Skip to main content
Log in

The accelerated overrelaxation splitting method for solving symmetric tensor equations

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with solving the multilinear systems \({\mathscr {A}}\mathbf {x}^{m-1}=\mathbf {b}\) whose coefficient tensors are mth-order and n-dimensional symmetric tensors. We first extend the accelerated overrelaxation (AOR) splitting method to solve the tensor equation. To improve the convergence, we develop a Newton-AOR (NAOR) method that hybridizes the Newton method and the accelerated overrelaxation scheme. Convergence analysis shows that the proposed methods converge under appropriate assumptions. Finally, some numerical examples are provided to show the effectiveness of the methods proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bai Z-Z (2010) Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17:917–933

    MathSciNet  MATH  Google Scholar 

  • Bai Z-Z, Zhang L-L (2013) Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20:425–439

    MathSciNet  MATH  Google Scholar 

  • Cai D, He X, Han J (2006) Tensor space model for document analysis. In: International Conference on Research and Development in Information Retrieval, Washington, pp 625–626

  • Cvetkovic L, Hadjidimos AA (2014) On the choice of parameters in MAOR type splitting methods for the linear complementarity problem. Numer. Algorithms 67:793–806

    MathSciNet  MATH  Google Scholar 

  • Cvetkovic L, Kostic V (2014) A note on the convergence of the MSMAOR method for linear complementarity problems. Numer. Linear Algebra Appl. 21:534–539

    MathSciNet  MATH  Google Scholar 

  • Darvishi M-T, Hessari P, Yuan J-Y (2006) On convergence of the generalized accelerated overrelaxation method. Appl. Math. Comput. 181:468–477

    MathSciNet  MATH  Google Scholar 

  • Ding W-Y, Wei Y-M (2016) Solving multi-linear systems with \(\fancyscript {M}\)-tensors. J. Sci. Comput. 68:689–715

    MathSciNet  MATH  Google Scholar 

  • Ding W-Y, Qi L-Q, Wei Y-M (2013) \(\fancyscript {M}\)-tensor and nonsingular \(\fancyscript {M}\)-tensors. Linear Algebra Appl. 439:3264–3278

    MathSciNet  MATH  Google Scholar 

  • Guan Y, Chu D-L (2019) Numerical computation for orthogonal low-rank approximation of tensors. SIAM J. Matrix Anal. Appl. 40:1047–1065

    MathSciNet  MATH  Google Scholar 

  • Guan Y, Chu M-T, Chu D-L (2018) SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J. Matrix Anal. Appl. 39:1095–1115

    MathSciNet  MATH  Google Scholar 

  • Guan Y, Chu M-T, Chu D-L (2018) Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl. 555:53–69

    MathSciNet  MATH  Google Scholar 

  • Hadjidimos A (1978) Accelerated overrelaxation method. Math. Comp. 141:149–157

    MathSciNet  MATH  Google Scholar 

  • Hadjidimos A, Tzoumas M (2016) The solution of the linear complementarity problem by the matrix analogue of the accelerated overrelaxation iterative method. Numer. Algorithms. 73:665–684

    MathSciNet  MATH  Google Scholar 

  • Hadjidimos A, Yeyios A (1980) The principle of extrapolation in connection with the accelerated overrelaxation method. Linear Algebra Appl. 30:115–128

    MathSciNet  MATH  Google Scholar 

  • Han X-L (2017) A homotopy method for solving multilinear systems with \(\fancyscript {M}\)-tensors. Appl. Math. Lett. 69:49–54

    MathSciNet  MATH  Google Scholar 

  • He H-J, Ling C, Qi L-Q (2018) A globally and quadratically convergent algorithm for solving multilinear systems with \(\fancyscript {M}\)-tensors. J. Sci. Comput. 76:1718–1741

    MathSciNet  MATH  Google Scholar 

  • Huang Z-H, Qi L-Q (2017) Formulating an n-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66:557–576

    MathSciNet  MATH  Google Scholar 

  • Hughes-Hallett A-J (1986) The convergence of accelerated overrelaxation iterations. Math. Comp. 175:219–223

    MathSciNet  MATH  Google Scholar 

  • Kolda T, Bader B (2006) The TOPHITS model for higher-order web link analysis. Counterterror. Secur. 20:26–29

    Google Scholar 

  • Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Rev. 51:455–500

    MathSciNet  MATH  Google Scholar 

  • Kressner D, Tobler C (2010) Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31:1688–1714

