppose, by contradiction, that |L(j, x, p)| > LIN|. Letk ¢ N
and (J,x) e . Note that by the tie-breaking newcomer condition,
YN (p,(0,x) = {x}. Let ge. " be such that for all ie L(j,x,p),
q(i) =p(i) and for all ieI(j,x,p)u G(j,x,p), q(i) = (0,x). By strategy-
proofess, § ¥4 (g, (5,x)) = {x}. Note that L(j,x,q) = L(j, x, p) and (g)

<u(p)=x+1.
Let Ty, T, ..., T,.1 be the partition of N in subcoalitions such that in each
subcoalition Ty, 7 € {1,...,k + 1}, all members have the same preference re-

lation, say (6,b7), at ¢. Suppose, without loss of generality, that T, =
I1(j,x, p)uG(j,x p) Let ye C°(x, (6!, ")) be such that x =,n(; y and
x; > y; > max{h} 5 ] s+, bf}. Because C°(x, (6',b")) is open, there exists an
open e-neighborhood around y, say N,(y), such that N,(y) = C°(x, (8',5")).
Leté = ﬁ Then for all 7 € {2,...x}, there exists b’ € box({x,b’}) N Nz(),
such that for all j e M, b/ = x; only if b/ = x;. Note that box({b?,...,b"})
S Ne().

Now consider § € #* such that § =7,,7,,, gand for/ € {2,...,x},ie Ty,
q(i) = (67,b") such that either g(i) = ¢(i) or g(i) is an x-improvement of ¢(i).
Now, by monotonicity, Y (g, (5,x)) = {x}. Note that u(q) < u(q) <x+1
and L(j,x,q) = L(j,x,q) = L(j,x, p). Thus, |L(j, x,4)| > 3|N|.

Since YV (g, (6, x)) = {x} it follows by the non-decisive newcomer condition
that x € V(7). Note that x ¢ C°(x, (8',b")).

If u(q) = 2, then L(j,x,q) = Ti. So, |T1| > }|N| and by Lemma 8, y¥(g)
= {b'}. This contradicts x € V(7). Hence, u(g) > 3.

Finally, consider § e .#" such that § =w\r, ¢ and for all ie Ty, q(i) =
(52 b%). Then, u(q) = u(g) ~ 1 =« and L(j,x,q) = L(/,x,q). So, |L(/,x,d)

>1|N|. By the induction hypothesis (7), x¢ V(G and yN(g) <
box{E2 .,b*}. Hence, y"(g) = N,(y) = C°(x,(5",b")). Thus, for all
zeyN(g ) 2t e X

Next, recall that for allie Ty, q(i) = (51 b') and g =y\7, g. So, by inter-
mediate strategy-proofness, " (§) = 0! bl)xp (). This implies that there exists
zey? (g) such that x >( s b1 2 Thls yields the desired contradiction. O

Theorem 1. A choice correspondence \ satisfies strategy-proofness, unanimity,
the tie-breaking and the weak non-decisive newcomer condition if and only if for
all N e N and pe SV, convy™ (p) =y ().

med

Proof. Note that for all N € /" and p € &V such that convy™ (p) =y ,(p)

med
it follows that for all i e N, ¥ (p) ~p(i) YN i(p). Hence, by Lemma 3, any
choice correspondence v such that for all N € 4" and p e ¥, convy¥ (p) =
r]r\lled( p) satisfies the properties mentioned in the theorem.
Next, let  be a choice correspondence that satisfies the properties named
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in the theorem. We have to show that for all N € /" and p € ¥V, conv ™ (p)
= lpr/r\:ed(p)' _

By Lemma 9, for all je M and all xey™(p), |L(j,x, p)| < L|N| and
|G(j,x, p)| < JIN|. Thus, for all je M and x e y¥(p), [L(j,x, p) VI(j,x, p)|
2%|N| and \G(],x,l_)) UI(j,x, p)| = L[N|. So, ¥ (p) = ¢N4(p). Therefore,
convy ™ (p) = conv iy ¥ (p) < Yreq (p)-

