Skip to main content
Log in

Identifying the source function for time fractional diffusion with non-local in time conditions

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

The diffusion equation has many applications in fields such as physics, environment, and fluid mechanics. In this paper, we consider the problem of identifying an unknown source for a time-fractional diffusion equation in a general bounded domain from the nonlocal integral condition. The problem is non-well-posed in the sense of Hadamard, i.e, if the problem has only one solution, the solution will not depend continuously on the input data. To get a stable solution and approximation, we need to offer the regularization methods. The first contribution to the paper is to provide a regularized solution using the modified fractional Landweber method. Two choices are proposed including a priori and a posteriori parameter choice rules, to estimate the convergence rate of the regularized methods. The second new contribution is to use truncation to give an estimate of \(L^p\) for the convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alizadeh S, Baleanu D, Rezapour S (2020) Analyzing transient response of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative. Adv Differ Equ 1:55

    Article  MathSciNet  Google Scholar 

  • Arrieta J, Carvalho A (2000) Abstract parabolic problems with critical nonlinearities and applications to Navier–Stokes and heat equations. Trans Am Math Soc 352(1):285–310

    Article  MathSciNet  MATH  Google Scholar 

  • Aydogan SM, Baleanu D, Mohammadi H, Rezapour S (2020) On the mathematical model of Rabies by using the fractional Caputo–Fabrizio derivative. Adv Differ Equ 1:1–21

    MathSciNet  Google Scholar 

  • Baleanu D, Jleli M, Kumar S, Samet B (2020) A fractional derivative with two singular kernels and application to a heat conduction problem. Adv Differ Equ 1:1–19

    MathSciNet  Google Scholar 

  • Bakushinsky AB, Kokurin MY, Smirnova A (2010) Iterative methods for ill-posed problems. In: Iterative Methods for Ill-Posed Problems De Gruyter

  • Can NH, Luc NH, Baleanu D, Zhou Y (2020) Inverse source problem for time fractional diffusion equation with Mittag–Leffler kernel. Adv Differ Equ 1:1–18

    MathSciNet  Google Scholar 

  • Chechkin AV, Gorenflo R, Sokolov IM (2002) Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys Rev E 66(4):046129

    Article  Google Scholar 

  • Chen W, Ye L, Sun H (2010) Fractional diffusion equations by the Kansa method. Comput Math Appl 59(5):1614–1620

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath L (2003) Recent applications of fractional calculus to science and engineering. Int J Math Math Sci 54:3413–3442

    Article  MathSciNet  MATH  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer Science Business Media

  • Dokuchaev N (2019) Regularity of complexified hyperbolic wave equations with integral conditions. arXiv:1907.03527

  • Dumitru B, Khadijeh G, Shahram R, Mehdi S (2020) On a strong-singular fractional differential equation. Adv Differ Equ (1)

  • Dokuchaev N (2019) On recovering parabolic diffusions from their time-averages. Calc Var Partial Differ Equ 58(1):27

    Article  MathSciNet  MATH  Google Scholar 

  • Han Y, Xiong X, Xue X (2019) A fractional Landweber method for solving backward time-fractional diffusion problem. Comput Math Appl 78(1):81–91

    Article  MathSciNet  MATH  Google Scholar 

  • Herrmann R (2014) Fractional calculus: an introduction for physicists. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Hendy A, De Staelen RH (2017) Numerically pricing double barrier options in a time-fractional Black-Scholes model. Comput Math Appl 74(6):1166–1175

    Article  MathSciNet  MATH  Google Scholar 

  • Il’kiv VS, Nytrebych ZM, Pukach PY (2016) Boundary-value problems with integral conditions for a system of Lame, equations in the space of almost periodic functions. Electron J Differ Equ 304:1–12

  • Klann E, Maass P, Ramlau R (2006) Two-step regularization methods for linear inverse problems. J Inverse Ill-Posed Probl 14(6):583–607

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo, JJ (2006) Theory and applications of fractional differential equations (Vol. 204). Elsevier, Amsterdam

  • Kilbas AA, Saigo M, Saxena RK (2004) Generalized Mittag–Leffler function and generalized fractional calculus operators. Integral Transf Spec Funct 15(1):31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Li Z, Sun H, Zhang Y, Chen D, Sibatov RT (2019) Continuous time random walk model for non-uniform bed-load transport with heavy-tailed hop distances and waiting times. J Hydrol 578:124057

