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Abstract
In the current times of the predominance ofCOVID-19, almost all the countries are conducting
inoculation drives. Given the market’s inability to compute how much to manufacture, how
to transport and the frequently changing demand, the cost of safely and timely transporting
the vaccines from factory to syringe is currently indeterminate. In this paper, we formulate
this situation using a bilevel transportation problem with neutrosophic numbers (BLTP-NN).
The problem comes from a vaccine manufacturing company where the vaccine is produced
and then transported to different distribution centres from where it is further transported to
various health centres for the conduction of their vaccination drive. The authors have tried to
perceive this situation from two perspectives by formulating two different problems. The first
problem is a bilevel linear fractional transportation problem which aims at minimizing the
transportation cost in proportion to per unit maximization of quantity transported. The second
problem is a bilevel indefinite quadratic transportation problemwhich aims at minimizing the
transportation cost and depreciation cost. In both problems, cost coefficients are neutrosophic
numbers along with availabilities and demands in the constraint set. These formulated bilevel
transportation problems in neutrosophic environment are solved using goal programming
strategy to arrive at a satisfactory solution. The relevance of this work is to help the decision
makers in budgeting their finances related to the transportation by strategic disbursement
leading to a smooth administration of vaccination program.

Keywords Bilevel programming · Linear fractional transportation problem · Indefinite
quadratic transportation problem · Neutrosophic number · Goal programming
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1 Introduction

In real life situations, one may come across a situation where a decision maker has indetermi-
nate information regarding the parameters of his or her problem. Currently, in the prevalence
of the COVID-19 pandemic, leading vaccinemaking companies are facing a challenge of pro-
ducing and transporting the vaccines in a cost-efficient manner. Alongside, all the countries
need to administer the vaccines in stock before they cross their shelf-life or expiry date.

The journey of a vaccine begins at the vaccine manufacturing unit from where it is trans-
ported to stores or distribution centres from where it is further transported to various health
centres for administration (see Fig. 1). This journey of a vaccine from factory to syringe is
full of hurdles as there are many undecisive, indeterminate factors related to transportation
cost, demands and availabilities. There are several factors affecting the transportation cost
predominantly being the mode of transport which is a refrigerated, temperature-controlled
vehicle and demands continuous surveillance of its temperature during the travel and also at
the times of loading and unloading. Proper infrastructure during transport such as insulated
containers, thermal pallet covers, protection from sunlight, humidity, using GPS tracker for
surveillance (to avoid cargo-theft), cleanliness (to avoid contamination) all add to the inde-
cisive transportation cost. As the quantity of vaccines to be transported is large and usually
for a long distance, it might require more than one vehicle or the decision maker may rent
additional vehicles which adds up to the transportation cost. In cases of emergency, change
of mode of transport may be a necessity. Shipping freight by sea is usually less expensive
than by air. The decision maker has to keep an eye on transportation costs for different modes
and can make the switch so as to avoid loss from untimely delivery.

Apart from transportation cost, administration of a vaccine or a newly discovered vac-
cine faces unexpected challenges like hesitancy or fears of side effects, negative news on
deaths post vaccination, comparison between two or three types of vaccines, wait-and-watch
attitude, new variant of the virus, stockpiling, unusual turnout, expiry and damage during
packaging resulting in indecisive supplies and demand (shortage or excess) and contributes
to the depreciation cost as well.

Thus, a trade-off needs to be maintained to budget the finances and maintain customer
satisfaction. Maintaining continuous supply, forecasting vaccine needs, fewer delays, ade-

Fig. 1 Transportation route of vaccine through different modes
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quate travel frequency will help in efficient response to the needs of the market else patients
will suffer. Looking at the larger picture of public welfare, cooperation and relaxation in
decisions amongst the decision makers is crucial.

In this situation where the cost of transport, the quantity to be delivered, availability and
demand all are indeterminate we are motivated to use neutrosophic numbers (NNs). This
motivates to formulate the above situation as a bilevel transportation problem (BLTP) where
the cost coefficients in the objective functions, availabilities and demands all are neutrosophic
numbers of the type P + QI where P, Q are real numbers and I denotes indeterminacy.

For finding the optimal compromise solution, first, we take an appropriate value of I
to convert each neutrosophic number in both the objective functions and the constraints
into an interval number and transform our problem into a bi-level transportation problem
with interval coefficients. Using interval programming technique, the target interval of the
objective function of each level is identified and the goal achieving function is formulated.

The objectives of the decision makers are interlinked and potentially conflicting. To deal
with this, a plausible relaxation on the respective decision variables is considered so as to
avoid decision deadlock. Finally, a goal programming strategy is presented to solve BLTP-
NN.

2 Literature review

Bilevel programming problem (BLPP) is a programming problem with two different hierar-
chical levels called the upper level and the lower level. Both these levels have their respective
decision makers who are interested in optimizing their own benefits. The upper level decision
maker is called the leader and the lower level decisionmaker is called the follower. The leader
at the upper level selects his decision vector first. The follower at the lower level then reacts
accordingly by choosing his decision vector to optimize its own objective.

The roots of BLPP can be traced in Game Theory by Stackelberg (1952) and in Bracken
and McGill (1973) where BLPP appeared as an optimization problem whose constraints
themselves contain an optimization problem. Candler and Townsley (1982) proposed the
first enumeration algorithm for the linear BLPP where the upper level has no constraints
and the lower level problem has unique solution. K th best method for BLPP was introduced
by Bialas and Karwan (1982, 1984). Arora and Arora (2011) solved linear-quadratic bilevel
programming problemusingKarush–Kuhn–Tucker (KKT) conditions. Thismethod ismostly
applied to the linear BLPP. A comparative study of fuzzy TOPSISmethod and Jaya algorithm
for solving bi-level multi-objective linear fractional programming problem was presented by
Rizk-Allah and Abo-Sinna (2021).

Depending on the situations arising in the transportation sector different types of trans-
portation problems and in fact blend of transportation problems and BLPP can be seen in
the literature. Khandelwal and Puri (2008) solved a bilevel time minimization transportation
problem using a polynomial bound algorithm. Arora and Thirwani (2013) solved bilevel
capacitated fixed charge transportation problem. Kaushal et al. (2020) considered a BLPP
where the upper level problem is a fractional transportation problem and the lower level
problem is a fixed charge transportation problem.

Uncertainties in the transportation sector has been the work of many researchers. Multi-
objective transportation problem when cost, source and decision parameters are in interval
form was discussed by Das et al. (1999). Chinneck and Ramadan (2000) discussed about the
best & the worst optimal solution in interval linear programming problem. Safi and Razmjoo
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(2013) developed solution procedures using two different order relations for interval numbers
to solve fixed charge transportation problemwith parameters in interval form.Midya and Roy
(2017) applied the concept of interval programming to fixed charge transportation problem.
Recently, use of rough intervals to model uncertainty in transportation was realised by Garg
and Rizk-Allah (2021) for a multi-objective transportation problem and by AnithaKumari
et al. (2021) for a solid transportation problem.