If |N | is odd, then ¥ ,(p) is a singleton. Thus, by nonemptiness,
conv iy (p) = ¢V (p) = Y2 4 (p). Note that ¥ ,(p) is the Cartesian product
of m closed intervals [a;,b;], a; < b;, and that for any extreme point x =
(X15- -, Xm) of YN (p): for all je M, either x; = a; or x; = b;. Let |[N| be
even. In order to prove convy™ (p) 2 ¢ ((p) it is sufficient to prove that
every extreme point of npged( ) is a compromise point in ¥(p). Let x be
an extreme point of ¥ ,(p). Let k ¢ N and (6, x) € &. By the tie-breaking

newcomer condition, lﬂNU{k} (p, (0,x)) = {x}. Since |N U {k}| is odd, YNk

med

(p,(0,x)) = lpg;{k}(p, (3, x)) = {x}. Thus, by the weak non-decisive new-
comer condition, x € convyy™(p). Since, " (p) =y ,(p) it follows that
xey™(p). O

Remark 1. Note that \,,,.4 is a voting correspondence. So, by Theorem 1 it fol-
lows that the four characterizing conditions imply peak-onliness.

The following example demonstrates that the non-decisive newcomer con-
dition is not implied by strategy-proofness, unanimity, the tie-breaking and the
weak non-decisive newcomer condition.

Example 1. For simplicity, assume that £ = IR. Then the choice correspon-
dence y is defined as follows. For all N € N and all p = <{5(i), b(i)Yjcy € SV,

VY (P) = Ymea(p) 0 ({B(i) | i € N}).

Is is easy to check that y satisfies strategy-proofness, unanimity, the tie-breaking
and the weak non-decisive newcomer condition, but not the non-decisive new-
comer condition.

Theorem 2. A choice correspondence \ satisfies strategy-proofness, unanimity,
the tie-breaking and the non-decisive newcomer condition if and only if \y is the
coordinatewise median correspondence V4.

Loosely speaking, the difference between Theorem 1 and 2 is that com-
promise sets assigned by choice correspondences satisfying the conditions in
Theorem 1 can have “holes”: as long as the convex hull of each compromise
set is equal to the compromise set assigned by the coordinatewise median
correspondence all properties will be satisfied (and all agents are in fact in-
different between the compromise set with the hole(s) and the convex hull
that equals the coordinatewise median correspondence compromise set).

Proof. By Lemma 3, the coordinatewise median correspondence V.4 satisfies
the properties mentioned in the theorem.
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Next, let iy be a choice correspondence that satisfies the properties named
in the theorem. Then, by Theorem 1, for all N € ./" and p e " convy? (p)

= Umea(P). Hence, " (p) < ¥iq(p).
If |N| is odd, then, by Theorem 1, it follows that convy™ (p) = yN (p).

med
As Y ((p) is a singleton and ¥ (p) is a nonempty subset of conv ™ (p) it
follows that v (p ) ¥ (p). Let [N| be even. Then it is sufficient to prove

med

that Y~ ,(p) = ¥ (p). Let x e Y 4(p). Let k ¢ N and (J,x) € &. By the tie-

breaking newcomer condition, xpnﬁ’ej{"}(p, (0,x)) = {x}. Since |N u{k}| is

odd, Y (p (6,x)) = l//r]r\f;{k} (p, (0,x)) = {x}. Thus, by the non-decisive
newcomer condition, x € Y™ (p). Hence, Y2, (p) < v (p). O

The following list of examples shows that unanimity, strategy-proofness,
the tie-breaking newcomer condition, and the non-decisive newcomer condition
are logically independent from each other.

