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Abstract

This paper shows an application of plausible reasoning methods (mainly, specialization and
analogous) in mathematical modeling. Our attention is how a practitioner to determine analo-
gously a more balanced scientific model to assist the desire during solving the entire problem.
Taking interval samples modeling as a problem, we exemplify (with consideration paid to the
motivation and course of discovering) how to discover, based on the classical corresponding
methods, three linear regression models and two linear-like interpolation models relying on
n-variable interval input-1-variable interval output samples. The rationality of these recom-
mended models are proved, and applications of them are illuminated in detail by examples.
Strategies to model further interval samples towards satisfactory are also exposed.

Keywords Plausible reasoning - Interval number - Interval input—output sample modeling -
Linear regression - Linear-like interpolation
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1 We also make no difference between an interval number a and a closed interval [a, d] of R for convenience;
notice that @ = pj(a) and d = py(a), where pj (resp., pp) is the first (resp., the second) projection from R?
to R. We will also write a = {(a, d) < (b,b) =bifa <bandd < b.
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1 Introduction and preliminaries

An interval number (Moore 1966) a is a pair (a4, d@) € R% with @ < d, where R is the set
of all real numbers with the ordinary partial order. In this paper, we write a = (a, a) as a'
and identify! it with the corresponding real number «a (therefore, interval numbers can be
looked as an extension of real numbers) and designate the number (a, d)¢ = 0.5(a + a)
(resp., {(a, a)” = 0.5(d — a)) the center or midpoint (resp., the radius) of the interval number
(a, da) (thus (a, a) can also be written as [(a, d)¢, {(a,a)"] or (a, d)‘ £ (a, a)"). We use R to
denote the set of all interval numbers. We define a V b = max{a, b}, a A b = min{a, b}, and
la,b| = (a Ab,a Vv D) for any a, b € R. The four elementary operations on R have also
been extent to R (where a = (@, d), b = (b, b) € R, see Moore 1966): (a, d) @ (b, b) =
(@+b.d+b), (ad e (b.by=a—bid—bl, (a,d) o b b)=|abdb|, (a,d)®
(15, by = | %, % | (0 ¢ (b, I;]). Moreover, a total order (see Hu and Wang 2006; Xu and Yager
2006) < can be defined on R by putting

(a,d) < (b,b) < (a,d) < (b,b)°, or (a,d)" = (b,b)butd —a > b —b.

Interval data arise in many cases (such as numerical analysis—managing rounding errors,
computer-assisted proofs, global optimization, individually, modeling uncertainty) because
the data included there can not be exactly expressed in real numbers but can be revealed in
interval numbers. For instance, consider the following problems with interval numbers as
input and output (briefly, interval input—output) sample set [for more details, we refer to see
also Table 4 in Inuiguchi and Mizoshita (201 )13

(I) The pattern recognition problem including interval samples. Astragali Radix is a medic-
inal and edible plant of the same origin that can regulate the body’s immune function and
is perfect for endangered patients. Usually, Astragali Radixes are distributed (based on
test and measure data) into 5 grades: 1 (the lowest grade), . . ., 5 (the highest grade). The
following Table 1 (taken from Zhang et al. 2020) dispenses some useful samples, where
x1 stands for length (cm) of Astragali Radix, x; stands for head diameter (cm) of Astra-
gali Radix, x3 stands for tail diameter (cm) of Astragali Radix, and y stands for grade
of Astragali Radix. For a given Astragali Radix tp = (35.8£5.4,1.7£0.2,0.8£0.1)
(whose grade cannot be resolved instantly by using Pharmacopoeia of the People’s
Republic of China 1992), try to match it.

(II) A control problem involving interval samples:

& J @) +u) ey
dr
where x(1) = (x1(), x2()T € U (a compact set in R?%) represents the state at time ¢,
f(x) is a binary continuous function on U which is just observable (i.e., we can get the
approximate value, an interval number in general, for each x), and u is the controller
to be designed.
Just like succeeding a decimal by an integer (so-called rounding up or down), practi-
tioners can restore each interval number a in a sample set by its center a“ to process the
new sample using some known processes. However, this is an unacceptable method due
to the loss of the information. The other way to deal with it while solving the practical
problem is the use of a real input-interval output model (i.e. real number input-interval

2 The interval input—output data sets are also often used in real world applications. For examples, the measure-
ments obtained by same/similar measuring instruments, health parameters of different patients in statistical
databases, etc.
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Table 1 Sample information of

Astragali Radix X *2 3 Y
445+59 1.9+£0.2 1.4+£0.1 5+0.1
522+6.6 1.7+£0.2 1.2+0.1 4+0.1
585+7.1 1.4+0.1 1.0+0.2 3+0.1
42.6+£9.6 12402 0.8+0.1 2+0.1
445492 1.0+0.1 0.7+0.1 1+0.1
4294+9.6 22403 1.6+0.3 540.1
36.7+10.4 1.74+0.2 1.2+£0.2 4+£0.1
382+74 1.5+£0.2 1.1£0.1 3+0.1
40.9+£8.0 1.3+0.1 09+£0.2 2+0.1
434+9.2 1.1+0.2 0.7+0.1 1+0.1
31.5£5.5 1.7+0.1 1.34+0.2 54+0.1
255+29 1.4+0.2 1.1+0.1 4+0.1
27.7+4.6 1.2+0.1 0.9+0.1 34+0.1
28.7+£5.3 1.1£0.1 0.8+0.1 2+0.1
25.6£4.9 0.9+£0.1 0.7+£0.1 1+0.1
323+49 1.9+0.2 14+£0.1 5+£0.1
31.2+49 1.5+0.1 1.240.1 4+0.1
29.7+43 144+0.1 1.1+0.1 3+0.1
324+4.6 1.2+0.1 0.9+£0.1 2+0.1
29.2+3.8 1.0+0.1 0.8+0.1 1+0.1
36.5+9.0 1.3+£0.2 09+£0.1 4£0.1
324+£55 1.0+0.1 0.8+0.1 3+0.1
30454 0.9+0.1 0.7+0.1 2+0.1
329+6.1 0.8+0.1 0.6+0.1 1+0.1

number output, called also crisp input-interval output); for more details, see (Hwang
et al. 2006; Ishibuchi and Tanaka 1990; Jeng et al. 2003; Lee and Tanaka 1999) and the
following Example 1.1 and Remark 1.2.

Example 1.1 Consider a real input—output (i.e. real number input-real number output) sample
(an n-element set) S = {(x1, y1), (x2, ¥2), ..., (xn, )} from a continuous function f(x).
Without loss of generality we assume S = {(—1, 0), (0, 1), (1, 0)} (a 3-element set). Firstly,
we get the linear interpolation fi 3,0(x) of f based on §

_ l+x,xe[-1,0),
fi30(x) = { 1 —x,xel0,1].

Secondly, we get the first real input-interval output model fi 3. (x) = (f 5 ,(X), fl-t%, ()
= fizol) £ g clearly, fi;5.(x) = fi30(x) — ¢ and fffg,s(x) = fizolx) + ¢
are continuous. Similarly, we get fi,0(x) and fi,.(x) = (flfn’g(x), flfn’g(x)) =
finox) £ (n > 3,¢ > 0). Notice fino0(xi)) € fine(x) (¢ = 1,2,....n),

we have lim fine(i) = (fino@i), finoGi)) = finoti) (= 1.2,....n), and
Jim  fine() = (fino@), fino)) = finolx) (r € [a.b) ifa =x < x <
-+ xy, = b is an equal-length partition. Thirdly, we get the second real input-interval output
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model f23.(x) = (fzflg(x), f;fig(x))(e > (), where

14+x—e¢, x € [—1,—-0.5¢),
fr3.00) = V0.562 —x2 4+ 1 —2¢, x € [-0.5¢, 0.5¢),
1—x—g¢, x €[0.5¢, 1]
and
14+x+e, x € [—1,—0.5¢),
fr3..00 =1 V0562 —x% + 1, x € [-0.5¢,0.5¢),
1—x+e, x €[0.5¢, 1]

are apparently differentiable. Similarly, we get f2,..(x) = { fz_’m(x), f;fms(x)) (n >

3). Notice f1n,0(x) € fane(x:) (G = 1,2,...,n), EliiI})fZ,n.g(xi) = fano(x) ( =
1,2,...,n),and liT foneX) = fanox) (x €la,b)ifa=x1 <xp<---x,=0>bis
n——+0oo

an equal-length partition.

