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Abstract. In this paper, we deal with the logistic growth model with a time-
dependent carrying capacity that was proposed in the literature for the study of
the total bacterial biomass during occlusion of healthy human skin. Accounting
for data and model errors, randomness is incorporated into the equation by assum-
ing that the input parameters are random variables. The uncertainty is quantified
by approximations of the solution stochastic process via truncated series solution
together with the random variable transformation method. Numerical examples
illustrate the theoretical results.
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1. Introduction12

Growth models such as the logistic equation are widely studied and applied in13

population and ecological modeling. Classically, the carrying capacity of the lo-14

gistic equation model has been considered constant. However, some works started15

to consider it as a function of time, motivated by the principle that a changing16

environment may result in a significant change in the limiting capacity [1].17

It is the case of the model proposed in [1, 2] for the study of total bacterial18

biomass during occlusion of healthy human skin. The model is presented by the19

non-autonomous logistic equation20  N ′(t) = aN(t)

(
1− N(t)

K(t)

)
, t > 0,

N(0) = N0,
(1.1)21

1
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where N0 > 0 is the initial condition and a > 0 is the growth rate parameter, driven22

by the time-varying capacity, K(t), that takes the form23

K(t) = Ks

[
1−

(
1− K0

Ks

)
e−ct

]
, (1.2)24

where K0 = K(0) is the initial limiting capacity, Ks = limt→+∞K(t) is the bacterial25

saturation (or equilibrium) level, and c > 0 is the saturation constant. It is assumed26

N0 < K0 < Ks.27

This model assumes that on the unoccluded skin the environment is relatively28

constant and the density of microbes is in equilibrium with its environment (K0 ≈29

N0). After an occlusion is applied to the skin, the environment beneath it begins to30

change to one that is generally more favorable for microbial growth.31

Equation (1.1) is a Bernoulli ordinary differential equation. After a classical32

change of variables, its solution can be presented as33

N(t) =
eatN0

1 + aN0

∫ t

0

eas

K(s)
ds

. (1.3)34

When K(t) in (1.2) is substituted into (1.3), we obtain the solution derived in [1]:35

N(t) =
eatN0

1 +
aN0

Ks

∫ t

0

eas

1− be−cs
ds

, (1.4)36

where b = 1−K0/Ks ∈ (0, 1).37

To evaluate the integral in (1.4), the authors in [1] expanded part of the integrand
as a convergent geometric series with ratio be−cs ∈ (0, 1),

1

1− be−cs
=
∞∑
n=0

bne−ncs,

so that∫ t

0

eas

1− be−cs
ds =

∫ t

0

(
∞∑
n=0

bne(a−nc)s

)
ds =

∞∑
n=0

bn

a− nc
(
e(a−nc)t − 1

)
.

Thus,38

N(t) =
eatN0

1 +
aN0

Ks

∞∑
n=0

bn

a− nc
(
e(a−nc)t − 1

) . (1.5)39

In practice, the series in (1.5) is truncated to a finite-term sum. Accurate approx-40

imations to the exact solution N(t) are obtained for small orders of truncation of41

the series.42

In the mathematical modeling of bacterial growth, the parameters are either mea-43

sured directly or determined by curve fitting. These parameters may have large44

variability that depends on the experimental method and its inherent error, on dif-45

ferences in the actual population sample size used, as well as other factors that are46

difficult to account for. In view of this, randomness is incorporated into equation47
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(1.1) by assuming that the input parameters a, c, N0, K0, and Ks are random vari-48

ables with known probability distributions. Therefore, the general solution N(t) to49

(1.1), given by (1.5), becomes a random variable that evolves with time, that is, a50

stochastic process [3]. In this paper, we will assume that these random variables51

and stochastic process are defined in a complete probability space (Ω,F ,P), where52

Ω is the sample space consisting of outcomes ω ∈ Ω, F is the σ-algebra of events53

and P is the probability measure.54

The aim of this work is to provide approximations of the (first) probability density55

function, fN(q; t), of the solution stochastic process N(t) in (1.5), [3, Ch. 1]. By56

definition, the probability density function is a non-negative function characterized57

by P[N(t) ∈ B] =
∫
B fN(q; t)dq for any Borel set B in R. A random variable or vector58

is said to be absolutely continuous when it has a probability density function.59