Example 2. The constant-zero voting correspondence , is defined as follows.
Forall N e ./ and all p e &7V,

N
o (p) ={0}.
The constant zero voting correspondence Y, satisfies strategy-proofness,

the tie-breaking and the non-decisive newcomer condition, but it is not unan-
imous. O

Example 3. The mean voting correspondence ., is defined as follows. For
all N e A" and all p = <5(i), b(i)Yjey € LV,

N
lpmean {|N| ;b }

The mean voting correspondence V..., satisfies unanimity, the tie-breaking
and the non-decisive newcomer condition, but it is not strategy-proof. O

Example 4. The box voting correspondence Y, is defined as follows. For all
N e ./ and all p = <5(i), b(i)Yicy € SV,

Viox(P) = box({b(i) | i € N}).

The voting correspondence V., satisfies unanimity, strategy-proofness, and
the non-decisive newcomer condition, but it does not satisfy the tie-breaking
newcomer condition. O

As we will also discuss in Sect. 7, the results presented here and those of
Border and Jordan (1983) are logically independent. The following example
not only shows the independence of the non-decisive newcomer property, it
also proves that unanimity, strategy-proofness, and the tie-breaking newcomer
condition do not imply peak-onliness. In Border and Jordan (1983) peak-
onliness is implied by unanimity, strategy-proofness, and single-valuedness. So,
the example shows that unanimity, strategy-proofness, and set-valuedness are
weaker than the properties studied by Border and Jordan (1983).
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Example 5. The choice correspondence @ is defined as follows. For all N € A~
and all p = <6(i),b(i);cy € LV,

conv({b(i)|ie N}) if 1e N,|N|=2, and
oV (p) = for all j, j' e M,5(1), = (1)

= J J'
Yy (p) otherwise.

med

It is obvious that @ does neither satisfy peak-onliness, nor the weak non-de-
cisive newcomer condition. Furthermore, it is straightforward to prove that @
satisfies unanimity and the tie-breaking newcomer condition. To see that @ is
strategy-proof notice that for each agent i € N, the best and worst points of

¥ i(p) are on the boundary of ¥ . (p). O

6 Robustness of the results

We consider the robustness of our results with respect to changes in the set of
admissible preference relations. This is done in two ways. First, we determine
a maximal domain of single-peaked preferences for Theorems 1 and 2. Then
we discuss the extension of preferences over compromise points to preferences
over sets of compromise points.

First, we consider greater sets of admissible preferences. Let & be a set of
single-peaked, strictly convex preferences (i.e., all weak upper contour sets are
strictly convex) such that . < 9. We prove that there exists a choice corre-
spondence that satisfies strategy-proofness, unanimity, the tie-breaking and the
weak non-decisive newcomer condition if and only if all preferences > in &
have the box property'®, ie., for all x, y € E and > with best point, or peak,
b e E, y e box(x,b) implies y > x. Note that many single-peaked preference
relations have this property, e.g., all separable-quadratic preference rela-
tions and all preference relations that are based on one of the following
Ly, L,,...,L, norms: for k € N, x is weakly preferred to y with respect to Ly,
X Z, ¥, if and only if

(Z 1 —bj|">l/k < (Z 1y, —bj|">1/k.

jeM jeM

Of course, there are also single-peaked preferences which do not have the box
property. Take for instance preference relations with ellipsoid indifference sets
such that the main diagonals are not parallel to the axes of FE.

The box property is essential for having choice correspondences satisfying
the four properties in Theorems 1 or 2. The addition of one single-peaked
preference to . that does not have the box property causes non-existence of
these choice correspondences.

10 See also Peters et al. (1991).
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Theorem 3.!!

(i) There exists a choice correspondence Y that satisfies strategy-proofness,
unanimity, the tie-breaking and the weak non-decisive newcomer condition if
and only if all preferences in 9 have the box property.t?

(i) If all preference relations in & have the box property, then for any choice
correspondence  that satisfies strategy-proofness, unanimity, the tie-
breaking and the weak non-decisive newcomer condition the following holds.

For all N € A and p e ", convy™ (p) =y 4(p).
Proof.