Remark 1.2 An interval linear regression model for a real input—output sample can also
be written as Y(x) = A0 ® (A1 ®x1) D (A @ x2) ® --- ® (A, ® x,) = Ax, where

x=(,x1,x2,...,x,)T is areal input column vector, Y (x) is the corresponding estimated
interval, and A = (Ag, Ay, A2, ..., A,) is an interval coefficient row vector with A; =
[aj,ci1 (i =0,1,2,...,n),the optimal interval coefficients. Moreover, the optimal interval

coefficients is a solution of the following quadratic programming problem [see (Chukhrova
and Johannssen 2019; Tanaka and Lee 1998) and the references here in]

m
minJ = ¢’ E |x,|T|xJ-| c+.§aTa,
a,c '

=1

subjectto a'x; —c'x; <y; <a'x;+cT|x;|,

¢>0G=0,1,...,n;j=1,2,..., p),

where a = (ag, ai, ..., a))%, ¢ = (co, 1y ..., cn)T, T is the transpose of c, (ij-, yj) =
(Xj1, X2, ., Xjn; yj) is j-th sample, [x;|T = (lxj1], [xj2l, ... |xjnl), and & > O (very
small).

Thus, the main concern of this paper is how practitioners to model interval input—output
samples. There are some available work in the literature related to the topic (we refer to
Boukezzoula et al. 2011, 2018, 2020; Chuang 2008; Hladika and Cerny 2012); but we
extend the method as presented by Hladika and Cerny (2012) because the readers probably
see from it not only the motivation the authors propose their method but also the course the
method is formed [see Polya’s famous book (Polya 1954) for more in this direction]. The
present paper is a sequel of these works which exemplifies, in the light of Polya’s idea, how to
restore or approximate the true function (in form of interval input—output function) from the
interval input—output samples based on some commonly used methods. For problem (1), we
first concentrate the original problem by assuming that each interval datum has a radius 0 and
thus get a new sample set and find a solution: Determine the grade of t( using the classical
linear regression function obtained relying on the new sample set. Then we investigate the
generalization of this strategy in the case of the interval sample. Analogously, for problem
(IT), we first use an interval input—output function (which can be formulated) to approximate
f (by observing the analogy between the case of interval input—output sample and the case
of the real input—output sample) and then consider the establishment of the new system.
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To make our discussion more reasonable, let us recall three most usually used metrics on
the n-dimension Euclidean space R" (n > 1) which are defined by (a = (ay, ..., a,),b =
(b1, ...,ay)) Bn(a,b) = max{la; — b1|, ..., |a, — by|} (called the Chebyshev metric),

pna,b) = /3" |la; — bi|? (called the Euclidean metric), and p, (@, b) = Y '_, |a; — b;|
(called the Manhattan metric or the city block metric).

The rest of the paper consists of four sections. Section 2 exemplifies how to discover,
based on the classical linear regression, methods to model interval input—output samples.
Section 3 investigates, based on the classical linear interpolation, the same problem as in
Sect. 2. Section 4 exemplifies applications of the models proposed. Conclusions, discussion,
and strategies for further generalization are given in Sect. 5.

2 Three models stemmed from the classical linear regression

In this section, the following interval input—output sample set, consisting of n + 1-dimension
row vectors of interval numbers (each interval number contains the true datum), will be
considered:

S=(x1,1.x2,1, .- » X, 3 Y1), (X1,2, X225 -+, X325 ¥2),
~--a(Xl,m’XZ,my~--7xn,m;yn1) 2)

We first present three linear regression models, each is stemmed from the corresponding
linear regression modal with real input—output sample. Then we prove that each modal is an
universal approximator (Ying 2015) to the corresponding linear regression modal based on
the true sample.

Remark2.1 (1) If m =n+1 =2, (x1,1, y1) = (x1, y1), and (x1,2, y2) = (x2, y2) (x1 #

x2). Then the linear regression function based on S is a classical one: f;.(x) = *2=2M
yi—y2 —_
=X = a0 +ax.

@) Iftm=n+1=2,G1,y1) = ([x1,87, [y1, 1), and (1,2, y2) = ([x2, 81, [y2,81)
(x1 # x2,6 > 0). It is most possible for us to get two functions: one is the classical
linear regression function

X1 —8)(y2 —8) — (x2 = 8)(y1 — §) n Ny,
X1 — X2 X] — X2

Fi ="

based on the real input—output sample set {(x; — &, y; — 8), (x2 — &, y» — )}, another
is the classical linear regression function

_ (x1 +8)(y2 +8) — (x2 +8)(y1 +6) Loy,
X1 — X2 X] — X2

f@

based on the real input—output sample set {(x; + 8, y; + &), (x2 + 8, y2 + §)}. It is
also natural for us to take the linear regression function based on the above interval
input—output sample set S as f5(x) = apP[a; ® x] or f5(x) = | f (X), f(X)|, where

) _J 1 =) (32— 8) — (x2 = ) (y1 — ) (X1+8)()’2+3)—(X2+5)(y1+5)L

X1 — X2 X1 — X2

a; = 172 and x = (£, %) € R. It can be easily seen that lim f5(x) = lim f5(x) =
X]1—x2 §—0 §—0

f(x) (¥Yx € R). This confirms the rationality that we take the linear regression function
based on the above interval input—output sample set S as f5 or fs.
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(3) Notice that the radii of interval numbers in a data set are not the same in general in practice
problems. So we should consider a little big generalization of (2): m = n+1 = 2,
(x1.1,51) = ([x1,81.11, [y1,6121), and (x1.2,y2) = ([x2,82.17, [y2,8221) (x1 #
x2,8;,; > 0,1, j = 1, 2). Analogously to (2), we can get the linear regression function
fo(x) = {ao, do) ® (ar,d)xor fs(x) = | f(X), f(K)] (x = (¥, X¥) € R) based on
this interval input—output sample set S, where

(x1 —81,0)(y2 —82.2) — (x2 — 82,1)(y1 — 81,2) A (x1 + 81,02 +822) — (x2 +82,1)(y1 +81,2)

(x1 —x2) + (81,1 — 82,1) (x1 —x2) + (81,1 — 82.1)
do = (x1 —81,0)(y2 —82.2) — (x2 — 82,1)(y1 — 81,2) v (x1 + 81,02+ 822) — (x2 +82,1) (31 +51,2)!
(x1 —x2) + (81,1 — 82,1) (x1 —x2) + (81,1 — 82,1)
4y = 1= y2) + (622 —812) 1 —y2)+ (12— 52.2)’
(1 —x2) + (82,1 —d1,1)  (x1 —x2) + (G101 — 82.1)
a = 1 —y2) + (822 —81,2) v 1 —y2) + (612 — 52.2)7
(1 —x2) + (82,1 —d1,1) (k1 —x2) + G101 — 82.1)
£y = (X1 —81,0(2 —822) — (2 = 82.1)(y1 —812) | (y1 —y2) + (822 — 81,2)

(x1 —x2) + (82,1 — d1,1) (x1 —x2) + (82,1 — d1,1)

is the classical linear regression function based on the real input—output sample set
{(x1 = 81,1, y1 = 81,2), (x2 — 82,1, y2 — 82,2)}, and

(x1 +381,1)(y2 +6822) — (k2 +82,1)(y1 +681,2)  (y1 — y2) + (61,2 —82.2)
(x1 —x2) + (81,1 — 82,1) (x1 —x2) + (61,1 —82,1)

is the classical linear regression function based on the real inpu}—output sample set
{(x1 4+ 31,1, y1 +81,2), (x2 + 82,1, y2 + 82,2)}. In addition, both fs(x) —> f(x) and
f3(x) — f(x) hold for all x € R as § = (811,812, 62.1,822) —> (0,0,0,0).
This further support us to take the linear regression function based on the above interval
input—output sample set S as f3 or fs.