The effect of COVID-19 pandemic on transportation sector has been interest of many
researchers recently. While the effect of the pandemic on air transport and vice-versa has
been extensively discussed by Sun et al. (2021); Narasimha et al. (2021) discussed its effect
on Indian seaport transportation & maritime supply chain.

Smarandache (1998) introduced a novel concept in mathematical philosophy called
neutrosophic sets to handle inconsistent, incomplete and indeterminate information where
indeterminacy is an independent and a crucial factor in decision making. Following its con-
ception, Smarandache (2013, 2014) extended his idea to a neutrosophic number (NN) of the
type N = P + QI where P,Q are real numbers and I denotes the indeterminacy , such that I.I
= I, 0.I = 0, and I/I = undefined. Here, indeterminacy is non-numerical or in literal context
(Maiti et al. 2019).

There are many papers in the field of optimization which have incorporated NNs in an
uncertain environment. Ye (2016) and Mondal et al. (2018) used NNs for group decision
making problems. Ye (2018) formed a neutrosophic number linear programming problem
in a NN environment followed by an example of production planning problem with answer
as neutrosophic numbers. Ye et al. (2018) introduced neutrosophic non-linear function and
inequalities and formulated neutrosophic non-linear optimization model for constrained and
unconstrained problem and their general solution methods.

Goal programming has also been used to obtain optimal compromise solution while
handling conflicting objectives. Maiti et al. (2019) gave a goal programming strategy for
multi-level multi-objective linear programming problem with neutrosophic numbers. Pra-
manik and Dey (2020) formulated multilevel programming with neutrosophic numbers using
goal programming supported by a solved example. Pramanik and Dey (2019) discussed
bilevel linear programming with NNs using goal programming where objective function at
both the levels are linear functions. In this paper, we extend their concept to solve BLTP
problem with neutrosophic numbers based on a proposed goal programming strategy. To the
best of author’s knowledge, a BLTP-NN of the type P + QI is being formulated for the first
time in this paper. A summary of the available literature related to transportation problem is
given in Table 1.

The rest of the paper is divided as follows: in Sect. 3 we mention some preliminary def-
initions. Section 4 gives all the notations to be used in the following text along with the
feasibility conditions of a transportation problem. Section 5 deals with the definition of a
bilevel linear fractional transportation problem with NNs (BLFTP-NN) followed with its
solution methodology. Section 6 gives a numerical illustration of BLFTP-NN. Section 7
deals with the definition of a bilevel indefinite quadratic transportation problem with NNs
(BLIQTP-NN) followed with its solution methodology. Section 8 gives a numerical illus-
tration of BLIQTP-NN along with sensitivity analysis. A flowchart depicting the proposed
methodology to solve BLTP-NN is given in Sect. 9. Section 10 gives the conclusion and
future work.
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Table 1 Summary of literature related to transportation problem

Author and references Type of NN Type of transportation
problem (TP)

Singh et al. (2017) Trapezoidal NN Standard model

Chakraborty et al. (2019) Pentagonal NN Standard model

Sikkannan and Shanmugavel (2020) Trapezoidal NN Standard model

Paul et al. (2020) Trapezoidal NN Solid transportation problem

Saini and Sangal (2020) Single-valued Standard model

Trapezoidal NN

Proposed paper P+QI Bilevel indefinite quadratic
TP &

Bilevel linear fractional TP

3 Preliminaries

Definition 1 Ramadan (1996): Interval number: An interval number on the real line R is
denoted as T = [T L , TU ] = {λ : T L ≤ λ ≤ TU }, where T L and TU represents the lower
(left) and the upper (right) limit of the interval number T on R.

Definition 2 Ye (2016): Neutrosophic number: A neutrosophic number is represented by
u + ũI where u, ũ are real numbers, u is the determinate part, ũI is the indeterminate part
and I ∈ [I ′

, I
′′ ] denotes indeterminacy. Here, I

′
is the lower (left) limit and I

′′
is the upper

(right) limit of the indeterminacy.

Thus, if we have S = u + ũI as the neutrosophic number and I ∈ [I ′
, I

′′ ] then
S = [u + ũ I ′, u + ũ I ′′] = [u ′

, u
′′ ].

For example, suppose a neutrosophic number S = 100 + 5I, then 100 is the determinate
part and 5I is the indeterminate part. Now, if we consider I ∈ [0,1] then S becomes an interval
number of the form [100,105]. In the same example, if we take I ∈ [0,0.6] then S becomes
an interval number of the form [100,103].

4 Notations

A neutrosophic number : yn = y + ỹ I where I ∈ [I ′
, I

′′ ]
ML = {1, 2, . . . ,m1} = No. of sources of leader’s problem
MF = {m1 + 1, . . . ,m} = No. of sources of follower’s problem
NL = {1, 2, . . . , n1} = No. of destinations of leader’s problem
NF ={n1 + 1, . . . , n} = No. of destinations of follower’s problem
M = ML ∪ MF : Total no. of sources
N = NL ∪ NF : Total no. of destinations
X1 = xij: i ∈ ML , j ∈ NL (variables controlled by the leader)
X2 = xij: i ∈ MF , j ∈ NF (variables controlled by the follower)
xi j : quantity of the commodity transported from i th source to j th destination in one
truck (of fixed maximum capacity). Also, xi j ≥ 0 ∀ i, j .
(an)Li , (an)Fi : Available supply at i th source of the leader’s and the follower’s problem
respectively
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(bn)Lj , (bn)Fj : Demand at j th destination of the leader’s and the follower’s problem
respectively

Feasibility conditions:
∑

i∈M
ai ≥

∑

j∈N
b j ;

∑

i∈ML

aLi ≥
∑

j∈NL

bLj ;
∑

i∈MF

aF
i ≥

∑

j∈NF

bFj .