(i) If part. If all preferences in £ have the box property, then there exists a
choice correspondence v satisfying strategy-proofness, unanimity, the tie-
breaking and the weak non-decisive newcomer condition.

It is straightforward to prove that V.4 is strategy-proof, if all preference
relations have the box property. Furthermore, V.4 satisfies unanimity, the tie-
breaking and the weak non-decisive newcomer condition.

(i) Only if part. If there exists a choice correspondence  satisfying strategy-
proofness, unanimity, the tie-breaking and the weak non-decisive newcomer
condition, then all preference relations in & have the box property.

Suppose, by contradiction, that s satisfies all properties named above and
there exists a preference relation ¢(1) € & that does not have the box property.
Then there exists x, y € E such that y € box({x,b}) and x >, . Call such a
pair (x, y) € E x E a box violation at q(1). Let o(x,b) denote the number of
coordinates on which x and b differ. Note that because ¢(1) is single-peaked,
o(x,b) #1 (otherwise y = Ax+ (1 — 1)b for some 1€ (0,1) and by single-
peakedness, y =,y x). Hence, o(x,b) > 2.

We prove that there exists a box violation (%,7) € E x E at ¢(1) such that
a(x,b) < a(x,b). Applying this result iteratively yields a box violation, say
(X,7), such that ¢(X¥,b) < 1. Hence, we have a contradiction and are done.

Consider the line through x and p, denoted by line(x,y)=
{x + A(x —y)| 4 € R}. There exists a point j € line(x, y) on the boundary of
box({x,b}) and a coordinate j such that y; = b; and J; # x;. Since x =) »,
strict convexity implies that

X >q(l)J7' (8)

Next, let N ={1,2,3}, (6,x),(6,7) €, and p=<(6,),(6,7)>es®.
Denote by  the restriction of y to U Fer SN, Clearly, y satisfies strategy-

11 A referee suggested that it may be possible to drop the requirement of single-peak-
edness in Theorem 3 by using a similar argument as Berga and Serizawa (2000), Cor-
ollary 2. One of the necessary adjustments of Theorem 3 would be to extend the me-
dian correspondence to deal with strictly increasing preferences. We leave it an open
problem whether or not this can be done.

12 Replace % by 2 in the previous definitions of conditions.
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proofness, unanimity, the tie-breaking and the weak non-decisive newcomer
condition. Hence, by Theorem 1, for all N € 4" and p € VN, conv lﬁN( ) =

ll;ﬁed(p). Let 0 be such that (9,b)e&. Since Y™ ((0,b), (6 x), (6,b)) =
lp_ ((0, ) ( x), (0,b)) = {b}, by strategy-proofness, for all z € Y (¢(1), (J, x

(0,h)), 1yb. Because b is the peak of ¢(1), N (q(1),,x), 0, b))7
= {b}. From this and strategy-proofness it follows that for all ze
v (g ( ), (6,%),6,5) =¥ (4g(1), p),

Let zey™(g(1),p). By strategy-proofness, there exists z’ € " ((d,z), p)
such that z’ > 5. Z- Since z is the best point of (0,2), we conclude that
ZGlﬁ ( ( )Jp) lmphes ZG‘P (( ) ) l//N((é Z) )_ nl:,ed(((svz)ap) s
box({x,7}). So, ¥"(q(1), p) < box({x,7}). Since ¢(1) is strictly convex,
according to ¢(1) there is at most one best pomt say X, in box({x, }). Note
that z e box({x,7}) implies ¥ ((0,z2), p) = ¥)4((0,2), p) = {z}. Tt follows
by strategy-proofness that for all z € box({x,7}) and all z’ e sz(q(l),p),
z' Z4) - So, the best pomt % of ¢(1) in box({x,7}) exists and ¥ (¢(1), p)

= {x} Hence, by (9), X b As this holds for all § such that (3, 7) € & it
follows that x; = y; = b;. Thus

a(x,b) < a(x,b). (10)
Because X € box({x,7}) and 7 € box({x, b}), it follows that

y € box({x,b}). (11)

Because by (8), x ;1) and X is the best point of ¢(1) in box({x, y}), it fol-
lows that

X =4(1) ¥. (12)
Now, (10), (11), and (12) imply that (X,y) is a box violation such that
o(x,b) < a(x,b). This completes the proof of (i).