4) If 81,1 = 812 = 821 = 82,2 does not hold, then a; = % does not hold (which
can be seen from (1)—(3)) and the output should be f.(x) + r, where r should be a
continuous function of variables 61 1, 61,2, 82,1, and &2 2 satisfying r(0, 0, 0,0) = 0.
Thus we can take r as the second kind linear regression function (i.e. the linear regres-
sion function having no the constant term and obtaining by the classical least square

estimation method) 7(8) = %6 based on the real input—output sample set
1,1 2,1

{(61,1,61,2), (82,1, 62,2)}. Therefore, we can a}so take the linear regression function based
on the interval input—output sample set S as f3(x) = [ f-(x°), r(x")] = fo(x°) £r(x"),
where f; is the linear regression function based on {(XT, LY, (xﬁﬁz, ¥}

ft =

Example 2.2 Consider the interval input—output sample set S = {(x1;,x2,;,y;) | i = 1,2,
oo 10y = {(Tx1i, 81,415 Tx2,i5 82,41, Tyisril,) i = 1,2, ..., 10} in Table 2.

(1) Similar to Remark 2.1(2) and Remark 2.1(3), we have f(u,v) =aq+au+ayv =
95.9639 4 0.02u — 7.3671v, f(u, v) = do + ayu + arv = 126.6484 4 0.0088u — 6.9587v,
and thus we obtain the first model f(x) = f(xl,xz) = a9Pla; Q@ x1]P[az ® x3] =
(95.9639, 126.6484)® [(0.0088, 0.02) ®x116[(6.9587, 7.3671) ®x2] and the second model

fx) = f(x1,x0) =] f(X1, X2), f (%1, %2) | =]95.96394-0.02x; —7.3671x7, 126.6484+
0.0088%| — 6.9587%, |. Similar to Remark 2.1(4), we have fe(x{,x5) = fe(x1,x2) = ap +
ajxy+azxy = 111.69184-0.0143x; —7.1882x> (i.e. the classical linear regression function or
the first kind linear regression function based on the sample set {(x{, x5, y) | (x1,x2,y) €

S)}. We chose, by the classical least square estimation method, a linear regression function
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Table 2 The interval

input—output data [x1. 1] [x2 821 [y,
1 1000 [5,1] [100, 201
2 600 17, 1] 75
3 [1200, 20] 6, 11 80
4 500 6, 11 70
5 [300, 107 18, 1] 150, 10]
6 [400, 107 7,17 [65, 10]
7 1300 [5,1] 90
8 1100 [4,1] 100
9 1300 13,17 110
10 [300, 107 [9, 1] [60, 107

r(é1,8) = 0.181 + 4.482 from the set of all 2-variable linear functions without constant
terms (i.e. the second kind linear regression function)? As a result, we obtain the third model
f&) = f([x1,811, [x2,81) = [111.6918 + 0.0143x; — 7.1882x2,0.18; + 4.48,| =
(111.6918 + 0.0143x; — 7.1882x;) =+ (0.18; + 4.485).

(2) Assumesy = (1000, 600, 1200, 500, 300, 400, 1300, 1100, 1300, 300; 5,7, 6, 6, 8, 7,
5, 4, 3, 9; 100, 75, 80, 70, 50, 65, 90, 100, 110, 60) € X1,1 XX1’2X~ . ~XX1,10XX2,1 sz,zx

- X X2,10 X Y1 X y2 X --+ X yjo is the true data. Then f(x) = f(x1, x2) = 111.6918 +
0.0143x; — 7.1882x; is the linear regression function based on the real input-real out-
put data set sg. For each s = (1000 + a, 600 + a, 1200 + a, 500 + a, 300 + a, 400 +
a, 1300 4 a, 1100 4 a, 1300 + @, 300 + a; 5+ b,7+ b, 6 +b,6 +b,8+ b, 7+ b,5 +
b,44+b,34+b,94+b;100 +¢,75 +¢,80 +¢,70 + ¢,50 + ¢,65 + ¢,90 + ¢, 100 +
c, 110 + ¢, 60 + C) € X|,] X X2 X -+ XX] 0 X X2 XX22 X -+ XX210 XYy X
Y2 X o X ¥10, let fape(X) = fape(x1, X2) = By + BpX1 + Pcx2 be the linear regression
function based on the real input—output data set s, Bg‘(f, fabe) = 33((111.6918, 0.0143,
7.1882), (Ba, B, Be))s P3(f, fave) = p3((111.6918,0.0143,7.1882), (B4, Bo., Bc)), and
23 (f fabe) = p3((111.6918,0.0143,7.1882), (Ba, v, Bc)). Then we have the computing
results as shown in Table 3.

Supported by Remark 2.1 and Example 2.2, we have reasons to propose the following
Algorithm 2.3:

3 Similar to obtaining a linear regression function 7(x) = /§0 + ﬁ]xl + /§2x2 + e+ /f},,xn

(by the classical least square estimation method) from the set of all n-variable linear functions, we
can also obtain a linear regression function r(x) = r(xy,x2,...,xz) = pBix1 + Poxo + --- +
Bnxy from the set of all n-variable linear functions without the constant term by the classi-

cal least square estimation method, i.e. by solving the linear system of linear equations 3%1 =

(x1xDp1 + (xv%)ﬂz +o @B =x1y7,

S L o L R A
@nx B+ @nxD)B2 4+ + nx ) B = x0T,

Sy = r X2 X )1 and (X X2, X Y = L Xm)s (21 e X2 ),

(Xn,15 -+ Xn,m)s (¥1. ..., ym)} is the real input-real output data set (having n + 1 element and) consist-

ing of m-dimension row vectors of real numbers. General speaking, 8] # 51, B # 52, con Bn # En. It

@1y Dlx2 12—y D xd)

and
x 1112 1x2 012 =201 x7)

can be easily seen from above linear system of linear equations that 1 =

oy D -Gy DHexd)

B = whenn = 2.
1112212 =20x 1 x7)
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8L00°0
LLOO0

800°0
6L00°0

800°0

800°0
1800°0
1800°0
8000
£€800°0
8000
£€800°0
78000
8000

8L00°0
LLOO0

8000
6L00°0

8000

8000
1800°0
1800°0
8000
£€800°0
8000
£€800°0
8000
8000

8L00°0
LLOO0

8000
6L00°0

8000

8000
1800°0
1800°0
8000
£€800°0
8000
£€800°0
8000
8000

Cxp8T°L —
XI881°L —
Cp881°L —
I881°L —
Cp881°L —
XT88T°L —
881 L —
XI881°L —
Cp881°L —
I881°L —
Cp881°L —
X1881°L —
xg881°'L —
xz881°L —

Ixey10°0 + Ov89° 111
Ixep10°0 + 669111
X100+ 8€89° 111
Ixgp10°0 + L669° 111
Ixep10°0 + 8€89° 111
Ixep10°0 + 8669111
Ixep10°0 + LESITTT
Ixey10°0 + 6669 111
Ixep10°0 +9€89° 111
Lxey10°0 + 100L° 111
IXep10°0 + 9€89° 111
IX€p10°0 + 100L° 11T
Ixep10°0 +9€89° 111
Ix¢y10°0 + 000L T11

(110070 ‘10070 “€€0°0)—

(100°0 ‘1000 *€€0°0)

(€100°0 ‘10070 “€€0°0)—

(210070 “100°0 “€€0°0)

(S100°0 £6000°0 “€€0°0)—
(ST00°0 “L6000°0 “€€0°0)
(S100°0 ‘6600070 “€€0°0)—
(S100°0 ‘86000°0 “€€0°0)

(S100°0 ‘100°0 “€0°0)—
(S100°0 “100°0 ‘620°0)

(S100°0 ‘10070 “1€0°0)—

(ST00°0 ‘1000 *€0°0)

(ST00°0 ‘100°0 “€€0°0)—

(S100°0 ‘10070 “€€0°0)

N sd

1 )5

e nid

(0297

(>°q*p)

SOLIJoUI pasn A[uouIIod a1y} Jopun *97/ pue [ usemiaq seduelsip jo uostedwo) ¢ ajqe]
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Algorithm 2.3 The linear regression functions based on the interval input—output sample set
S in equality (2) can be given by the following ways:

(1) Step 1 Compute the ordinary linear regression function f(t) =f(z;,...,t,) =
aot+arty + ---+ayt, (Yt € R™), based on the real input—output sample set S =
(G, X210 - X1 YD)y (K12, %22, 00 X023 92)s ooy (Xms X2« oo s Xnoms Ym) )
using the classical method.