5 Definition of bilevel linear fractional transportation problemwith
neutrosophic numbers (BLFTP-NN)

Mathematically, bilevel linear fractional transportation problem with neutrosophic numbers
(BLFTP-NN) is

(P1) min
X1

Z1(X1, X2) = (c1)Tn X1 + (c2)Tn X2

(k1)Tn X1 + (k2)Tn X2
(1)

subject to ∑
j∈NL

xi j ≤ (an)Li ∀ i ∈ ML ,
∑

i∈ML
xi j ≥ (bn)Lj ∀ j ∈ NL

}
(2)

where X2 solves

(P2) min
X2

Z2(X1, X2) = (e1)Tn X1 + (e2))Tn X2

(l1)Tn X1 + (l2)Tn X2
(for a given X1) (3)

subject to ∑
j∈NF

xi j ≤ (an)Fi ∀ i ∈ MF ,
∑

i∈MF
xi j ≥ (bn)Fj ∀ j ∈ NF

}
(4)

where
{

(c1)n = [(cn)Li j ] i ∈ ML , j ∈ NL

(e1)n = [(en)Li j ] i ∈ ML , j ∈ NL

: neutrosophic cost parameters of leader’s problem

⎧
⎨

⎩
(c2)n = [(cn)Fi j ] i ∈ MF , j ∈ NF

(e2)n = [(en)Fi j ] i ∈ MF , j ∈ NF
: neutrosophic cost parameters of follower’s problem

{
(k1)n = [(kn)Li j ] i ∈ ML , j ∈ NL

(l1)n = [(ln)Li j ] i ∈ ML , j ∈ NL

: neutrosophic no. of trucks of leader’s problem

{
(k2)n = [(kn)Fi j ] i ∈ MF , j ∈ NF

(l2)n = [(ln)Fi j ] i ∈ MF , j ∈ NF

: neutrosophic no. of trucks of follower’s problem

and xi j ≥ 0 ∀ (i, j) ∈ M × N where,
M = ML ∪ MF , N = NL ∪ NF ,
ML = {1, 2, . . . ,m1}, MF = {m1 + 1, . . . ,m},
NL = {1, 2, . . . , n1}, NF = {n1 + 1, . . . , n}.
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Also we must have, (X1, X2) ∈ D where D = {(X1, X2) ∈ �, X2 ∈ �(X1), (k1)Tn X1 +
(k2)Tn X2 > 0, (l1)Tn X1 + (l2)Tn X2 > 0} where,

� = {(X1, X2) : (X1, X2)} satisfy constraint sets Eqs. 2 and 4 and �(X1) =
X2 : X2 ∈ ArgminZ2(X1, X2) such that X2 satisfies constraint set Eq 4}.

5.1 Solutionmethodology for BLFTP-NN using goal programming

From the above defined formulation and using our notation of neutrosophic numbers (see
Sect. 4), we can re-write the general expressions appearing in Eqs. 1 and 3 as,

(y1)
T
n X1 + (y2)

T
n X2 =

M∑

i=1

N∑

j=1

[(yn)i j ]xi j

=
M∑

i=1

N∑

j=1

[yi j + ỹi j I ]xi j where I ∈ [I ′
, I

′′ ]
(5)

Thus, the problem (BLFTP-NN) simplifies to

(P1) min
X1

Z1(X1, X2) =
∑M

i=1
∑N

j=1[ci j + c̃i j I ]xi j
∑M

i=1
∑N

j=1[ki j + k̃i j I ]xi j
subject to ∑

j∈NL
xi j ≤ [aLi + ãLi I ] ∀ i ∈ ML ,

∑
i∈ML

xi j ≥ [bLj + b̃Lj I ] ∀ j ∈ NL

}

where X2 solves

(P2) min
X2

Z2(X1, X2) =
∑M

i=1
∑N

j=1[ei j + ẽi j I ]xi j
∑M

i=1
∑N

j=1[li j + l̃i j I ]xi j
(for a given X1)

subject to ∑
j∈NF

xi j ≤ [aF
i + ãF

i I ] ∀ i ∈ MF ,
∑

i∈MF
xi j ≥ [bFj + b̃Fj I ] ∀ j ∈ NF

}

Also, xi j ≥ 0 ∀ (i, j) ∈ M × N . Taking I ∈ [I ′
, I

′′ ] and using Sect. 3, we reduce each
NN to an interval number. Therefore, the above system reduces to

(P1) min
X1

Z1(X1, X2) =
∑M

i=1
∑N

j=1[c
′
i j , c

′′
i j ]xi j∑M

i=1
∑N

j=1[k ′
i j , k

′′
i j ]xi j

subject to
∑

j∈NL
xi j ≤ [a′

i
L
, a

′′
i
L ] ∀ i ∈ ML ,

∑
i∈ML

xi j ≥ [b′
j
L
, b

′′
j
L ] ∀ j ∈ NL

⎫
⎬

⎭ (6)

where X2 solves

(P2) min
X2

Z2(X1, X2) =
∑M

i=1
∑N

j=1[e
′
i j , e

′′
i j ]xi j∑M

i=1
∑N

j=1[l ′i j , l ′′i j ]xi j
(for a given X1)
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Table 2 Leader’s optimization problem for the best and the worst solution

For best solution For worst solution

min
x∈X Z1(X1, X2) =

M∑

i=1

N∑

j=1

c′i j xi j

M∑

i=1

N∑

j=1

k′′
i j xi j

min
x∈X Z1(X1, X2) =

M∑

i=1

N∑

j=1

c′′i j xi j

M∑

i=1

N∑

j=1

k′
i j xi j

s.t. s.t.
∑

j∈NL

xi j ≤ a
′′
i
L ∀ i ∈ ML

∑

j∈NL

xi j ≤ a′L
i ∀ i ∈ ML

∑

i∈ML

xi j ≥ b
′
j
L ∀ j ∈ NL

∑

i∈ML

xi j ≥ b′′L
j ∀ j ∈ NL

subject to
∑

j∈NF
xi j ≤ [a′

i
F
, a

′′
i
F ] ∀ i ∈ MF ,

∑
i∈MF

xi j ≥ [b′
j
F
, b

′′
j
F ] ∀ j ∈ NF

⎫
⎬

⎭ (7)

where xi j ≥ 0 ∀ (i, j) ∈ M × N .

At each level, the decision maker would like to know the range of optimal solutions to
his problem, i.e. the best optimal (lowest minimum) and the worst optimal (highest mini-
mum) which can be achieved by proper settings of the coefficients (within their intervals)
in the objective functions and the constraints (Chinneck and Ramadan 2000). For system
constraints, we use the following proposition,

Proposition 1 Shaocheng (1994): Suppose,
∑n

j=1[g j
1 , g

j
2 ]z j ≥ [h1, h2] then ∑n

j=1[g j
2 ]z j ≥

h1 and
∑n

j=1[g j
1 ]z j ≥ h2 are the maximum and minimum values range inequalities for the

constraint condition, respectively.

Using the above proposition on the constraint sets Eqs. 6 and 7 and taking [g j
1 , g

j
2 ] = 1,

we obtain the maximum possible feasible region (for best optimal solution) and minimum
possible feasible region (for worst optimal solution) for both levels, respectively (Shaocheng
1994;Chinneck andRamadan 2000).Aswe are dealingwithminimizing an interval fractional
objective function, its coefficients are adjusted appropriately for each level. The optimization
problem to obtain the best & the worst solution for both the levels are shown in Tables 2 and
3.

For the t th level decision maker, t = 1, 2, let
xbt = ((xbt )11, (x

b
t )12, . . . (x

b
t )m1n1 , (x

b
t )m1+1,n1+1, . . . (xbt )MN ) be the individual best opti-

mal solution and xw
t = ((xw

t )11, (xw
t )12, . . . (xw

t )m1n1 , (x
w
t )m1+1,n1+1, . . . (xw

t )MN ) be the
individual worst optimal solution.