The paper is organized as follows. In Section 2, an approximation of the first prob-60

ability density function of the solution stochastic process to (1.1) is constructed. This61

approximation is based on the truncated series solution together with the random62

variable transformation method. Some results on the convergence of the aforemen-63

tioned approximations of the probability density function of the solution are also64

presented. In Section 3, we determine a closed expression (via an integral) for the65

probability density function of the time-varying carrying capacity (1.2). Section66

4 is addressed to show two illustrative examples where the proposed technique is67

successfully applied. Finally, in Section 5 our main conclusions are drawn.68

2. Approximation of the density function of the solution process69

In this section, we assume that the random parameters of the model (1.1) have70

specific probability distributions, and then we compute approximations of the prob-71

ability density function of its solution N(t), for a fixed t > 0, given by (1.5). For this,72

the series in (1.5) is truncated to a finite-term sum and then the random variable73

transformation method is employed to compute the density function.74

Let a, c, N0, K0, and Ks be absolutely continuous real random variables in75

(Ω,F ,P). Obviously, all of them depend on the sample parameter, for example76

a = a(ω), ω ∈ Ω, but as usual this notation will be hidden hereinafter. We77

also assume that a, c, N0, K0, and Ks are non-negative random variables and78

N0 < K0 < Ks.79

The approximation of the first probability density function, fN(q; t), of the sto-80

chastic process N(t) given by (1.5), will be computed from the truncation, say Np(t),81

of N(t),82

Np(t) =
eatN0

1 +
aN0

Ks

Λp

, (2.1)83

where84

Λp = Λp(p, t; a, c,K0, Ks) =

p∑
n=0

bn

a− nc
(
e(a−nc)t − 1

)
, (2.2)85

b = 1−K0/Ks ∈ (0, 1), being p a non-negative integer previously fixed. Truncation86

is required to keep the approximation to fN(q; t) computationally feasible.87



4 J. CALATAYUD, J.-C. CORTÉS, F.A. DORINI, M. JORNET

To apply the random variable transformation method [4, Th. 2.1.5], [5, Th. 1], let88

us consider the mapping89

(a, c,N0, K0, Ks) 7→ (X, Y,Np, Z,W ) =

a, c, eatN0

1 +
aN0

Ks

Λp

, K0, Ks

 , (2.3)90

where the auxiliary random variables X = a, Y = c, Z = K0, and W = Ks have91

been conveniently chosen, and Np = Np(t), for a fixed t > 0.92

It is not difficult to verify that the function defined by (2.3) is invertible and its93

inverse is given by94

(X, Y,Np, Z,W ) 7→ (a, c,N0, K0, Ks) =

(
X, Y,

NpW

W eXt −XNpΛp
, Z,W

)
(2.4)95

where, according to (2.2),96

Λp = Λp(p, t;X, Y, Z,W ) =

p∑
n=0

bn

X − nY
(
e(X−nY )t − 1

)
, (2.5)97

b = 1− Z/W .98

From the random variable transformation method, the density function of Np(t),
for a fixed t > 0, can be presented as

fNp(Np; t) =

∫
D(X,Y,Z,W )

f(X,Y,Np,Z,W )(X, Y,N
p, Z,W ) dXdY dZdW =

=

∫
D(a,c,K0,Ks)

f(a,c,N0,K0,Ks)(a, c,N0, K0, Ks) |J(X, Y,Np, Z,W )| da dc dK0 dKs,

where f(X,Y,Np,Z,W ) is the joint density of the random variables X, Y , Np, Z and W ;
f(a,c,N0,K0,Ks) is the joint density of a, c, N0, K0, and Ks; D denotes the support of the
corresponding random vector; and J(X, Y,Np, Z,W ) is the determinant Jacobian
of the function given by (2.4), that is,

J(X, Y,Np, Z,W ) = det

(
∂(a, c,N0, K0, Ks)

∂(X, Y,Np, Z,W )

)
=
∂N0

∂Np
=

W 2eXt

(W eXt −XNpΛp)2
> 0,

where Λp is given by (2.5).99

Summarizing, the following result has been established.100

Theorem 2.1. For a fixed t > 0, the density function of Np(t), fNp(Np; t), given101

by (2.1), is102

fNp(q; t) =

∫
D(a,c,K0,Ks)

f(a,c,N0,K0,Ks)