    Article  Google Scholar 

  • Li Z, Chen D, Sun H, Meng Z, Zhang Y, Sibatov RT (2020) Analyzing and modeling sub-diffusive transport of bedload along a heterogeneous gravel bed using stochastic and statistical methods. J Hydrol 125697

  • Louis AK (2013) Inverse und schlecht gestellte Probleme. Springer, New York

    MATH  Google Scholar 

  • Long LD, Luc NH, Zhou Y (2019) Identification of source term for the time-fractional diffusion-wave equation by fractional Tikhonov method. Mathematics 7(10):934

    Article  Google Scholar 

  • Luc NH, Baleanu D, Can NH (2020) Reconstructing the right-hand side of a fractional subdiffusion equation from the final data. J Inequal Appl 1:1–15

    MathSciNet  Google Scholar 

  • Luc NH, Huynh LN, O’Regan D, Can NH (2020) Regularization of the fractional Rayleigh-Stokes equation using a fractional Landweber method. Adv Differ Equ 1:1–21

  • Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Nguyen HT, Le DL, Thinh NV (2016) Regularized solution of an inverse source problem for a time fractional diffusion equation. Appl Math Model 40(19–20):8244–8264

    Article  MathSciNet  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, London

    MATH  Google Scholar 

  • Podlubny I, Kacenak M (2006) Mittag–Leffler function. The MATLAB routine. http://www.mathworks.com/ matlabcentral/fileexchange. Accessed 5 Aug 2019

  • Pollard H (1948) The completely monotonic character of the Mittag–Leffler function \( E_a\left({-x}\right) \). Bull Am Math Soc 54(12):1115–1116

    MATH  Google Scholar 

  • Povstenko Y (2015) Linear fractional diffusion-wave equation for scientists and engineers. Springer, Berlin

    Book  MATH  Google Scholar 

  • Povstenko Y, Avci D, Iskender EBB, Ozdemir N (2017) Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain. Thermal Sci 21(1 Part A):19–28

  • Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(1)

  • Sakamoto K, Yamamoto M (2011) Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl 382(1):426–447

    Article  MathSciNet  MATH  Google Scholar 

  • Tarasov VE (2011) Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media. Springer, New York

  • Tuan NH, Caraballo T (2021) On initial and terminal value problems for fractional nonclassical diffusion equations. Proc Am Math Soc 149(1):143–161

    Article  MathSciNet  MATH  Google Scholar 

  • Tuan NH, Trong DD (2014) On a backward parabolic problem with local Lipschitz source. J Math Anal Appl 414(2):678–692

    Article  MathSciNet  MATH  Google Scholar 

  • Tuan NH, Baleanu D, Thach TN, O’Regan D, Can NH (2020) Approximate solution for a 2-D fractional differential equation with discrete random noise. Chaos Solit Fract 133:109650

  • Tuan NH, Baleanu D, Thach TN, O’Regan D, Can NH (2020) Final value problem for nonlinear time fractional reaction–diffusion equation with discrete data. J Comput Appl Math 376:112883

  • Tuan NH, Huynh LN, Baleanu D, Can NH (2020) On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Math Methods Appl Sci 43(6):2858–2882

    Article  MathSciNet  MATH  Google Scholar 

  • Uchaikin VV (2013) Fractional derivatives for physicists and engineers, vol 2. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wei T, Wang J (2014) A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl Numer Math 78:95–111

    Article  MathSciNet  MATH  Google Scholar 

  • Wang JG, Zhou YB, Wei T (2013) Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl Numer Math 68:39–57

    Article  MathSciNet  MATH  Google Scholar 

  • Yang F, Ren YP, Li XX, Li DG (2017) Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation. Bound Value Probl 1:1–19

    MathSciNet  MATH  Google Scholar 

  • Yang F, Ren YP, Li XX (2018) Landweber iteration regularization method for identifying unknown source on a columnar symmetric domain. Inverse Probl Sci Eng 26(8):1109–1129

    Article  MathSciNet  MATH  Google Scholar 

  • Yang F, Zhang Y, Li XX (2020) Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer Algor 83(4):1509–1530

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang ZQ, Wei T (2013) Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl Math Comput 219(11):5972–5983

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Dinh Long.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luc, N.H., Baleanu, D., Agarwal, R.P. et al. Identifying the source function for time fractional diffusion with non-local in time conditions. Comp. Appl. Math. 40, 159 (2021). https://doi.org/10.1007/s40314-021-01538-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01538-y

Keywords

Mathematics Subject Classification

Navigation