Also let, Zt (xbt ) to be the corresponding individual best objective function value and
Zt (xw

t ) to be the corresponding individual worst objective function value. Then, [Zt (xbt ) ,

Zt (xw
t )] = [Zt , Zt ] is the range of optimal objective function value of the t th level decision

maker in interval form. In a bilevel structured scenario, the individual benefits of each level
decision maker are not same and generally conflicting in nature. For obtaining an optimal
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Table 3 Followers’s optimization problem for the best and the worst solution

For best solution For worst solution

min
x∈X Z2(X1, X2) =

M∑

i=1

N∑

j=1

e′i j xi j

M∑

i=1

N∑

j=1

l ′′i j xi j
min
x∈X Z2(X1, X2) =

M∑

i=1

N∑

j=1

e′′i j xi j

M∑

i=1

N∑

j=1

l ′i j xi j

s.t. s.t.
∑

j∈NF

xi j ≤ a
′′
i
F ∀ i ∈ MF

∑

j∈NF

xi j ≤ a′F
i ∀ i ∈ MF

∑

i∈MF

xi j ≥ b
′
j
F ∀ j ∈ NF

∑

i∈MF

xi j ≥ b′′F
j ∀ j ∈ NF

compromise solution, an intermediate target interval [Y ∗
t , Y ∗∗

t ] is considered for the t th level
decision maker i.e.

Zt ≥ Y ∗
t ,

Zt ≤ Y ∗∗
t .

Hence, the goal achievement functions are represented as

− Zt + Dt = −Y ∗
t , (8)

Zt + Dt = Y ∗∗
t (9)

where Dt and Dt (t = 1,2) are deviational variables.
Also, as expected the respective best solutions at each level are not same, so a possible

relaxation on the decision variables under the control of each level is considered to avoid
decision deadlock.

Again let, xbt = ((xbt )11, (x
b
t )12, . . . , (x

b
t )m1n1 , (x

b
t )m1+1,n1+1, . . . , (xbt )MN ) be the indi-

vidual best optimal solution for the t th level decision maker.
Suppose (xb1 )i j − (l1)i j & (xb1 )i j + (u1)i j ∀ i ∈ ML , j ∈ NL be the lower and upper

bounds of the decision vector provided by the leader where (l1)i j & (u1)i j , i ∈ ML , j ∈ NL

are the negative and positive tolerance variables which may be different.
Also suppose that (xb2 )i j − (l2)i j & (xb2 )i j + (u2)i j ∀ i ∈ MF , j ∈ NF be the lower

and upper bounds of the decision vector provided by the follower where (l2)i j & (u2)i j , i ∈
MF , j ∈ NF are the negative and positive tolerance variables which may be different. Thus,
we can write,

(xb1 )i j − (l1)i j ≤ (xb1 )i j ≤ (xb1 )i j + (u1)i j ∀ i ∈ ML , j ∈ NL , (10)

(xb2 )i j − (l2)i j ≤ (xb2 )i j ≤ (xb2 )i j + (u2)i j ∀ i ∈ MF , j ∈ NF . (11)

Using, Eqs. 6, 7, Eqs. (8–11), we propose the goal programming model as:

Min
2∑

t=1

(
Dt + Dt

)

subject to

Zt + Dt = Y ∗∗
t ,
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−Zt + Dt = −Y ∗
t ,

∑

j∈NL

xi j ≤ a
′′
i
L
,

∑

j∈NL

xi j ≥ a
′
i
L ∀ i ∈ ML ,

∑

i∈ML

xi j ≤ b
′′
j
L
,

∑

i∈ML

xi j ≥ b
′
j
L ∀ j ∈ NL ,

∑

j∈NF

xi j ≤ a
′′
i
F
,

∑

j∈NF

xi j ≥ a
′
i
F ∀ i ∈ MF ,

∑

i∈MF

xi j ≤ b
′′
j
F
,

∑

i∈MF

xi j ≥ b
′
j
F ∀ j ∈ NF ,

(xb1 )i j − (l1)i j ≤ (xb1 )i j ≤ (xb1 )i j + (u1)i j ∀ i ∈ ML , j ∈ NL ,

(xb2 )i j − (l2)i j ≤ (xb2 )i j ≤ (xb2 )i j + (u2)i j ∀ i ∈ MF , j ∈ NF ,

Dt , Dt , X ≥ 0, t = 1, 2.

6 Numerical illustration of BLFTP-NN

6.1 Problem definition

To formulate our problem, we use the following assumptions:

1. Vaccines are transported in insulated containers (of fixed maximum capacity) and trucks
are used for transportation.

2. The names and data taken in the numerical illustrations are hypothetical.
3. There is no theft or stockpiling of the vaccine during transportation or at the distribution

centres.

Problem: Consider an Indian vaccine manufacturing company Aushadhi with its man-
ufacturing units (MU) located at Ahmedabad, Hyderabad, Bengaluru and Delhi. After
manufacturing, it transports the vaccines to its four distribution centres (DC) located at
Maharashtra, Tamil Nadu, Rajasthan and Haryana. From these distribution centres, the dis-
tributor collects vaccines and further transports them to health centres (HC) in four different
regions of each city: North, East, West and South for vaccination drive. Considering the wel-
fare of the people we have assumed that there is no stockpiling or theft of the vaccine during
transport or at the intermediate distribution centre. Thus, the demands of the distribution
centres at the upper level is the same as their supply for the lower level.

6.2 Solved numerical (BLFTP-NN)

In this illustration, the leader is the medical supply company owner who will aim at minimiz-
ing the neutrosophic transportation cost in proportion to per unit maximization of quantity
transported from manufacturing units to distribution centres. The follower is the distributor
whose objective is to minimize the neutrosophic transportation cost in proportion to per unit
maximization of quantity transported from distribution centres to different regions of each
city.

At the upper level, let the manufacturing units located at Ahmedabad, Hyderabad, Ben-
galuru and Delhi have 5 + 4I, 5 + 3I, 5 + 6I and 5 + 2I as their respective supply quantity.
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Table 4 Upper level neutrosophic transportation problem

MU/DC Maharashtra Tamil Nadu Rajasthan Haryana

Ahmedabad 1 + 2I 4 + 5I 6 + I 3 + 2I → [ci j + c̃i j I]
4 + I 3 + I 1 + 3I 6 + 2I → [ki j + k̃i j I]

Hyderabad 2 + I 3 + 4I 4 + 2I 7 + 2I

3 + I 1 + 4I 2 + 3I 3 + 4I

Bengaluru 9 + 6I 6 + 2I 1 + 4I 9 + 2I

5 + 2I 2 + 4I 4 + 5I 2 + 5I

Delhi 2 + 3I 1 + 5I 2 + 3I 4 + 2I

2 + 6I 3 + 4I 3 + 2I 5 + I

Table 5 Lower level neutrosophic transportation problem

DC/HC North region East region West region South region

Maharashtra 4 + 2I 5 + 7I 2 + I 6 + 2I → [ei j + ẽi j I]
5 + I 3 + I 4 + 2I 10 + I → [li j + l̃i j I]

Tamil Nadu 7 + 5I 10 + I 8 + 4I 8 + I

2 + 2I 3 + 4I 6 + 3I 1 + 5I

Rajasthan 6 + 9I 4 + 4I 6 + 3I 9 + 2I

2 + 2I 3 + 2I 1 + 3I 3 + 6I

Haryana 8 + I 4 + 3I 2 + 4I 5 + 4I

5 + I 3 + 2I 6 + 2I 3 + 4I

Let the four distribution centres located at Maharashtra, Tamil Nadu, Rajasthan and Haryana
have 5 + 2I, 4 + 5I, 6 + 4I and 5 + 4I as their respective demands.