(
a, c,

qKs

Kseat − aqΛp
, K0, Ks

)
×

× K2
s eat

(Kseat − aqΛp)2
da dc dK0 dKs,

(2.6)103
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where

Λp =

p∑
n=0

bn

a− nc
(
e(a−nc)t − 1

)
,

b = 1−K0/Ks ∈ (0, 1), being p a non-negative integer previously fixed.104

It is important to observe that when some input random parameter is independent105

of the rest, then the joint density function in the integrand can be factorized as106

a product. For example, in the particular case that a, c, N0, K0, and Ks are107

independent random variables, the integrand of (2.6) writes108

f(a,c,N0,K0,Ks)

(
a, c,

qKs

Kseat − aqΛp
,K0,Ks

)
= fa(a)fc(c)fN0

(
qKs

Kseat − aqΛp

)
fK0(K0)fKs(Ks).109

In general, we expect to have limp→∞ fNp(q; t) = fN(q; t) for all q ∈ R, t > 0. The110

following result provides general sufficient conditions so that this limit fulfills.111

Theorem 2.2. Suppose that the random vector (a, c,K0, Ks) and the random vari-112

able N0 are independent. Fix t > 0. Assume that E[eat] < ∞ (i.e. the moment-113

generating function of a is finite at t). Suppose that the density function fN0 is114

continuous almost everywhere on R and satisfies fN0(q) ≤ C/q2 for almost every115

q ∈ R\{0}, where C > 0 is a constant. Then limp→∞ fNp(q; t) = fN(q; t) for all116

q ∈ R. Also limp→∞
∫
R |fNp(q; t)− fN(q; t)| dq = 0.117

Proof. Because of the independence, the joint density function factorizes as118

f(a,c,N0,K0,Ks)

(
a, c,

qKs

Kseat − aqΛp
,K0,Ks

)
= f(a,c,K0,Ks)(a, c,K0,Ks)fN0

(
qKs

Kseat − aqΛp

)
.119

Therefore, using the fact that the expectation is given by the integral with respect120

to the density function, we have121

fNp(q; t) = E
[
fN0

(
qKs

Kseat − aqΛp

)
K2

s eat

(Kseat − aqΛp)2

]
.122

We know that limp→∞ Λp = Λ∞ almost surely, where Λ∞ =
∑∞

n=0
bn

a−nc(e
(a−nc)t− 1).123

Since fN0 is continuous almost everywhere on R, the continuous mapping theorem124

[6, p. 7, Th. 2.3] implies125

lim
p→∞

fN0

(
qKs

Kseat − aqΛp

)
K2

s eat

(Kseat − aqΛp)2
= fN0

(
qKs

Kseat − aqΛ∞

)
K2

s eat

(Kseat − aqΛ∞)2
126

almost surely. On the other hand, from the condition fN0(q) ≤ C/q2, we bound127

fN0

(
qKs

Kseat − aqΛp

)
K2

s eat

(Kseat − aqΛp)2
≤ Ceat

q2
∈ L1(Ω; dP),128

for q ∈ R\{0}. By the dominated convergence theorem [7, result 11.32, p. 321], we129

can interchange the limit with respect to p and the expectation:130

lim
p→∞

fNp(q; t) = E
[
fN0

(
qKs

Kseat − aqΛ∞

)
K2

s eat

(Kseat − aqΛ∞)2

]
= fN(q; t). (2.7)131

Finally, convergence in L1(R; dq) follows from Scheffé’s lemma [8, p. 55], [9]. This132

lemma states that if a general sequence of integrable functions converges almost133

everywhere to another integrable function, then convergence in L1(R) is equivalent134
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to convergence of the L1(R) norms (the L1(R) norm of all density functions being135

equal to 1). �136

The following result provides sufficient conditions to assess the behavior of fN(q; t)137

for large values of t.138

Theorem 2.3. Suppose that the random vector (a, c,K0, Ks) and the random vari-139

able N0 are independent. Given the probability density function fN(q; t) of N(t),140