Step 2 Compute the ordinary linear regression function f_ @ = f (t,...,ty) =
aop + ajty + --- + aut, (¥t € R"), based on the real input—output sample set S =

(G, %21, - Xn 15 VD), G2, X202, -0, X025 92) ooy Bms X2y - o5 Xy Y b
using the classical method.
Step 3  Obtain the first linear regression function f(x) = f(x1,x2,...,%X,) =

ap®la ®x] Blar@x2] ® - - - @ [a, ®x, ] by computing a9 = |ag, aol, a1 = |a;, ail,
cowag =la,, al.
Step 4 Obtain the second linear regression function f (x) = f (x1,...,X,) =
L f G o ), G E) L

(2) Step 1 Compute the ordinary linear regression function f.(t) = f.(t1,...,t;,) =
ap+ ayty + -+ -+ apty, (¥t € R™), based on the real input—output sample set

5 (551.1 +a1 ¥+ X2 Fn 1 X1 31 +)"1) (551‘2 +x12 ¥+ X202 Fn2 4 X2 552+y"2)
= 2 . Rt 3 ) 2 . R 3 P )
(if'l,m +X1m Fom +Xom Fnm + Xnm | Im + Im >
3 , TR 3 T ,

using the classical method.
Step 2 Compute the ordinary linear regression function r(8) = (61, ..., 8,) = b161 +
-+ byd, (V8 € R™), based on the real input—output sample set

s = (.361_17)61_1 B0 — X 55,1,1*5(;1,145’1*5’1) (551.2*)51.2 Fo — i -;571.27271‘2'};27}.'2)
N2 0 2 2 2 2 2 U2 2

Xim —Xim Xom —Xom Xnm = Xnm  Im — Im

’ ( 2 2 T2 )
using the least-square method. Then f(x) = f(xl, cooxy) = [felx, .o x5), r(x,
)] = fe(x{. x5, ..., x) £ r(x], x5, ..., x}) is the third linear regression function.

The rationality of Algorithm 2.3 is guaranteed by the following

Theorem 2.4 Lets = ((xl’l, X215+ Xn,15 yl), (xl,z, X225 -5 Xn,23 yz), ey (xl,m, X2.m>»
<oy Xpms Ym)) be areal input—output datum from S = (x1,1 Xx2,1 X+ - - XXp,1 Xy1) X (Xx1,2 X
X002 X X Xp 2 XY2) X X (X1,m XX X+ X Xy, m X Ym) (Which is a rearrangement
of the sample set in equality (2)) and fs(x) = Bo(s)+ Bi(s)x1 + - -+ + Bu(s)x, the linear
regression function based on the real input—output sample set s. Then

(1) Bo(s), Bi(s), ..., Bu(s) are continuous functions from (Rz’”(”"'l), p) to (R, p1) (p €
Poini1y P2met1)s P2amn+1)})-
(2) The mapping g : (R'”("'H), Pmnt1)) —> (R"‘H, p)(p € Py Prt1s Put1}), defined

by g(s) = (Bo(s), B1(S), ..., Bu(s)), is continuous.
(3) Let f(x) = Bo+ Bix1 + - - - + Buxn be the linear regression function based on the true

0 0 0 .,0 0 0 0 .,0 0 0
sample t = ((xl’l, Xy g Xy g3 ), (xl’z, X9 0y Xy 03 Y2)s e, (xlqm, Xy oo
xg’m; y?n)) in S. Then, for each ¢ > 0, there exists a § = (5o, 81,682, ..., )T >0

(ie. 5 > 0,81 > 0,60 > 0,...,8, > 0) and a § > 0, such that (where
pE {BrH»l’ Pn+1, Pn+1})
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i) p(g(s), (Bo, Bty -+ /3,1)) < ¢ ifSisad-sample set, i.e. it satisfies max {y{, Yhsooos
yfn} < §p, max {x?l, xq’z, o xim} < §1, max {XE,I’ R Xg,m} < &, s
max {x;’l, x:l’z, o, x,’lﬁm} < 6.

i) p(g(s). (Bo, B1.....Bn)) <&ifSisad-sample set, i.e. it satisfies max{y}, 5, ...,
Yo Xq,l’ xq’z, o, xq’m; XS,I’ x5’2, o xg,m; o X;,]’ X:z,2’ e, xz’m} <.

“4) f is a universal approximator to f, i.e. for each compact set U € R"*! and each e > 0,

there exists a §(U, €) > O such that sup |(ap + ajx; +azxxz2 + -+ -+ apxy) — f(x)| < &
xeU
foreacha = (ay, ay, az, ...,a,) € ag X a1 X ay X --- X &, and each §(U, g)-sample

set S (containing t), where f(x) = f(x1,%2, ..., %) = ao®[a; ® x1]B[a ® x2]®
- @ (8, ® x,] is the first linear regression function based on S.

(&) f is a universal approximator to f, i.e. for each compact set U € R"*! and each e > 0,
there exists a §(U, €) > 0 such that sup |f(x) — f(x)| < € and sup [fx) — f(x)| < ¢

xeU xeU
for each §(U, g)-sample set S (containing t), where f(x) = f(xl, X2, ..., Xy,) IS the
third linear regression function based on S.

(6) f is a universal approximator to f, i.e. for each compact set U < R and
each ¢ > 0, there exists a 6(U,e) > 0 such that sup{r(x) | x € U} < ¢
for each §(U, g)-sample set S (containing t), where f(x) = f(xl, X2, ...,X,) =
(f(x{,x5,...,x5), r(x],x5,...,x},)) is the second linear regression function based
onS.

Proof

Step1 For two k-variables polynomials P(x) and Q(x) (k > 1), the function S(T;g is

continuous in R¥ — E 0, Where E g is the zero-point set of Q(x) (and thus a finite
set). Moreover, the inequalities Py _H(x, y) < pr+1(x,y) < pr+1(x,y) hold for
any {x,y} € R**1.

Step2 As Loty P2mn+1)s and p2,(n41) induce the same topology (i.e. the Euclidean
topology) on RZ"™+1) it can be easily seen from computing formulae of clas-
sical linear regression and Step 1 that (1) is true. By (1), p; o g(s) = Bi(s) :
(R D pymus1y) —> (R, p1) is a continuous function (where p; : R"™"! — R
is the i-th projection, i = 1,2, ...,n + 1). Thus g(s) is a continuous function i.e.
(2) is true (equivalently, (3) is true). (4)—(6) follow from (3). ]

Example 2.5 Consider the interval sample in Table 4.

As f@) = 52.0962 + 1.37131, — 0.7425t3 and f#) = 56.5474 + 1.45801, —

0.539913 (Vt = (11, 12, 13) € R?), f(x) = (52.0962, 56.5474) & [(1.3713, 1.4580) ® x2]©
[(0.5399, 0.7425) ® x3] and

f(x1,x2,x3) =] 52.0962 4 1.3713x, — 0.7425x3, 56.5474 4 1.4580x — 0.5399i3 |
(¥x = (x1, %2, x3) € RY).

As fo(xf,x5,x§) = 53.1765 + 1.4635x5 + 0.6514x§ and r (x|, x5, x5) = 0.7668x) +
0.1887x (V(x1, x2,x3) € R3), f(x1, x2, x3) = [53.1765+1.4635x540.6514x5, 0.7668x)
+0.1887x%] (Vx = (x1, X2, X3) € R3). Notice that two models obtained in (Baczynski et al
2008) for above sample are y = (50.922, 55.431) @ [(1.401, 1.526) @ x2] B[(0.624, 0.679)
®x3] and y = (44.463, 61.89)P[(1.224, 1.703) ® x ] [(0.545, 0.758) ® x3].
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Table 4 Interval sample from

Hladika and Cerny (2012) * *2 3 Y
1 1 (5.5,8.5) (22, 30) (78, 80)
2 1 (0.5, 1.5) 27,31) (72,76)
3 1 (10, 12) (51,61) (100, 108)
4 1 (9, 13) (28, 34) (81, 95)
5 1 (5,9) (50, 54) (94, 98)
6 1 (8, 14) 55 (105, 113)
7 1 (3,3) (69, 73) (103, 103)
8 1 1 (28, 34) (72, 74)
9 1 (1,3) (51,571) (93, 93)
10 1 (18, 24) (45, 49) (112, 120)
11 1 (0.5, 1.5) (32, 48) (81, 87)
12 1 (7,15) (60, 72) (112, 114)
13 1 (6.5,13.5) (61,75) (107, 111)

'SI':the 5 Special interval sample [x1,81] M2, 8] Iy, r]
1 [1000, 101 [5,2] [100, 57
2 [600, 107 [7,2] [75,5]
3 [1200, 201 [6,2] [80, 57
4 [500, 107 [6,2] [70, 5]
5 [300, 107 [8,2] [50, 5]

Example 2.6 Consider the special interval input—output sample set S = {(x1;, x2,,yi) | i =
1,2,3, 4,5} in Table 5 (where 8, = 2, r = 5, and §; is almost equal to 10).