At the lower level, let the health centres in four different regions of each city: North, East,
West and South have 6 + 4I, 6 + 3I, 5 + 4I and 3 + 4I as their respective demands. We have
taken a balanced transportation problem at both the levels with total supply and total demand
equal to 20 + 15I.

Tables 4 and 5 represent the neutrosophic transportation cost and neutrosophic number of
trucks at upper and lower level, respectively. In each cell (i, j) of both the tables, top entry
denotes the neutrosophic transportation cost and bottom entry denotes neutrosophic number
of trucks when vaccine is transported from i th source to j th destination. The computing
software LINGO 17.0 is used to solve the problem (BLFTP-NN).

The source and demand constraints at upper level are:

4∑

j=1

x1 j ≤ 5 + 4I,
4∑

j=1

x2 j ≤ 5 + 3I,
4∑

j=1

x3 j ≤ 5 + 6I,
4∑

j=1

x4 j ≤ 5 + 2I,

4∑

i=1

xi1 ≥ 5 + 2I,
4∑

i=1

xi2 ≥ 4 + 5I,
4∑

i=1

xi3 ≥ 6 + 4I,
4∑

i=1

xi4 ≥ 5 + 4I.
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Table 6 Best upper level optimization problem

MU/DC Maharashtra Tamil Nadu Rajasthan Haryana

Ahmedabad 1 4 6 3

9

5 4 4 8

Hyderabad 2 3 4 7

8

4 5 5 7

Bengaluru 9 6 1 9

11

7 6 9 7

Delhi 2 1 2 4

7

8 7 5 6

Demand 5 4 6 5

The source and demand constraints at lower level are:

4∑

j=1

x1 j ≤ 5 + 2I,
4∑

j=1

x2 j ≤ 4 + 5I,
4∑

j=1

x3 j ≤ 6 + 4I,
4∑

j=1

x4 j ≤ 5 + 4I,

4∑

i=1

xi1 ≥ 6 + 4I,
4∑

i=1

xi2 ≥ 6 + 3I,
4∑

i=1

xi3 ≥ 5 + 4I,
4∑

i=1

xi4 ≥ 3 + 4I.

Let, X1 = {x11, x21, x31, x41} be the variables controlled by the leader and X2 =
{x12, x13, x14, x22, x23, x24, x32, x33, x34, x42, x43, x44} be the variables controlled by the fol-
lower.

Taking I ∈ [0,1] in the given problem we reduce the BLTP-NN into a BLTP with interval
numbers. Tables 6 and 7 are the optimization problems obtained using Table 2 for finding
best and the worst upper level solution, respectively. Similarly, we can obtain optimization
problem for finding best and the worst lower level solution using Table 3. For finding the
best and the worst solution, appropriate dummy source and destination are added to balance
the transportation problem. The results are compiled in Table 8.

Next, we construct goal achievement functions for both the objective functions at both
levels according to the obtained results and assign preference bounds on the decision vari-
ables.

Let the target level of the leader’s objective function be given by [Y ∗
1 , Y ∗∗

1 ] = [0.3,0.9] &
target level of the follower’s objective function be given by [Y ∗

2 , Y ∗∗
2 ] = [0.7,1.1]. The goal

programming model is developed along with the preference bounds on the decision variables
and is represented as

Minimize (D1 + D2 + D1 + D2)

subject to

[ x11 + 4x12 + 6x13 + 3x14 + 2x21 + 3x22 + 4x23 + 7x24 + 9x31 + ...

5x11 + 4x12 + 4x13 + 8x14 + 4x21 + 5x22 + 5x23 + 7x24 + 7x31 + · · ·
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Table 7 Worst upper level optimization problem

MU/DC Maharashtra Tamil Nadu Rajasthan Haryana

Ahmedabad 3 9 7 5

5

4 3 1 6

Hyderabad 3 7 6 9

5

3 1 2 3

Bengaluru 15 8 5 11

5

5 2 4 2

Delhi 5 6 5 6

5

2 3 3 5

Demand 7 9 10 9

Table 8 Individual solutions

Solution Best Worst

Upper level Z1 = 0.2066 Z1 =1.0568

at xb1 = at xw
1 =

(4,0,0,5,0,0,0,0,0,0,6,0,1,4,0,0) (1,0,0,4,5,0,0,0,0,0,5,0,0,0,0,5)

Solution Best Worst

Lower level Z2 =0.5648 Z2 =1.3606

at xb2 = at xw
2 =

(6,0,0,1,0,0,0,0,0,4,0,0,0,2,5,2) (0,0,0,5,0,0,4,0,0,6,0,0,0,0,5,0)

· · · + 6x32 + x33 + 9x34 + 2x41 + x42 + 2x43 + 4x44
· · · + 6x32 + 9x33 + 7x34 + 8x41 + 7x42 + 5x43 + 6x44

]
+ D1 = 0.9,

[−3x11 − 9x12 − 7x13 − 5x14 − 3x21 − 7x22 − 6x23 − 9x24 − 15x31 − · · ·
4x11 + 3x12 + x13 + 6x14 + 3x21 + x22 + 2x23 + 3x24 + 5x31 + · · ·

· · · − 8x32 − 5x33 − 11x34 − 5x41 − 6x42 − 5x43 − 6x44
· · · + 2x32 + 4x33 + 2x34 + 2x41 + 3x42 + 3x43 + 5x44

]
+ D1 = −0.3,

[ 4x11 + 5x12 + 2x13 + 6x14 + 7x21 + 10x22 + 8x23 + 8x24 + 6x31 + ...

6x11 + 4x12 + 6x13 + 11x14 + 4x21 + 7x22 + 9x23 + 6x24 + 4x31 + · · ·
· · · + 4x32 + 6x33 + 9x34 + 8x41 + 4x42 + 2x43 + 5x44
· · · + 5x32 + 4x33 + 9x34 + 6x41 + 5x42 + 8x43 + 7x44

]
+ D2 = 1.1,

[−6x11 − 12x12 − 3x13 − 8x14 − 12x21 − 11x22 − 12x23 − 9x24 − 15x31 − ...