(2.7), if the density function fN0 is continuous almost everywhere on R, and we141

have lim supq→0+ fN0(q) <∞ for some representation of fN0, then limt→∞ fN(q; t) =142

fKs(q) for all q ∈ R.143

Proof. Given the governing equation (1.1), we may assume that Ks = 1, by scaling144

out by Ks.145

From representation (1.5), assuming Ks = 1, we have146

N(t) =
eatN0

1 + aN0Λ∞
,147

where Λ∞ = Λ∞(t;Ks) =
∑∞

n=0
bn

a−nc(e
(a−nc)t − 1) (we make the dependence on t148

and Ks explicit). Simple calculations provide N(t) = N0(e
at− aΛ∞N(t)). We know149

that N(t)
t→∞−→ Ks = 1. Then one verifies that N0(e

at − aΛ∞)
t→∞−→ 1, that is,150

eat − aΛ∞
t→∞−→ 1/N0151

almost surely.152

Moreover, since N(t) = (eatN0)/(1 + aN0Λ
∞)

t→∞−→ 1 and eat
t→∞−→ ∞, it follows153

that (eatN0)/(aN0Λ
∞)

t→∞−→ 1, that is,154

eat/(aΛ∞)
t→∞−→ 1155

almost surely.156

If q = 1, then157

fN0

(
qKs

Kseat − aqΛ∞

)
K2

s eat

(Kseat − aqΛ∞)2
= fN0

(
1

eat − aΛ∞

)
eat

(eat − aΛ∞)2
t→∞−→ ∞158

almost surely, because 1/(eat − aΛ∞)
t→∞−→ N0, fN0 is continuous almost everywhere159

on R, fN0(N0) > 0, eat
t→∞−→ ∞, and 1/(eat − aΛ∞)2

t→∞−→ N2
0 > 0.160

When applying expectation, by Fatou’s lemma [7, result 11.31, pp. 320–321] we161

have limt→∞ fN(q = 1; t) =∞.162

In the case q 6= 1, from eat/(aΛ∞)
t→∞−→ 1 and eat

t→∞−→ ∞, we arrive at163

eat − aqΛ∞ = eat
(

1− qaΛ∞

eat

)
t→∞−→ ∞164

and eat/(eat − aqΛ∞)2 = 1/(eat[1− q aΛ∞/eat]2)
t→∞−→ 0 almost surely.165

Since lim supq→0+ fN0(q) <∞ by hypothesis, from q/(eat−aqΛ∞)
t→∞−→ 0 it follows166

that lim supt→∞ fN0(q/(e
at − aqΛ∞)) <∞ almost surely.167
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Thus, we conclude that168

fN0

(
qKs

Kseat − aqΛ∞

)
K2

s eat

(Kseat − aqΛ∞)2
= fN0

(
q

eat − aqΛ∞

)
eat

(eat − aqΛ∞)2
t→∞−→ 0169

almost surely. When applying expectation, by Fatou’s lemma (lim sup version) we170

derive that limt→∞ fN(q 6= 1; t) = 0.171

Since
∫
R fN(q; t)dq = 1 for all t > 0, we have a heuristic representation of the172

Dirac delta function centered at 1 when t → ∞, which is the probability density173

function of Ks = 1.174

�175

3. Approximation of the density function of the time-varying176

carrying capacity177

In the previous section, we constructed approximations of the probability density178

function of the solution and we gave sufficient conditions to guarantee that such179

approximations converge. Now we address the computation of the density function180

of the time-dependent carrying capacity, fK(q; t), given by (1.2). As it shall be181

seen, the random variable transformation method permits determining an integral182

expression for fK(q; t). The results will be applied later in Examples 4.1 and 4.2.183

To obtain fK(q; t), let us apply the random variable transformation method with
the following mapping:

(c,K0, Ks) 7→ (X,K, Y ) =

(
c,Ks

[
1−

(
1− K0

Ks

)
e−ct

]
, Ks

)
.

Its inverse is given by the map

(X,K, Y ) 7→ (c,K0, Ks) =
(
X,KeXt − Y

(
eXt − 1

)
, Y
)
,

with determinant Jacobian

J(X,K, Y ) = det

(
∂(c,K0, Ks)

∂(X,K, Y )

)
=
∂K0

∂K
= eXt > 0.

This yields184

fK(q; t) =

∫
D(c,Ks)

f(c,K0,Ks)

(
c, qect −Ks

(
ect − 1

)
, Ks

)
ect dc dKs. (3.1)185

Similarly, we can choose the following mapping:

(c,K0, Ks) 7→ (K,X, Y ) =

(
Ks

[
1−

(
1− K0

Ks

)
e−ct

]
, K0, Ks

)
.