Then f(t) = 111.7393 + 0.0124¢; — 11.478712, fo(t) = fc(t1,2) = 139.57317 +
0.01241, — 11.47871, and f(t) = f(r1, 1) = 167.407 + 0.01241; — 11.47871, (V¢ =
(1, 12) € R?). By Algorithm 2.3, f(t) = f([tl, 107, [t2, 2]) = (111.7393 4 0.0124#; —
11.4787t, 167.407 + 0.0124¢; —11.47871) = f(mt) vt = ([t1, 101, [, 2]) € R). As
r(81,8) = 2.58, = 5 (if & = 2), f(t) = [0.0124r, — 11.47871, + 139.5732,5] =
fe@®) £5 = fo(t1,10) £5 (& = ([t1, 107, [t2,2]) € R). This motivates the following
easy-to-use Corollary 2.7:

Corollary 2.7 For a special sample (or data set) S = {(|'x1,1, e1l, [x2.1, 21, ..., [xn.1, &5
[vi, €01, ([x1.2, €11, [x2.2, €21, -+ -5 [Xn.2, &n 15 [¥2, €015 - -5 ([X1ms €11, [X2,m» €21, - -+
[Xn.ms €n 15 [Ym, 80])}, the first two linear regression functions in Algorithm 2.3 are the same:

F®) = fMn el T el i) = | fol® =0, fo®)+0 | = f (& it equals exactly
to [ fe(ty, ..., ty), |ol]1 = fe(t1, ..., ;) £ |o|, which can be looked to be f(t) (because r(8)

in Algorithm 2.3 has infinite many chooses, including |o|), here t = (t1,t2, ..., t,) and
0O=¢&)—ajel —azey — -+ — apéy.

Proof For two column vectors x = (x1,Xx2,...,%m)Y and 2 = (21,22, ..., 2m)%, we
write X = %(xl +xp 4+ xp) and xTz = x121 + X220 + - + XnZm. Using
x1 (resp., x2,...,X,,y) to denote the column vector (xl,l,xl,z,...,xl,m)T (resp.,
(x2,1, %22, ..., xz,m)T, coes o1 Xn 20 e x,,,m)T, V1, Y2,y - ym)T) and &' to denote a
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column vector with the constant coordinates &, we get (y — 8(‘))T(x i—&)—my —¢&,X; — &

= (yTx,- — me;y — meok; —I—e(')Ts;) —my —gyx; — & =y'x; —myx; (i=12,...,n).
Analogously, (x,-—gl'.)T(xj—e'j)—mx,' —&xj— g'j =xl.ij—m)_ciij i,j=1,2,...,n).

This implies a; = a; (i,j = 1,2,...,n), and thus ¢y = y —¢&, — a;x; — &, —
AoX) — &) — +++ — Xy — €y = Y —E) — AIX] — €] — A2XD — €y — +++ — ApXpy — &y =
(y —aixy —axxy — -+ —ayx,) — (9 — a1e1 — axer — - - - — ay&,) = apg — o. Therefore,
i(t) = f.(t) — o; analogously, f(t) = f.(t) + o. ]

Remark 2.8 In practice we can ask people to collect sample as that in Corollary 2.7 so as to
use the simplified models in Corollary 2.7.

3 Two models stemmed from the classical linear interpolations

In this section, we first present two linear-like interpolation models with interval input—output
sample, each is stemmed from the classical linear interpolation modal with real input—output
sample. Then we prove that each modal is an universal approximator to the corresponding
linear interpolation modal.

Example 3.1 (1) For a real input—output data set S = {(x1, y1), (x2, ¥2), ..., (X, ym)} sat-
isfying xj41 —x; = h; >0 (i =1,2,...,m — 1, m > 3), the continuous function
f(x) = yil(x1) () +y2l (x2) (X)++ - -+ Yl (xp) (x) (called the 1-variable linear interpola-
tion function) interpolates the given sample, i.e. it satisfies f x)=yi (i=1,2,...,m),
where

S+ x e lxr = hix),

IxDx) = 4= x €lx,x),
0, otherwise,
xjji’j;la X € [xXm-1,Xm),
I(xp)(x) = % + 1, x € [Xp, Xm + hip—1],
0, otherwise,
and
Tk, x € [xio1, xi),
hi—1

I(x;)(x) = %,xe[xi,xi_‘_l), (i=2,3....m—1)

0, otherwise,

are called basis functions relaying on S.
(2) Let {(x0, f(x0)) | xo € S} be a multi-input-one output sample set (from an n-variable

function f), where § = S; X S§ x --- x §,, §1 = {xl(l),xl(z),...,x](ml)} with
A —xfD = w06 = 12w =1, 8 = (0P it
xéH_]) —xéi) = hg) >00G=12,....,mpy—1), ..., S, = [x,(,]),x,gz),...,xflm")} with

x,(,iH) —x,(,i) = h,(,i) >0@G=1,2,...,m, — 1), and m = min{my, mo, ..., m,} > 3.
Then the n-variable linear-like interpolation function f(x) = Zxoe s f(xo)(x0)(x)
Vx = (x1,x2,...,x,) € R"™) is continuous and satisfies f(xo) = f(xg) (¥xo €
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S), where [(xo)(x) = [(x{")(x1) x [(x§?)(x2) x -+ x 10y ™)(xy) if x0 =
(xfk'),xék”, .. .,x,(lk”)>, l(x{k'))(xl) is a base function relying on the sample set Sj,

l (xékZ))(xg) is a base function relying on the sample set S», ..., [ (x,(lk”) )(x,) is a base
function relying on the sample set Sj,.

Motivated by Example 3.1, we have (as in Sect. 2) the following Algorithm 3.2:

Algorithm 3.2 Consider an interval number sample set (from an n-variable function f,
n > 1) {(xo, fz(xo)) | xo € S}, where (xg, f,(x0)) is the observe value of the
true sample (xg, f(x0)), S = S; x Sp x --- x S, (the set of all interpolation nodes),

51 = [ %o with 2 057 = 5 > 0,50 ©x = P >0 ...and
M) &3m0 D 5 0,85 =[x x®, x| with < € x4 = 4P >
2 o x® = P > 0, and 5™ S 1Y = j ™D 5 0, ., 8y = {1,

o ,xf,m")} with = ©x = h > 0,x ox” =1 > 0,...,and =" ox" P =

h,(,m"_l) > 0. Then the n-variable linear-like interpolation function of f, based on the data

set {(xo, ﬁ(xo)) | x9 € S}, can be given by the following ways:

(1) Step 1 Compute the n-variable linear-like interpolation function f(#) = Zxoes P1
(filxoNl(x1, X2, ..., Xn)(@) (Vt = (11,12, ..., ty) € R") based on the real input—output
sample set {(()%1,)&2, ey Xn), pl(ﬁ(xo))) | x0 = (x1,%x2,...,%X,) € S}, using the
method given in Example 3.1(2). B
Step 2 Similarly, compute the n-variable linear-like interpolation function f(t) =
ZxoeS p2(fixo)l (X1, X2, ..., Xy) (@) (Yt = (t1,12,...,1,) € R") based on the real
input—output sample set {(()'c'l, X2, ..., Xn), pz(ﬁ(xo))) | x0 = (x1,%2,...,%,) €S},
using the method given in Example 3.1(2).

Svtep 3 Obtain, based on Step§ 1-2, the first n-variable linear-like interpolation function
f&) =] fQr1, %2, .00, Xn), fG, H, 00, ) | (YR = (x1, %2, ..., %) € RY).