(ii) Assume that all preferences in & have the box property and that  sat-
isfies all properties named above. We have to prove that for all N € 4" and
pe 2V, convy(p) = é\fed( p). The proof is by induction on the number of
agents that report a preference relation in Z\.%. For p € 2" we denote this

number by A(p) = |{i e N|p(i) e 2\I}|.

Induction basis. A(p) = 0.
If A(p) = 0, then we are done by Theorem 1.

Induction hypothesis. Let N e A", p € 2"V such that A(p) < k. Then,
conv Y™ (p) = Ypnea(D)- (13)

Induction step K— K+ 1.
Let pe 2V be such that A(p) =k + 1. We have to show that convy™(p)

=N i(p). Assume, without loss of generality, that 1 € N and p(1) ¢ & with
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peak point b(1). Without loss of generality, we assume that for all y € Y ,(p)
and all je M, b(1); < y;.
First, we prove that v (p) sy (p).

med

Case 1. |N| is odd. Let {z} = ¢ (p).

Assume, by contradiction, that there exists x € " (p) such that x # z.
Consider ¢ € 2" such that ¢ =x\ (1} p and ¢(1) = (6(1),b(1)) < <. Note that
A(q) = A(p) — 1 = k. Thus, by the induction hypothesis (13), ¥ (¢) = Y 4 (¢)
= {z}. By strategy-proofness, z Z ) x and x . z. Since J(1) was chosen
arbitrarily and ¢(1) is strictly convex, there must exist J € M such that x; <
b(1); < z;. Next, consider ¢’ € 2" such that ¢’ =w\(1} ¢ and ¢'(1) = (6(1), x)
GV By strategy-proofuess, x € " (q'). By the induction hypothesm (13),
YN (q") = yY.4(q"). Furthermore, by construction, for all z'ey) (¢,

z; = z;. Hence, in contradiction to our assumption, x; = z;.

Case 2. |N| is even.
Assume, by contradiction, that there exists x € Y (p)\y).y(p). Let k ¢ N

and (9,x) € &. By the tie-breaking newcomer condition, Y (p, (d,x)) =
{x}. Since |N U {k}| is odd, by Case 1, y V¥ (p, (8,x)) = " (p, (6, x)).

med
Thus, by the weak non-decisive newcomer condition, xECOIlVl/Jmed( )

¥ (p). This is in contradiction to the assumption that x € " (p)\yY.4(p)

med P

By Cases 1 and 2, for all pe 2" such that A(p)=x+1, y"(p)

‘/jged(p)‘

The proof that for all p e 2V such that A(p) =x+ 1, Yy (p) 2 ¥4 (p)
is similar to the proof of the same statement at the end of the proof of
Theorem 1. O

As mentioned before the results presented here very much depend on the
actual extension of preferences over compromise points to preferences over
sets of compromise points. Other extensions differing from those discussed
here might either lead to impossibilities, if the extension implies a stronger
notion of strategy-proofness, or they might lead to indeterminability, if the
extension implies a weaker notion of strategy-proofness. We will explain both
cases by the following examples.

First, we discuss two extensions that yield stronger notions of strategy-
proofness and incompatibility with unanimity, the tie-breaking and the non-
decisive newcomer condition.