Its inverse is given by

(K,X, Y ) 7→ (c,K0, Ks) =

(
1

t
ln

(
Y −X
Y −K

)
, X, Y

)
,

with determinant Jacobian

J(K,X, Y ) = det

(
∂(c,K0, Ks)

∂(K,X, Y )

)
=

∂c

∂K
=

1

t(Y −K)
> 0,
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since Y = Ks > K = K(t) for all t > 0. This allows us to present fK(q; t) as186

fK(q; t) =

∫
D(K0,Ks)

f(c,K0,Ks)

(
1

t
ln

(
Ks −K0

Ks − q

)
, K0, Ks

)
1

t(Ks − q)
dK0dKs. (3.2)187

Just as a remark, if we consider c and K0 as independent random variables and
Ks = 1 (with density function considered in terms of the Dirac delta function, as
before), then we obtain from (3.1) and (3.2)

fK(q; t) =

∫
D(c)

f(c,K0)

(
c, (q − 1)ect + 1

)
ect dc

=

∫
D(c)

fc(c)fK0

(
(q − 1)ect + 1

)
ect dc

= E
[
fK0

(
(q − 1)ect + 1

)
ect
]

(3.3)

and

fK(q; t) =

∫
D(K0)

f(c,K0)

(
1

t
ln

(
1−K0

1− q

)
, K0

)
1

t(1− q)
dK0

=

∫
D(K0)

fK0(K0)fc

(
1

t
ln

(
1−K0

1− q

))
1

t(1− q)
dK0

= E
[
fc

(
1

t
ln

(
1−K0

1− q

))
1

t(1− q)

]
, (3.4)

respectively.188

4. Numerical examples189

This section is addressed to show two examples where the previous results are190

illustrated.191

Example 4.1. Let us suppose that the random variable a follows a uniform distri-192

bution on [0.13, 0.17], c has an exponential distribution with rate parameter 10, N0193

has a uniform distribution on [0.19, 0.21], K0 is uniform on [0.26, 0.34], and Ks = 1194

(it represents the maximum proportion; its density function may be considered in195

terms of the Dirac delta function). Moreover, all the involved random variables are196

assumed to be independent.197

We point out that the uniform distribution corresponds to the maximum entropy198

distribution when only prior information about the bounded support is known, while199

the exponential distribution is the maximum entropy distribution for a positive200

random quantity with known mean value [10, 11]. In modeling, the support and201

the mean value of an input random parameter may be inferred from its physical202

interpretation, experimental measurements or curve fittings.203

Since a is bounded, we have E[eat] < ∞ for all t > 0. On the other hand, fN0 is204

continuous except at the points 0.19 and 0.21 (hence continuous almost everywhere205

on R), and satisfies fN0(q) ≤ C/q2 for some C > 0 because it has bounded support.206

Thus, the conditions of Theorem 2.2 hold, therefore limp→∞ fNp(q; t) = fN(q; t) for207

all q ∈ R, and limp→∞
∫
R |fNp(q; t)− fN(q; t)| dq = 0, for any t > 0.208

To illustrate our results, in Figure 1 we present approximations of fNp(q; 5) and209

fNp(q; 10) given in (2.6) for several values of p. They were computed by using the210
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crude Monte Carlo method with realizations from a ∼ Uniform(0.13, 0.17), c ∼211

Exponential(10), and K0 ∼ Uniform(0.26, 0.34), to estimate the expectation212

fNp(q; t) = E
[
fN0

(
q

eat − aqΛp

)
eat

(eat − aqΛp)2

]
(4.1)213

parametrically, with Λp given in (2.2). As the integrand in (2.6) has jump discontinu-214

ities in fN0 (the convergence becomes slow and we would have to deal with numerical215

instabilities), the Monte Carlo method has been utilized instead of computing the216

integral via quadrature techniques.217

p=1

p=2

p=3

p=4

p=5

p=6

p=7

p=8

p=9

p=10

p=11
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q
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30

f
NP

(q;t=5)
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f
NP
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Figure 1. Approximations of fN(q; 5) and fN(q; 10) for several values
of p.