(2) Step1 Compute the n-variable linear-like interpolation function f,.(t) = Zxo es fi(x0)°¢

I(x],x5,...,x5)@#) (Yt = (t1, 12, ..., 1;) € R") based on the real input-output sample
set {((x§, %5, ...,x5), fi(x0)) | xo = (x1,%2,...,%,) € S}, using the method given
in Example 3.1(2).
Step 2 Compute the ordinary linear regression function (without the term bo)* rd) =
r(81,...,8,) = b18y +---+ b8, (V8 € R"), based on the real inpyt—output sample
set {((x], x5, ..., x}), fi(x0)") | X0 = (x1,%2,...,%,) € SL.Then f(x) = fe(x{, x5,
coaxg) Fr(x], x5, ., X)) = ’—fc(x‘i, x5, ..., %), r(x], x5, x,rl)-| is the second
n-variable linear-like interpolation function.

The rationality of Algorithm 3.2 is guaranteed by the following Theorem 3.3. For a vector
x = (x1, X2, ..., X;) with interval number coordinates, we writet € xift = (t1, 12, ..., 1,)
and (11,12, ...,1;) € X] X X2 X -+ X Xp.

Theorem 3.3 (1) For each real input—output sample s = {(x(‘), fi(x0)®) | x¢ € S} (where
x( € X0 and f,(x0)® € fi(x0)), let fs@) = fs(t1, ..., ty) be the n-variable linear-like
interpolation function, based on the real input—output sample set s and obtained by using
the method given in Example 3.1(2). Then fs(t) is also continuous on s.

2) If {(x('), fi(x0)®) | x0 € S} (where x) € xo and f,(x0)® € f,(x0)) is the true sample
set. Then, for each ¢ > 0, there exists a § > 0 such that | fs(xo) — f,(x0)®| <& (Vxo €

4 We can also take r(8) to be the cubic spline interpolation function (see Example 3.5(1)).
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::th€6 Special interval sample X Xs [57 0‘1-| [6, 0‘1-| [7’ 0.1-|
[300, 10—| [50, 1—| [60, 1—| [70, 11
[600, 10—| [60, 1—‘ [70, 1—‘ [80, 11
[900, l(ﬂ [70, 1—‘ [80, 1.1—‘ HOO7 1—‘
X0, Vx0 = (x1, X2, ..., X,) € S) whenever max {xq, SN ﬁ(xo)’} < 68, where
fs@) = fs(t1, ..., ty) is the n-variable linear-like interpolation function, based on the

real input—output sample set s = {(x('), fix0)®) | x¢ € S} (where x§ € xq and
f1(x0)® € fi(x0)) and obtained by using the method given in Example 3.1(2).

Proof Similarly to that of Theorem 2.4. O

Remark 3.4 In practical problem if the set S of all interpolation nodes (related to the n-
variable function f) is not an n-dimension cub-like set, then we consider the new set S of
all interpolation nodes (related to the n-variable function _f which is an extension of f’) and
give the two n-variable linear-like interpolation functions (;f and ;f) of f using Algorithm
3.2 (and thus Theorem 3.3 holds for f, particularly, for f), where S = S; x Sy x -+ X Sy,
Si={Pi®) |se€S} (=12,....n),P :R" — R (i=1,2,...,n)isthei — th
projection, and the value of f(s) will be given by experts using arithmetic average operator,
weighted average operator, or other aggregation operators (Beliakov et al. 2007; Cubillo et al.
2015; Deschrijver and Kerre 2008) (s € S- —S).

Example 3.5 (1) The l-variable linear-like interpolation functions are simple. Consider the
interval input—output sample set S = {(x;,y;) | i = 1,2,...,41} in (Chuang 2008,
Table 2). By Algorithm 3.2, f(x,-) =y; (i =1,2,...,41). By Algorithm 3.2(2), we
have [f(x,-)]c =[y;]° (i =1,2,...,41) and r(§) = 25.08916, thus the minimum of
the lengths of all intervals f(x,-) Ny; (i=1,2,...,41)1s0.0302. However, if we take
r(8) to be the cubic spline interpolation function, then f(x,-) =y; (i=1,2,...,41),
and thus the minimum of the lengths of all intervals f x)Ny; (=1,2,...,41)is
0.9123.

(2) Consider the special interval input—output sample set S = {(xy;,x2,;,yi,j) | i, =
1,2, 3} as shown in Table 6 (where §; = 10, 6, = 0.1, and r almost takes the same value

1.

Step 1 1)@y = max {1 — gl — 3001, 0}, I(xP)e) =
max {1 — ;mltl —600],0}, and I(x (3))(t1) = max {1 - ;mltl — 900, O}. Similarly,

1(x$")(82) = max{1 — |1, — 51,0}, [(x5”)(12) = max{l — |2 — 6], 0}, and [(x{”)(r2) =
max{1 — |t — 7|, 0}. Thus

fe@) = yi (XYL (xSV) (12) + y121 (x() )1 (x57) (12)
2l (02 ()1 (x57) (12) + y2.20 (x(P) (01 (x57) (12)
- 50(2 - —)(6 1) + 60(2 - —)(tz _5)

300 300
1
S I | _
+60<300 )(6 ’2)+70<3oo )“2 3)
1
= —1, 4106 — 10
301+ 2
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ift = (11,12) € [300, 600) x [5, 6); fu(r) = 60(2 = 5 ) (7~ 12) +70(2 = 55 ) (12— 6) +
70( g5~ 1) 7=12)+80( 35— 1) (12 —6) = 411 +1012~ 10ift € [300, 600 x[6,7); (1)
= 60(3— 3y ) 6—12)+70(3— 3 ) (12— 5)+50( 35 —2) (6 —12)+80( 35 —2) (12 =5) =
2o+ 106, = 10if £ € [600,900) x[5, 6); fo(r) =70(3 = 595 ) (7= 12) +80(3 = 5 ) (2 —
6) +80( 385 — 2)(7 — 12) + 10055 — 2) (2 = 6) = Fnut — b1 = 10 + 110 if £ €
[600, 900) x [6, 7); fo(6) = y1.1l(x{") (D)l (x3") (12) = Lt112 — 211 if 1 € [0,300) x [4, 5);
£e@) = yial(x") @1 (SD) @) 43100 (xV) @l (x5P) (1) = Jnn it t € [0,300) x
[5.6): o) = yiol(x")@l(x3) (1) + yl,gl(x(”)(nﬂ( <3>)<r2) Hnn if t €
[0,300) x [6,7); fo(®) = y1 31 (x}") ()l (x57) (12) = ——mz+15n if£ € [0,300) x [7, 81;
Fe®) = yial (") @1 (x50) (t2) +y2,10(xP) 1)l (x (l))(tz) = Lt — 21y 4406 — 160
if £ € [300,600) x [4,5); fo®) = yial(x{")@D)I(x3")(02) + y230 (xP) ()l (x5 (12) =
— A5ty + 11 — 601, + 480 if £ € [300, 600) x [7, 815 fo®) = y2.1l(x{>) (e (x3) (1) +
Vil (x)I(x$") (1) = st — i+ 40 — 160 if £ € [600,900) x [4,5);
fo@) = ya30(x) D1 (x5V) (1) + y3 31 (x7) D1 (x5 (2) = 115t1t2+ 8 —40n+320
ift € [600, 900) x [7, 81; fu(t) = y3.11(x\) (1)l (x5") (1) = — L1102+ 121 42801, — 1120
if £ € [900, 12001 x [4,5); fo(t) = y3.1/(x) ()l (x5 1)l (x57) (1) =
if £ € [900, 1200] x [4,5); fe(®) = y31l(x;”") (eI (xy )(tz)+y3,z ()1 (x37) (12)

— bty — 1y + 40 + 80 if £ € [900, 1200] x [5, 6); fo () = y3.20 (x) (1))l (x57) (22) +

Vil () (x) (1) = —knin + Z11 + 80 — 160 if + € [900, 1200] x [6,7);
fo@) = ya3l(x7) D1 (x5) (12) = L1i12 — 811 — 4001, 43200 if £ € [900, 1200] x [7, 8].

a5t + 106 — 10, t € [300, 600) x [5,7),

11 + 108, — 10, t € [600, 900) x [S, 6),

st — b1 — 100 + 110, 1 € [600, 900) x [6,7),

I —2n, t € [0,300) x [4,5),

it t €(0,300) x [5.7),

—titr + 1y, t € 10,300) x [7, 8],

st — 211+ 406 — 160, 1 € [300, 600) x [4,5),

Inawords, fo(t)={ —45t1t2 + 21 — 602 + 480, ¢ € [300, 600) x [7, 8],
St — &t +406 — 160, t € [600,900) x [4,5),
—ktity + 1 — 406 + 320, t €[600,900) x [7, 8],
— 5ty + 131 42801, — 1120, ¢ € [900, 1200) x [4, 5),
— g5t — 1511 + 406, +80, €900, 1200) x [5, 6),
— &t + &t +80n — 160, ¢ €[900, 1200) x [6,7),
tity — $1 — 4001, +3200, € [900, 1200) x [7, 8],