Example 6. Consider tllle following extension of Z; ;) to 2E Forall (6,h) e &
andall X, Y e2f X =55 Y if and only if for all x e X and all y € Y,

37805 - b(i))* < 3800y, — b))’
jeEM jeM

. 1 1 L
Then for an agent with preference = s 5), X =) ¥ means that all points in

X are at least as good as those inlY. Assuming nonemptiness, X = Y
implies X 5(5’ » Y. Hence, under =; ;) even more sets are incomparable



Choice correspondences 151

than under 2= Z(6,b) and the notion of > (,b) leads to a stronger strategy-
procl)fness condition. If a choice correspondence is strategy-proof with respect

10 = s ), then after any unilateral deviation of an agent from his true pref-
erence relatlon either the set of compromise points does not change or any
point in the original set of compromise points is (weakly) better than any
point in the set of compromise points after the deviation. Obviously the
cloordinatewise median correspondence is not st{ategy—proof with respect to

= 5,5 Hence, strategy-proofness with respect to = ) is not compatible with
unanimity, the tie-breaking and the non-decisive newcomer condition. O

Example 7. Otten et al. (1995) consider the fgllowing extension of X ; , to
25 p- Forall (6,b) e ¥ and all X, Y € 28, X =54 Y if and only if

(i) forall xe X\Y and all ye Y, x 25, » and
(i) for all xe X and all y € Y\X, x Z; 1.

.. . . 2
Similarly as in the previous example, = leads to a stronger strategy-
proofness condition which is incompatible with unanimity, the tie-breaking
and the non-decisive newcomer condition. O

The next examples show that if the preference extensions allow for a
high percentage of indifferent pairs, then strategy-proofness yields little
discrimination.

Example 8. Consider tl;e following extension of Z@’ p) 1O 2E Forall (6,h) e &

and all X, Y €2f, X =; ) Y if and only if

(i) there are x € X and y € Y such that x>~ ;) y or

(i) forallxe X and all ye Y, x Zo.b) V-

Kelly (1977) uses this type of preference relations t3o derive an impossibility

result. Note that strategy-proofness with respect to =5 ) is a “weak require-

ment”’. &

Example 9. Consider the following extension of s , to 2 Forall (6,h) € &

and all X Ye2f X >((, p) Y if and only if

(1) X Z({S,b) Y or

(ii) either |X| >3 or |Y]| > 3.

Barbera (1%77) derives an impossibility result based on strategy-proofness with

respect 10 =5 p). O
3

Obviously 3(5’ b) is “contained” in = and the latter is contained in
= (5,5)- AS Wineq 18 strategy-proof with respect to z((; b) it follows that it is also

: 4 :

strategy-proof with respect to = and = ;). However, there are more
choice correspondences that are strategy-proof with respect to the latter

. . 3 4 ..
extensions. Note that with respect to = ;) and = ;) the empty set is in-
different to any other set. Next, we introduce two choice correspondences
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. . 3 4 .

that satisfy strategy-proofness with respect to = ) and = s ), unanimity, the

tie-breaking and the non-decisive newcomer condition.

Example 10. Let E be the Euclidean plane of dimension 2, E, =
{(x,y) e E|x >0}, and E_ = {(x, y) € E|x < 0}. Define the choice corre-
spondence v, /, as follows. For all N € 4" and all p = {6(i), b(i) );cn € gV,

~ f Vmea(p) if {b(i)|ie N} € Efor {b(i)|ieN} S E_,
Wf\;z(l’) N { (%] : otherwise. '

It is straightforward to prove that this correspondence satisfies strategy-

proofness with respect to é(g_’b) and = s »), unanimity, the tie-breaking and the
non-decisive newcomer condition. Since / »(p) may be empty, it is not strat-
egy-proof with respect to Z . The choice correspondence y, can be
extended to higher dimensional E by taking any partition of E into two con-
vex parts. O

Example 11. A choice correspondence that satisfies all conditions mentioned
above, but that it is not a subsolution of V.4 is defined as follows. Let
a,b € E. By square({a,b}) we denote the union of {a,b} and the interior of
box({a,b}). If a = b, then square(a,b) = {a} = {b}. For all N € 4 and all

P = <5(i)vb(i)>ieN € °¢N:
N [ {b} ifforallikeN,b(i) = b(k)={b},
square (P) = { (V{square({b(i),b(k)})|i,k € N,b(i) # b(k)} otherwise.