We also compare the densities fN11(q; 5) and fN11(q; 10) above with those ones ob-218

tained by employing a kernel density estimation method (SmoothKernelDistribution219

function from the Mathematica software [12], with Gaussian kernel and Silverman’s220

selection of the bandwidth) with 2 000 000 realizations of a, c, N0, and K0. It is221

observed full agreement, see Figure 2.222
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q
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f
N 11(q;t=5)

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
q
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4

5

f
N 11(q;t=10)

Figure 2. Approximations of fN(q; 5) and fN(q; 10). The cyan lines
were computed using a kernel density estimation method, and the red
lines are the densities fN11(q; 5) and fN11(q; 10) previously presented
in Figure 1.

Figure 3 illustrates approximations of the density function of K(t), fK(q; t), for223

several values of t. The red line represents an approximation of fK(q; t) by computing224
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the expectation in (3.4) using the crude Monte Carlo method with realizations of K0.225

The blue line, calculated only to compare results, represents an approximation of226

fK(q; t) using a kernel density estimation method (SmoothKernelDistribution func-227

tion from the Mathematica software) with 1 000 000 realizations of c and K0. Notice228

that, in contrast to kernel density estimation (non-parametric nature), our paramet-229

ric method is able to capture the density features (in this case non-differentiability230

points).231

0.4 0.6 0.8 1.0
q
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fK (q;t=5)
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q
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q
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fK (q;t=15)
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q
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7

fK (q;t=20)

Figure 3. Estimations of fK(q; t) for several values of t. The red line
represents the approximation by computing the expectation in (3.4)
using the Monte Carlo method; the blue line represents the approxi-
mation of fK(q; t) using a kernel density estimation method.

To emphasize the relevance of the variability of the parameters, we compare the ex-232

pectation of N(t) and K(t), E[N(t)] and E[K(t)], with the solution of the simplified233

version of (1.1) and (1.2), respectively, where the random parameters are replaced234

by their respective means, E[a] = 0.15, E[c] = 0.1, E[N0] = 0.2, and E[K0] = 0.30.235

Observe that E[N(t)] takes much more time than the solution of the simplified ver-236

sion of (1.1) to approach Ks = 1. Figure 4 illustrates the two approaches: the fat237

line refers to the simplified version of K(t); the red one refers to E[K(t)] computed238

using the crude Monte Carlo method; the dots correspond to the numerical solution239

of the simplified version of N(t) employing the classical Runge-Kutta scheme; the240

green solid thin line represents the approximated solution, given by (2.1)–(2.2) with241

p = 11, of the simplified version of N(t); the blue line refers to E[N(t)] computed242

using the crude Monte Carlo method.243
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Figure 4. Simplified version of K(t) (fat line); E[K(t)] (red line)
computed using the Monte Carlo method; numerical solution of the
simplified version of N(t) (dots); approximated solution of the sim-
plified version of N11(t) in (2.1)–(2.2) (green line); E[N(t)] computed
using the crude Monte Carlo method (blue line); t ∈ [0, 100].

Example 4.2. Now, let us assume that all the involved random variables, a, c,244

N0, K0, and Ks are independent, Ks = 1 (the maximum proportion, as before),245

and suppose that their mean values are known, that is, E[a] = 0.15, E[c] = 0.10,246

E[N0] = 0.20, and E[K0] = 0.30.247

According to the maximum entropy principle [10, 11], the random parameters248

a > 0 and c > 0 follow an exponential distribution with rate parameters 1/0.15 and249

1/0.10, respectively. These distributions maximize the ignorance on the random250

behavior of a and c, while not violating the restrictions on their supports and mean251

values. On the other hand, since N0 ∈ (0, 1) and its mean value is known (and252

is less than 0.5), it follows that its maximum entropy distribution is the truncated253

exponential distribution with (approximated) rate parameter 4.80101, the unique254

solution to the nonlinear equation 1/(1−ex)+1/x = E[N0] = 0.20 [10, 11]. Similarly,255

K0 ∈ (0, 1) has a truncated exponential distribution with rate parameter 2.6721.256

The moment-generating function of a is given by E[eat] = 1/(1−0.15t) < +∞, for257

t ∈ (0, 1/0.15) ' (0, 6.67). On the other hand, fN0 is continuous except at the points258