    MathSciNet  MATH  Google Scholar 

  • Li W (2013) A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26:1159–1164

    MathSciNet  MATH  Google Scholar 

  • Li X-T, Ng M-K (2015) Solving sparse non-negative tensor equations: algorithms and applications. Front. Math. China. 10:649–680

    MathSciNet  MATH  Google Scholar 

  • Li D-H, Xie S-L, Xu H-R (2017) Splitting methods for tensor equations. Numer. Linear Algebra Appl. 24:1–16

    MathSciNet  MATH  Google Scholar 

  • Li Z-B, Dai Y-H, Gao H (2019) Alternating projection method for a class of tensor equations. J. Comput. Appl. Math. 346:490–504

    MathSciNet  MATH  Google Scholar 

  • Liang M-L, Zheng B, Zhao R-J (2018) Alternating iterative methods for solving tensor equations with applications. Numer. Algorithms 20:1–29

    Google Scholar 

  • Liu D-D, Li W, Vong S-W (2018) The tensor splitting with application to solve multi-linear systems. J. Comput. Appl. Math. 330:75–94

    MathSciNet  MATH  Google Scholar 

  • Luo Z-Y, Qi L-Q, Xiu N-H (2017) The sparsest solutions to \(\fancyscript {Z}\)-tensor complementarity problems. Optim. Lett. 11:471–482

    MathSciNet  MATH  Google Scholar 

  • Lv C-Q, Ma C-F (2018) A Levenberg–Marquardt method for solving semi-symmetric tensor equations. J. Comput. Appl. Math. 332:13–25

    MathSciNet  MATH  Google Scholar 

  • Martins M-M (1980) On an accelerated overrelaxation iterative method for linear systems with strictly diagonally dominant matrix. Math. Comp. 152:1269–1273

    MathSciNet  MATH  Google Scholar 

  • Matsuno Y (1987) Exact solutions for the nonlinear Klein–Gordon and Liouville equations in four-dimensional Euclidean space. J. Math. Phys. 28:2317–2322

    MathSciNet  MATH  Google Scholar 

  • Najafi H-S, Edalatpanah S-A (2013) On the convergence regions of generalized accelerated overrelaxation method for linear complementarity problems. J. Optim. Theory Appl. 156:859–866

    MathSciNet  MATH  Google Scholar 

  • Qi L-Q (2005) Eigenvalues of a real supersymmetric tensor. J. Symbol. Comput. 40:1302–1324

    MathSciNet  MATH  Google Scholar 

  • Qi L-Q, Luo Z-Y (2017) Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia

    MATH  Google Scholar 

  • Qi L-Q, Chen H, Chen Y (2018) Tensor Eigenvalues and Their Applications. Springer, Berlin

    MATH  Google Scholar 

  • Regalia P-A, Kofidis E (2003) Monotonic convergence of fixed-point algoithms for ICA. IEEE Trans. Neural Netw. 14:943–949

    Google Scholar 

  • Song Y-S, Qi L-Q (2015) Properties of some classes of structured tensors. J. Optim. Theory Appl. 165:854–873

    MathSciNet  MATH  Google Scholar 

  • Song Y-S, Qi L-Q (2016) Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169:1069–1078

    MathSciNet  MATH  Google Scholar 

  • Xie Z-J, Jin X-Q, Wei Y-M (2017) A fast algorithm for solving circulant tensor systems. Linear Multilinear Algebra 65:1894–1904

    MathSciNet  MATH  Google Scholar 

  • Xie Z-J, Jin X-Q, Wei Y-M (2018) Tensor methods for solving symmetric \(\fancyscript {M}\)-tensor systems. J. Sci. Comput. 74:412–425

    MathSciNet  MATH  Google Scholar 

  • Zhang L-L (2011) Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms. 57:83–99

    MathSciNet  MATH  Google Scholar 

  • Zheng N, Yin Y-F (2013) Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms. 64:245–262

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Wen Wang.

Additional information

Communicated by Jinyun Yuan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research is supported by National Natural Science Foundation of China [Grant numbers 11971294 and 11571220].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XF., Wang, QW. & Li, T. The accelerated overrelaxation splitting method for solving symmetric tensor equations. Comp. Appl. Math. 39, 155 (2020). https://doi.org/10.1007/s40314-020-01182-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-020-01182-y

Keywords

Mathematics Subject Classification

Navigation