1
3
0, otherwise.
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Step2 1(x{" —81)(11) = max{1 — 555111 2901, 0}, 1(x\” —81)(r1) = max{l — 55|11 —
5901, 03, 1(x\” =81 (11) = max{1— 555161 —8901, 0}, I(x5" =85)(12) = max{1—|r—4.9], 0},
1(x$? = 82)(12) = max{1 — | — 5.91, 0}, [(x5” — 82)(t2) = max{1— |12 — 6.9], 0}. Thus

ot + 106 — % t € [290, 590) x [4.9,6.9),
—sog0l112 + gy 4 3091, — 3Lt € [590, 890) x [4.9,5.9),
061112 — 3ot — Spot2 + Song . 1 €[590,890) x [5.9,6.9),
sty — S5t + B — 8 t €[0,290) x [3.9,4.9),
Wt + 1, t €[0,290) x [4.9,6.9),
— Bt + By — B + BT t € [0,290) x [6.9,7.9],
Wit — gt + 48 — 1, t € [290, 590) x [3.9,4.9),
SO =1 —55tit2 + 5511 — Forp + 1L t €[290,590) x [6.9,7.9],
Wit — gt + 38 - 1, t € [590, 890) x [3.9,4.9),
— i+ f5n — P+ 20, t € [590, 890) x [6.9,7.9],
— Bt + STy 4+ 230, — 10678 ¢ € (890, 1190) x [3.9,4.9),
— sty — 155351 + 32 + BRIt € [890, 1190) x [4.9,5.9),
— STty + BBy + BB, — BBTET ¢ € [890, 1190) x [5.9, 6.9),
intity — 23800 — 3 + A3 1 e [890, 1190) x [6.9,7.9],
0, otherwise.

Step3 1(x("+81)(11) = max{1 — 555161 —310], 0}, (x\¥ +8)(11) = max{1 — 55 |11 —
6101, 0}, (x{V+81)(11) = max{1— 55 |61 —910], 0}, (x5 +8) (1) = max{1—|r,—5.1], 0},
1(x$? + 82)(12) = max{1 — |t — 6.1], 0}, [(x3 + 8)(t2) = max{1— |t — 7.1, 0}. Thus

50+ 10 — 3L t €[310,610) x [5.1,7.1),
a1 + st + S — 2889 4 € [610,910) x [5.1,6.1),
it — 202y — 03y, 3669 4 € [610,910) x [6.1,7.1),
Mty — e — L+ S t €[0,310) x [4.1,5.1),
St — 10, t €[0,310) x [5.1,7.1),
—Jstit + foeh + 5 — S5 t €0,310) x [7.1,8.1],
R t €[310,910) x [4.1,5.1),

f@O) =1 —55un+ f5n — o+ 27, t €[310,610) x [7.1,8.1],
it — st + 13 — B0 t € [610,910) x [4.1,5.1),
— st + 50 — Fn + 3 t €[610,910) x [7.1,8.1],
— bty + Bk 4+ 80y — 3B 1 € 910, 1210) x [4.1,5.1),
— sty — gomeety 4 122814, 4 25839 4 € [910, 1210) x [5.1,6.1),
—oop 112 + oty 4 20804, — 163303t € [910, 1210) x [6.1,7.1),
Wty — 22y — 1220y 4 36T 4 € [910,1210) x [7.1,8.1],
0, otherwise.
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Table 7 Comparison with true

sample (1,0 %2,) Yi,j Yij )’F,Lj
(300 £1072,5 + 1079) 50 50.3329 44.3720
(300 £ 1072,6 &+ 107) 60 60.3329 58.0021
(300 £ 1072, 7 £ 1079) 70 62.4004 67.6691
(600 £ 1072, 5 £ 1079) 60 60.3326 54.6009
(600 £ 1072, 6+ 1075) 70 70.3632 69.6671
(600 £ 1072, 7 £ 1079) 80 71.7002 79.6671
(900 £ 1072, 5 £ 1079) 70 67.6592 63.6010
(900 4+ 1072, 6 + 1077) 80 78.2155 79.7541
(900 + 1072,5 £ 1077) 100 86.1339 98.3772

Step 4 f(t) = | f(1, b)), f(1,H)| (V& = (t1, t2) € R?). Using the classical least

square estimation method we can obtain an linear regression function® (&) = r(ey, €2) (it
has no the constant term) based on the sample set

Ttimes

{ (10,0.1, 1), ..., (10,0.1, 1), (10, 0.1, 1.1), (10, 0.1, l)}.

Calculations show that r(g¢) = r(eq, &) = 0.1011eq. Therefore, f(t) = [fe(t], t9),
0.1011e17 = fe(t], t5) £0.1011e;. For an s = ([400, 107, [7,0.17) € R, as f($1,$2) =
£(390,6.9) = 72.3, fo(s,s5) = f-(400,7) = 73.3, and f (51, 52) = f(410,7.1) = 74.3,
f(®) = (72.3,74.3) and f(s) = [73.3, 1.011] = (72.3223, 74.3443).

Step 5 If the true sample set S = {(x1,;, x2,;, ¥i,j) | i, j = 1, 2, 3} consists of centers of
interval numbers in S, then the compute results and the true sample are list in Table 7, where
yij = JeGnivxa ),y = fxi — 1072, x2,j — 1073), and yfj = f(x1i +1072, x0 ; +
1079).

Example 3.6 Consider the special interval input—output sample setS = {(300:!:10, 542,50+
5), (300£10, 7£2, 70+£5), (600£10, 62, 7015), (900£10, 5£2, 70+5), (900£10, 7+2,
90 + 5)} (from a function f) in Table 8 and its completion & = {(x1,;, %2 j,¥yi,j) | i, =
1,2,3} (from the corresponding function f) in Table 9, where the unknown sample are
determined using an arithmetic average operator (of course, we can also use an appropriate
aggregation operator, a t-norm, a t-conorm, etc.): * = 0.5([50, 17 &[70, 17) = [60, 17,
sk = 0.5([50,17 @ [70,17) = [60, 17, » = 0.5(170, 17 & 90, 1T) = [80, 1, #* =

0.5([70, 17 & [90, 17) = 80, 17. Let f, f, f, f,and f be as in Example 3.5(2), then
ot + 106 — 10, t € [600, 900) x [5,7),

—5tit2 + 1511 — 601 + 480, ¢ € [600, 900) x [7, 8],

—a5tita — st + 406 +80, £ € [900, 1200) x [5,7),

ity — 21 — 3601, + 2880, t € [900, 1200) x [7, 8],

fe(®), otherwise,

ofc(t) =

5 Actually, we obtain a plane determined by three points {(0, 0, 0), (10, 0.1, 1), (10, 0.1, 1.1)}.
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et S [ 18,007 [ [6,0.0 [ [7.01
[300,10] | [50,1] | = [70,1]
[600,10] | s [70,1] | *
[900,10] | [70,1] | »* 90, 1]
Table 9 Completion of Table 8 < X (57011 [6,011 [7’011
[300,10] | [50,1] | [60,1] | [70,1]
[600,10] | [60,1] | [70,1] | [80,1]
[900,10] | [70,17 | [80,17 | [90,1]
30r14-1om Z, t € [590,890) x [4.9,6.9),
—whir+ o — Bn + 72%‘ t € [590, 890) x [6.9,7.9),
£ = %nn——n+% 2 t € [890, 1190) x [4.9,6.9),
St — Q&n—%%z+%${teB%mexma1%
S, otherwise,
30n + 101 —-47, t € [610,910) x [5.1,7.1),
i — a5ty + At — %z+?ﬁ t €[610,910) x [7.1,8.1),
£ = —%nn—in+—4+ﬁ§ t € [910, 1210) x [5.1,7.1),
ottt — Toogh — Tt + BT 1 € [910,1200) x [7.1,8.1),
f@, otherwise.