5x11 + 3x12 + 4x13 + 10x14 + 2x21 + 3x22 + 6x23 + x24 + 2x31 + · · ·
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Table 9 Satisfactory solution of BLFTP-NN

Solution point Objective values of leader Objective values of follower

(1,0,0,6,5,0,0,0,0,5,1,0,1,1,5,0) (0.48026, 1.44943) (0.71511, 1.62015)

· · · − 8x32 − 9x33 − 11x34 − 9x41 − 7x42 − 6x43 − 9x44
· · · + 3x32 + x33 + 3x34 + 5x41 + 3x42 + 6x43 + 3x44

]
+ D2 = −0.7,

x11 + x12 + x13 + x14 ≤ 7, x11 + x21 + x31 + x41 ≤ 7,

x21 + x22 + x23 + x24 ≤ 8, x12 + x22 + x32 + x42 ≤ 9,

x31 + x32 + x33 + x34 ≤ 10, x13 + x23 + x33 + x43 ≤ 9,

x41 + x42 + x43 + x44 ≤ 9, x14 + x24 + x34 + x44 ≤ 7,

x11 + x21 + x31 + x41 ≥ 6, x11 + x12 + x13 + x14 ≥ 5,

x12 + x22 + x32 + x42 ≥ 6, x21 + x22 + x23 + x24 ≥ 5,

x13 + x23 + x33 + x43 ≥ 6, x31 + x32 + x33 + x34 ≥ 6,

x14 + x24 + x34 + x44 ≥ 5, x41 + x42 + x43 + x44 ≥ 5,

4-3 ≤ x11 ≤ 4 + 2, 0 ≤ x12 ≤ 0 + 5, 0 ≤ x13 ≤ 0 + 5, 1-1 ≤ x14 ≤ 1 + 7,
0 ≤ x21 ≤ 0 + 6, 0 ≤ x22 ≤ 0 + 5, 0 ≤ x23 ≤ 0 + 1, 0 ≤ x24 ≤ 0 + 2,
0 ≤ x31 ≤ 0 + 6, 4-4 ≤ x32 ≤ 4 + 1, 0 ≤ x33 ≤ 0 + 5, 0 ≤ x34 ≤ 0 + 5,

1-0 ≤ x41 ≤ 1 + 2, 2-2 ≤ x42 ≤ 2 + 2, 5-3 ≤ x43 ≤ 5 + 3, 2-2 ≤ x44 ≤ 2 + 1,
xi j ≥ 0 ∀ i, j ; D1, D2 , D1 , D2 ≥ 0

The solution of the proposed goal programming model is shown in Table 9.

7 Definition of bilevel indefinite quadratic transportation problem
with neutrosophic numbers (BLIQTP-NN)

Mathematically, bilevel indefinite quadratic transportation problem with neutrosophic num-
bers (BLIQTP-NN) is

(P1) min
X1

Z1(X1, X2) =
(
( f1)

T
n X1 + ( f2)

T
n X2

) (
(d1)

T
n X1 + (d2)

T
n X2

)
(12)

subject to ∑
j∈NL

xi j ≤ (an)Li ∀ i ∈ ML ,
∑

i∈ML
xi j ≥ (bn)Lj ∀ j ∈ NL

}

where X2 solves

(P2) min
X2

Z2(X1, X2) =
(
(p1)

T
n X1 + (p2)

T
n X2

) (
(q1)

T
n X1 + (q2)

T
n X2

)
(for a given X1)

(13)
subject to ∑

j∈NF
xi j ≤ (an)Fi ∀ i ∈ MF ,

∑
i∈MF

xi j ≥ (bn)Fj ∀ j ∈ NF

}
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and xi j ≥ 0 ∀ (i, j) ∈ M × N .
As before we have, M = ML ∪ MF , N = NL ∪ NF where ML = {1, 2, . . . ,m1}, MF =

{m1 + 1, . . . ,m}, ML = {1, 2, . . . , n1}, MF = {n1 + 1, . . . , n}.
⎧
⎨

⎩
( f1)n = [( fn)Li j ] i ∈ ML , j ∈ NL

(p1)n = [(pn)Li j ] i ∈ ML , j ∈ NL

: neutrosophic transportation cost parameters of leader’s problem

⎧
⎨

⎩
( f2)n = [( fn)Fi j ] i ∈ MF , j ∈ NF

(p2)n = [(pn)Fi j ] i ∈ MF , j ∈ NF

: neutrosophic transportation cost parameters of follower’s problem

⎧
⎨

⎩
(d1)n = [(dn)Li j ] i ∈ ML , j ∈ NL

(q1)n = [(qn)Li j ] i ∈ ML , j ∈ NL

: neutrosophic depreciation cost parameters of leader’s problem

⎧
⎨

⎩
(d2)n = [(dn)Fi j ] i ∈ MF , j ∈ NF

(q2)n = [(qn)Fi j ] i ∈ MF , j ∈ NF

: neutrosophic depreciation cost parameters of follower’s problem

7.1 Solutionmethodology for BLIQTP-NN using goal programming

We proceed as before by simplifying the expressions in Eqs. 12 and 13 by applying Eqs. 5
(see Sect. 5.1) and obtain the following:

(P1) min
X1

Z1(X1, X2) =
( M∑

i=1

N∑

j=1

[ fi j + f̃i j I ]xi j
)( M∑

i=1

N∑

j=1

[di j + d̃i j I ]xi j
)

subject to ∑
j∈NL

xi j ≤ [aLi + ãLi I ] ∀ i ∈ ML ,
∑

i∈ML
xi j ≥ [bLj + b̃Lj I ] ∀ j ∈ NL

}

where X2 solves

(P2) min
X2

Z2(X1, X2) =
( M∑

i=1

N∑

j=1

[pi j + p̃i j I ]xi j
)( M∑

i=1

N∑

j=1

[qi j + q̃i j I ]xi j
)

(for a given X1)

subject to ∑
j∈NF

xi j ≤ [aF
i + ãF

i I ] ∀ i ∈ MF ,
∑

i∈MF
xi j ≥ [bFj + b̃Fj I ] ∀ j ∈ NF

}

with xi j ≥ 0 ∀ (i, j) ∈ M × N .