0 and 1 (hence continuous almost everywhere on R), and satisfies fN0(q) ≤ C/q2 for259

some C > 0 because it has bounded support. Thus, the conditions of Theorem 2.2260

hold for all t ∈ (0, 1/0.15). Therefore, limp→∞ fNp(q; t) = fN(q; t) for all q ∈ R, and261

limp→∞
∫
R |fNp(q; t)− fN(q; t)| dq = 0, for any t ∈ (0, 1/0.15).262

Figure 5 (left) illustrates our result for t = 5. Although the hypothesis of The-263

orem 2.2 guarantees convergence only for t ∈ (0, 1/0.15), Figure 5 (right) indi-264

cates that the conditions on Theorem 2.2 could possibly be weakened. The plots265

in Figure 5 were computed by using the Monte Carlo method with realizations266

from the random parameters a ∼ exponential(1/015), c ∼ exponential(1/0.10), and267

K0 ∼ truncated exponential(2.6721) on (0, 1), to estimate the expectation in (4.1).268

Again, as the integrand in (2.6) has jump discontinuities in fN0 the Monte Carlo269

method has been utilized instead of computing the integral via quadrature tech-270

niques.271
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Figure 5. Approximations of fN(q; 5) and fN(q; 10) for several values
of p.

Figure 6 illustrates the comparison of densities fN11(q; 5) and fN11(q; 10) above272

with those ones obtained by employing a kernel density estimation method. It is273

observed full agreement.274
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Figure 6. Approximations of fN(q; 5) and fN(q; 10). The cyan lines
were computed using a kernel density estimation method, and the red
lines are the densities fN11(q; 5) and fN11(q; 10) previously presented
in Figure 5.

Figure 7 illustrates approximations of the density function of K(t), fK(q; t), for275

several values of t.276

As in Example 4.1, to emphasize the relevance of the variability of the parameters,277

we compare the expectation of N(t) and K(t) with the solution to the simplified278

version of (1.1) and (1.2), respectively. As before, E[N(t)] takes much more time279

than the solution to the simplified version of (1.1) to approach Ks = 1. Figure 8280

illustrates the two approaches.281

5. Conclusions282

In this paper we have extended, to the random setting, a non-autonomous lo-283

gistic model whose carrying capacity is variable, to better describe changes in the284

environment. The original deterministic model depends on five parameters, which285

define the initial condition, the intrinsic growth and the variable carrying capacity,286
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Figure 7. Estimations of fK(q; t) for several values of t. The red line
represents the approximation by computing the expectation in (3.4)
using the Monte Carlo method; the blue line represents the approxi-
mation of fK(q; t) using a kernel density estimation method.
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Figure 8. Simplified version of K(t) (fat line); E[K(t)] (red line)
computed using the Monte Carlo method; numerical solution of the
simplified version of N(t) (dots); approximated solution of the sim-
plified version of N11(t) in (2.1)–(2.2) (green line); E[N(t)] computed
using the Monte Carlo method (blue line); t ∈ [0, 150].

and whose nature is clearly stochastic. Then, we have randomized all these model287

parameters and we have formulated its stochastic counterpart by assuming that288

these parameters are random variables instead of deterministic. By assuming mild289

conditions on these random variables, we have solved the corresponding random290
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differential equation via the computation of the probability density functions of the291

solution and of the carrying capacity, which are stochastic processes. The numerical292

examples confirm that our analysis extends consistently its deterministic counter-293

part. Therefore, our study provides a reliable approach to treat the aforementioned294

non-autonomous logistic model, which may result useful to consider uncertainties295

often met in dealing with ecological models. Although in our analysis we have as-296

sumed a particular functional form for the carrying-capacity, which has been applied297

in previous contributions by other authors, we do think that the approach may be298

successfully extended to other mathematical expressions and may open new avenues299

in the stochastic analysis of non-autonomous logistic-type models that have variable300

carrying capacity in their formulation.301
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lanueva. A comprehensive probabilistic solution of random SIS-type epidemiological models us-320

ing the random variable transformation technique. Communications in Nonlinear Science and321

Numerical Simulation, 32, 199–210 (2016).322

[6] A.W. van der Vaart. Asymptotic Statistics. Cambridge University Press, ISBN: 9780521784504,323

1998.324

[7] W. Rudin. Principles of Mathematical Analysis. International Series in Pure & Applied Math-325

ematics, 3 edition, ISBN: 9780070542358, 1976.326
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