By Algorithm 3.2, f(t) = f(t1,t2) = |f(i1.52), f(f1. }2)| and F(t) = £.(¢5, t5) &

1 (t e R?).

4 Applications

Example 4.1 Now we give detailed solutions to problem (I) in Sect. 1.

(1) To determine the grade by using the linear regression model presented in Sect. 2.

(@)

Firstly, compute the 3-variable linear regression functions. f(#) = —1.5253 — 0.01417,

+1.40171 + 3.5535t3, f.(t) = —1.514 — 0.01141; 4+0.13631, + 4.699113, f(2)
= —0.8411 — 0.02591; +1.893f, 4 191713, and r(8) = 0.00756; +0.15856, —
0.169583. By Algorithm 2.3, f(t) = (—1.5253, —0.8411) @ (—0.0266, —0.0141)t; @
(1.4017, 1.893)t, @ (1.917,3.5535)t3, f(t) = [—1.514 — 0.0114t5 4+ 0.1363t5 +
4.6991t5, 0.00756; + 0.15868, — 0.169583] and f) = 1f(h, 12, 13), f, b, 5)]
(V& = (ti.t2.t3) € R3). Secondly, f(tg) = (1.4635,4.7158), f(to) =
12.983,3.1963|, and f(to) = [2.0694, 0.0551]. Finally, determine the grade of
to by experts based on the computation results.

To determine the grade by using the linear-like interpolation model presented in Sect. 3.
Firstly, supplement Table 9 (which we will call Table 10). In Table 10, only 23 samples
are need because, for the computation of each of { f (to), f (to)}, only the corresponding
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23 basis functions relaying the sample will be used. Secondly, compute f(to) or £ (o)
(and thus determine the grade). We omit the computation course (including Table 10)

here because it is tedious (unless a matched program is given).

(3) To determine the grade by using some easy-to-think-of methods (which can also
be discovered in plausible manner). For example, take three Astragali Radix t; =
(136.5,91, [1.3,0.27, 0.9, 0.17), t2 = ([36.7, 10.41, [1.7,0.27, [1.2,0.27), and t3 =
([32.4,5.57,11,0.17, [0.8, 0.17) (such that each is much similar to ¢ in one aspect) in
Table 9 first. Then compute

d| = dtg.t1) = ||(35.8 — 5.4) — (36.5 — 9)|, |(35.8 + 5.4) — (36.5 + 9)||
®]1(1.7 = 0.27) — (1.3 — 0.2)], [(1.7 +0.27) — (1.3 + 0.2)]|
®]1(0.8 —0.1) — (0.9 — 0.1)], |(0.8 + 0.1) — (0.9 + 0.1)]|
= (2.9,4.3) @ (0.33,0.47) @ (0.1, 0.1) = (3.33, 4.87),
dy = d(tg, ty) = ||(35.8 — 5.4) — (36.7 — 10.4)], |(35.8 + 5.4) — (36.7 + 10.4)||
®]1(1.7 = 0.27) — (1.7 — 0.2)], |(1.7 + 0.27) — (1.7 +0.2)]|
®]1(0.8 —0.1) — (1.2 — 0.2)], [(0.8 + 0.1) — (1.2 + 0.2)]|
= (4.1,5.9) ® (0.07,0.07) @ (0.3, 0.5) = (4.47, 6.47),
dsy = d(tg, t3) = ||(35.8 — 5.4) — (32.4 — 5.5)|, [(35.8 + 5.4) — (32.4 +5.5)||
®]1(1.7 = 0.27) — (1 — 0.1)], (1.7 +0.27) — (1 + 0.1)]|
®]1(0.8 —0.1) — (0.8 — 0.1)], |(0.8 + 0.1) — (0.8 + 0.1)]|
= (3.3,3.5) @ (0.53,0.87) ® (0.1, 0.1) = (3.83, 4.37).

Finally, as d; < d3 < d», to is most similar to t;, and thus the grade of to can be judged
as 4.

Example 4.2 1n a practical problem with an interval input—output sample and a given interval
input t, how to obtain the interval output? the suggested strategies are as follows:

(1) If the sample is managed so carefully that are as in Examples 2.6 and 3.1 (i.e., the radii
are the same in the same variable data), then we can compute the output of t just using
one of the five kinds of functions (i.e., the linear regression functions or the line-like
interpolation functions given in this paper, see Corollary 2.7 and Examples 3.5 and 3.6
for details); of course, we can also take the output of t to be an aggregation (for example,
a simple weighted average) of these outputs.

(2) In other cases, we can compute the output of t using one of the three kinds of linear
regression functions given in this paper, see Example 4.1(1) for details); we can also
compute the output of t as in the last part of Example 4.1(2). Of course, we can also take
the output of t to be an appropriate aggregation of these outputs.

Example 4.3 Consider the control problem % = (fix), fL@ENT +u) in (D) of Sect. 1.
Assume the sample obtained on y; = fj(x) is as the Table 4 in Example 2.6, and the sample
obtained on y; = f>(x) is as the Table 7 in Example 3.6. Replacing (f1(x), f2(x)) by

(f1,e®), f2,c(0) (resp, (f | (), f,(®)), (fi(x), f(x)) (see Example 3.5(2)), we obtain the
following three systems:

dx _ (xi(®)\ _ ( frc®) ui(t)

dr (xé(t)) - (fz,c(x)) + <u2(t)> 3
dx _ S uy (1)

dr — (f2<x>> + (w)) @)
dx fix) uy (1)

ar (ﬁ(x)) - <u2(t)> ®)
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We declare that system (3) is asymptotically stable if we take (u (), ur (T = (—k1x1 (t)—
S1.cx(@)), —koxa(t) — fg,c(x(t)))T (k1 > 0, ko > 0). Indeed, define the Lyapunov function
as 2V (x) = x7 +x3. Then &Y = x; 81 4+ 0,92 — 5y [ f1 . (¥) + u1] + xa2[ fo,0(x) + un] =
—k1X12 - kzx% < 0, which implies that system (3) is asymptotically stable. Similarly, systems
(4) and (5) are also asymptotically stable. The idea and method used here can be used
immediately to control chaotic fractional-order neural networks (Han et al. 2020).

5 Conclusions

Intelligent doctors, plus the Tradition Chinese Medicine (TCM for short), can resist having
diarrhea, cold, being ill with a fever, and tonsillitis completely (even coronavirus disease-
2019, COVID-19 for short, in a degree actually) with a smaller side effect. The present paper
confirms that interval input—output samples (which are major samples or data in TCM all the
time) can always be disposed towards satisfactory with the help of models (stemmed from the
classical ones) and practitioners’ cooperation. Given an n-variable interval input-1-variable
interval output sample set S, we have illustrated in much detail how to establish, in Polya’s
discovering pattern (mainly using specialization and analogous towards exploring solutions
to problems), three linear regression models and two linear-like interpolation models relaying
on S. Each model is proved to be a universal approximator to the corresponding model based
on the true samples under some easy-to-be-satisfied conditions. As the computations only
involve centers, left endpoints, or right endpoints of interval numbers in the sample, off-
the-shelf software can be utilized. Practitioners can optimize these models in the following
ways:

(1) Collect directly or obtain such kind of interval samples that have the same radius r and
r is as small as possible [this can be realized by practitioners themselves directly or by
experts indirectly using three-way decision theory (Yao 2017)].

(2) Take g1(x) = wy f (x) b wo f (x) & w3 f (x) to be the new model in the case of linear
regression model, where {w{, w$, w5} C (0, 1) satisfying w{ + wj + w§ ~ 1 may be
determined by experts; take g2 (x) = w f (x) P wa f (x) to be the new model in the case
of linear-like interpolation model, where {w{, w5} € (0, 1) satisfying w{ +w$ &~ 1 may
be determined by experts.

Notice that the models disposing of interval samples in this paper are stemmed from the
classical linear regression model or the classical linear interpolation model, thus practition-
ers can also make out similarly other new models disposing of interval samples based on
other classical models disposing of real number samples. Theoretically, these work can be
generalized further (e.g., replace the operations by demand-oriented aggregation-like opera-
tion, t-norm-like operation, or t-conorm-like operation to be coined by experts), if necessary.
Finally, some new universal approximators can also be discovered and used to control chaotic
fractional-order neural networks (Han et al. 2020) based on this research (which will be our
future work).
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