Taking I ∈ [I ′
, I

′′ ] and using Sect. 3, we reduce eachNN to an interval number. Therefore,
the above system reduces to

(P1) min
X1

Z1(X1, X2) =
( M∑

i=1

N∑

j=1

[ f ′
i j , f

′′
i j ]xi j

)( M∑

i=1

N∑

j=1

[d ′
i j , d

′′
i j ]xi j

)

subject to
∑

j∈NL
xi j ≤ [a′

i
L
, a

′′
i
L ] ∀ i ∈ ML ,

∑
i∈ML

xi j ≥ [b′
j
L
, b

′′
j
L ] ∀ j ∈ NL

⎫
⎬

⎭
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Table 10 Leader’s optimization problem for the best and the worst solution

For best solution For worst solution

min
x∈X Z1(X1, X2)

=
( M∑

i=1

N∑

j=1

f ′
i j xi j

)( M∑

i=1

N∑

j=1

d ′
i j xi j

)

min
x∈X Z1(X1, X2)

=
( M∑

i=1

N∑

j=1

f ′′
i j xi j

)( M∑

i=1

N∑

j=1

d ′′
i j xi j

)

s.t. s.t.
∑

j∈NL

xi j ≤ a
′′
i
L ∀ i ∈ ML

∑

j∈NL

xi j ≤ a′L
i ∀ i ∈ ML

∑

i∈ML

xi j ≥ b
′
j
L ∀ j ∈ NL

∑

i∈ML

xi j ≥ b′′L
j ∀ j ∈ NL

Table 11 Followers’s optimization problem for the best and the worst solution

For best solution For worst solution

min
x∈X Z2(X1, X2)

=
( M∑

i=1

N∑

j=1

p′
i j xi j

)( M∑

i=1

N∑

j=1

q ′
i j xi j

)

min
x∈X Z2(X1, X2)

=
( M∑

i=1

N∑

j=1

p′′
i j xi j

)( M∑

i=1

N∑

j=1

q ′′
i j xi j

)

s.t. s.t.
∑

j∈NF

xi j ≤ a
′′
i
F ∀ i ∈ MF

∑

j∈NF

xi j ≤ a′F
i ∀ i ∈ MF

∑

i∈MF

xi j ≥ b
′
j
F ∀ j ∈ NF

∑

i∈MF

xi j ≥ b′′F
j ∀ j ∈ NF

where X2 solves

(P2) min
X2

Z2(X1, X2) =
( M∑

i=1

N∑

j=1

[p′
i j , p

′′
i j ]xi j

)( M∑

i=1

N∑

j=1

[q ′
i j , q

′′
i j ]xi j

)
(for a given X1)

subject to
∑

j∈NF
xi j ≤ [a′

i
F
, a

′′
i
F ] ∀ i ∈ MF ,

∑
i∈MF

xi j ≥ [b′
j
F
, b

′′
j
F ] ∀ j ∈ NF

⎫
⎬

⎭

with xi j ≥ 0 ∀ (i, j) ∈ M × N . Proceeding in the same manner as in BLFTP-NN,
we will find individual best and worst solution at both the levels. For that, again we will
follow Proposition1 for the constraints. As the objective functions are indefinite quadratic,
we proceed by taking appropriate coefficients as shown in Tables 10 and 11.

As in BLFTP-NN, after finding the best and the worst optimal solution at both the levels,
we will take target intervals of the t th level objective function and preference bounds for the
decision variables.

The proposed goal programming model to find the satisfactory solution is given by:

Min
2∑

t=1

(
Dt + Dt

)
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subject to

Zt + Dt = Y ∗∗
t ,

−Zt + Dt = −Y ∗
t ,

∑

j∈NL

xi j ≤ a
′′
i
L
,

∑

j∈NL

xi j ≥ a
′
i
L ∀ i ∈ ML ,

∑

i∈ML

xi j ≤ b
′′
j
L
,

∑

i∈ML

xi j ≥ b
′
j
L ∀ j ∈ NL ,

∑

j∈NF

xi j ≤ a
′′
i
F
,

∑

j∈NF

xi j ≥ a
′
i
F ∀ i ∈ MF ,

∑

i∈MF

xi j ≤ b
′′
j
F
,

∑

i∈MF

xi j ≥ b
′
j
F ∀ j ∈ NF ,

(xb1 )i j − (l1)i j ≤ (xb1 )i j ≤ (xb1 )i j + (u1)i j , i ∈ ML , j ∈ NL ,

(xb2 )i j − (l2)i j ≤ (xb2 )i j ≤ (xb2 )i j + (u2)i j , i ∈ MF , j ∈ NF ,

Dt , Dt , X ≥ 0, t = 1, 2.

8 Numerical illustration of BLIQTP-NN

8.1 Problem definition

The problem definition and assumptions are the same as in Section 6.1.

8.2 Solved numerical (BLIQTP-NN)

In this illustration, the leader’s (vaccine manufacturer) objective function is indefinite
quadratic & aims at minimizing the product of the neutrosophic transportation cost and
neutrosophic depreciation cost when vaccines are transported from manufacturing units to
distribution centres. The follower’s (distributor) objective function is also indefinite quadratic
and aims at minimizing the product of neutrosophic transportation cost and neutrosophic
depreciation cost when vaccine travels from distribution centres to the health centres for
administration.

At the upper level, let the manufacturing units (MU) have 4 + 3I, 6 + 2I, 5 + 3I and 5 +
2I as their respective supply quantity. Let the distribution centres have 5 + 4I, 3 + 3I, 3 + 3I
and 5 + 4I as their respective demands. At the lower level, let the health centres have 4 +
2I, 5 + 3I, 6 + 2I and 5 + I as their respective demands. Here, we have taken a unbalanced
transportation problem with total supply and total demands at upper level equal to 20 + 10I
and 16 + 14I while the total supply & total demands at lower level equal to 16 + 14I and 20
+ 8I.

Tables 12 and 13 represents the neutrosophic transportation cost and neutrosophic depreci-
ation cost at upper and lower level, respectively. In each cell (i, j) of both the tables, top entry
denotes the neutrosophic transportation cost and bottom entry denotes neutrosophic depre-
ciation cost when vaccine is transported from i th source to j th destination. The computing
software LINGO 17.0 is used to solve the problem (BLIQTP-NN).
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Table 12 Upper level neutrosophic transportation problem

MU/DC Maharashtra Tamil Nadu Rajasthan Haryana

Ahmedabad 3 + 3I 4 + I 2 + 2I 1 + 4I → [ fi j + f̃i j I]
1 + I 1 + 2I 5 + 4I 5 + 3I → [di j + d̃i j I]

Hyderabad 4 + 2I 6 + 3I 7 + 2I 9 + 2I

1 + I 7 + 3I 2 + 4I 2 + 3I

Bengaluru 4 + 3I 1 + 2I 3 + 2I 1 + I

8 + I 7 + 4I 3 + 2I 5 + 2I

Delhi 2 + 3I 3 + 4I 1 + 2I 5 + 4I

1 + 3I 8 + I 5 + 2I 6 + 2I

Table 13 Lower level neutrosophic transportation problem

DC/HC North region East region West region South region

Maharashtra 1 + 3I 2 + 3I 3 + 3I 6 + 4I → [pi j + p̃i j I]
2 + 5I 1 + 3I 2 + 2I 7 + 4I → [qi j + q̃i j I]

Tamil Nadu 1 + 6I 2 + I 4 + I 5 + I

3 + 3I 2 + I 2 + 2I 3 + 2I

Rajasthan 3 + 2I 3 + 2I 3 + 3I 4 + 3I

4 + 2I 4 + 4I 7 + 2I 2 + 3I

Haryana 3 + 4I 8 + I 1 + 3I 7 + 2I

1 + 2I 2 + 4I 5 + 4I 2 + 2I

The source and demand constraints at upper level are:

4∑

j=1

x1 j ≤ 4 + 3I,
4∑

j=1

x2 j ≤ 6 + 2I,
4∑

j=1

x3 j ≤ 5 + 3I,
4∑

j=1

x4 j ≤ 5 + 2I,

4∑

i=1

xi1 ≥ 5 + 4I,
4∑

i=1

xi2 ≥ 3 + 3I,
4∑

i=1

xi3 ≥ 3 + 3I,
4∑

i=1

xi4 ≥ 5 + 4I.