N

square Satisfies unanimity and the two

It is straightforward to prove that

newcomer conditions. Strategy-proofness with respect to = ;) follows from

the following observations. The set of compromise points lﬁsjgum( p) is convex.

Hence, its cardinality is either zero, one, or infinity. In case of cardinality one,
either all agents have an unanimous best point or there is an agent / with best
point b(/) on the unique compromise point. Only he is able to change this
singleton set of compromise points by a unilateral deviation either to the
empty set or to another singleton se:t.2 Obviously, he cannot gain by doing so.
Strategy-proofness with respect to = ) is also straightforward, although
cumbersome to prove. O

7 Concluding discussion

Border and Jordan (1983) consider the location problem as described in Sect.
2: a group of agents has to choose exactly one compromise point in a higher
dimensional Euclidean space based on the agents’ separable-quadratic pref-
erences on this space. One of the results for this model is a characteriza-
tion of median choice functions with additional fixed ballots, or generalized
median choice functions, by unanimity and strategy-proofness. One of the by-
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products of the characterization is that unanimity and strategy-proofness imply
peak-onliness.

Border and Jordan’s (1983) result for choice rules and our result for choice
correspondences seem to be very similar. Indeed by taking appropriate addi-
tional fixed ballots, the corresponding generalized median choice function
yields a corner point of the set of compromise points assigned by the coor-
dinatewise median correspondence. So, for special fixed ballots, generalized
median choice functions are strict subcorrespondences of the coordinatewise
median correspondence. But at other sets of ballots, especially non-infinite
ones, non-median compromise points may be determined by generalized me-
dian choice functions, i.e., such points are not in the set of compromise points
of the coordinatewise median correspondence. This shows that the results
presented here and those in Borda and Jordan (1983) are no simple con-
sequences of each other.

Due to the possibility of set-valued outcomes, strategy-proofness for choice
correspondences is significantly weaker than for choice rules. The following
will illustrate this. For choice rules, unanimity and strategy-proofness imply
peak-onliness. In Sect. 6, Example 5 shows that a similar result does not
hold for choice correspondences even if additionally the tie-breaking new-
comer condition is imposed. Because generalized median choice functions do
not satisfy the non-decisive newcomer condition'® and because of the relatively
weakness of strategy-proofness it seems rather difficult to utilize the results of
Border and Jordan (1983) in our setting. We did not succeed in this. Though
globally their proof structure resembles ours, the various (local) steps are
proved quite differently.

We end the comparison of both models by stressing one similarity: the
chosen subset of single-peaked preferences. In both papers the indifference sets
are ellipsoids with main diagonals parallel to the axes of the Euclidean space.
Allowing for preferences with elliptical indifference curves such that the main
diagonals are not parallel to these axes, yields in Borda and Jordan (1983)
setting dictatorship and in our model an impossibility; see Sect. 6. So,
restricting the set of admissible preferences to the set of separable-quadratic
preferences is essential in both models.

Finally, we briefly discuss a recent article by Ching and Zhou (1997). They
consider a more general choice model with an arbitrary set of alternatives and
a general domain of preferences. Similar to our approach, Ching and Zhou
(1997) focus on choice correspondences rather than choice functions. The
strategy-proofness condition they consider is based on the extension of pref-
erences to the powerset of the set of compromise points we discuss in Example
7. For this more general model, Ching and Zhou (1997) prove two Gibbard-
Satterthwaite results, one for general preferences and one for continuous
preferences. As already mentioned in Sect. 6, the strategy-proofness condition

13 Note that only specific generalized median choice functions are defined for the
variable population model in a straightforward way; e.g., coordinatewise staus quo
choice functions.
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at hand is rather strong. Therefore, it is not a surprise that we obtain a similar
incompatibility result (see Example 7) in our model with single-peaked
preferences.
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