The source and demand constraints at lower level are:

4∑

j=1

x1 j ≤ 5 + 4I,
4∑

j=1

x2 j ≤ 3 + 3I,
4∑

j=1

x3 j ≤ 3 + 3I,
4∑

j=1

x4 j ≤ 5 + 4I,

4∑

i=1

xi1 ≥ 4 + 2I,
4∑

i=1

xi2 ≥ 5 + 3I,
4∑

i=1

xi3 ≥ 6 + 2I,
4∑

i=1

xi4 ≥ 5 + I.

Let, X1 = {x11, x21, x31, x41} be the variables controlled by the upper level problem and
X2 = {x12, x13, x14, x22, x23, x24, x32, x33, x34, x42, x43, x44} be the variables controlled by
the lower level problem.

Proceeding as same in Sect. 6.2, by taking I∈ [0,1], the problem reduces to a BLIQTPwith
interval coefficients. Tables 10 and 11 will be used to formulate the optimization problem for
finding best and theworst solution for both levels. Appropriate dummy source and destination
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Table 14 Individual solutions

Solution Best Worst

Upper Level Z1 = 1472 Z1 = 7395

at xb1 = at xw
1 =

(0,3,0,4,0,0,0,0,0,0,1,1,5,0,2,0) (0,4,0,0,6,0,0,0,0,0,0,5,3,0,2,0)

Solution Best Worst

Lower Level Z2 =1922 Z2 = 5280

at xb2 = at xw
2 =

(0,5,4,0,0,0,2,0,0,0,0,5,4,0,0,0) (0,5,0,0,0,3,0,0,1,0,0,2,5,0,0,0)

are added to balance the transportation problem. The individual solutions are compiled in
Table 14.

Let the target level of the leader’s objective function be given by [Y ∗
1 , Y ∗∗

1 ] =[1600,7000]
and let the target level of the follower’s objective function be [Y ∗

2 , Y ∗∗
2 ] =[2200,5200].

The goal programmingmodel developed alongwith the preference bounds on the decision
variables is represented as

Minimize (D1 + D2 + D1 + D2)

subject to

(3x11 + 4x12 + 2x13 + x14 + 4x21 + 6x22 + 7x23 + 9x24 + 4x31 + x32 + 3x33 + x34

+ 2x41 + 3x42 + x43 + 5x44) ∗ (x11 + x12 + 5x13 + 5x14 + x21 + 7x22 + 2x23 + 2x24

+ 8x31 + 7x32 + 3x33 + 5x34 + x41 + 8x42 + 5x43 + 6x44) + D1 = 7000,

(6x11 + 5x12 + 4x13 + 5x14 + 6x21 + 9x22 + 9x23 + 11x24 + 7x31 + 3x32 + 5x33
+ 2x34 + 5x41 + 7x42 + 3x43 + 9x44) ∗ (2x11 + 3x12 + 9x13 + 8x14 + 2x21 + 10x22
+ 6x23 + 5x24 + 9x31 + 11x32 + 5x33 + 7x34 + 4x41 + 9x42 + 7x43

+ 8x44)) ∗ (−1) + D1 = −1600,

(x11 + 2x12 + 3x13 + 6x14 + x21 + 2x22 + 4x23 + 5x24 + 3x31 + 3x32 + 3x33 + 4x34
+ 3x41 + 8x42 + x43 + 7x44) ∗ (2x11 + x12 + 2x13 + 7x14 + 3x21 + 2x22 + 2x23 + 3x24

+ 4x31 + 4x32 + 7x33 + 2x34 + x41 + 2x42 + 5x43 + 2x44)) + D2 = 5200,

(4x11 + 5x12 + 6x13 + 10x14 + 7x21 + 3x22 + 5x23 + 6x24 + 5x31 + 5x32 + 6x33 + 7x34
+ 7x41 + 9x42 + 4x43 + 9x44) ∗ (7x11 + 4x12 + 4x13 + 11x14 + 6x21 + 3x22 + 4x23
+ 5x24 + 6x31 + 8x32 + 9x33 + 5x34 + 3x41 + 6x42 + 9x43 + 4x44)) ∗ (−1)

+ D2 = −2200,
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Table 15 Satisfactory solution of BLIQTP-NN

Solution point Objective values of leader Objective values of follower

(0,4,1,0,0,1,5,0,0,0,0,5,5,0,0,0) (4144, 13108 ) (2244, 10292 )

x11 + x12 + x13 + x14 ≤ 7, x11 + x21 + x31 + x41 ≤ 6,
x21 + x22 + x23 + x24 ≤ 6, x12 + x22 + x32 + x42 ≤ 6,
x31 + x32 + x33 + x34 ≤ 6, x13 + x23 + x33 + x43 ≤ 6,
x41 + x42 + x43 + x44 ≤ 7, x14 + x24 + x34 + x44 ≤ 6,
x11 + x21 + x31 + x41 ≥ 5, x11 + x12 + x13 + x14 ≥ 5,
x12 + x22 + x32 + x42 ≥ 5, x21 + x22 + x23 + x24 ≥ 6,
x13 + x23 + x33 + x43 ≥ 6, x31 + x32 + x33 + x34 ≥ 5,
x14 + x24 + x34 + x44 ≥ 5, x41 + x42 + x43 + x44 ≥ 5,

0 ≤ x11 ≤ 0 + 5, 5 - 4 ≤ x12 ≤ 5 + 5, 4 - 3 ≤ x13 ≤ 4 + 3, 0 ≤ x14 ≤ 0 + 5,
0 ≤ x21 ≤ 0 + 3, 0 ≤ x22 ≤ 0 + 5, 2 - 1 ≤ x23 ≤ 2 + 5, 0 ≤ x24 ≤ 0 + 5,
0 ≤ x31 ≤ 0 + 2, 0 ≤ x32 ≤ 0 + 5, 0 ≤ x33 ≤ 0 + 5, 5 - 5 ≤ x34 ≤ 5 + 5,
5 - 4 ≤ x41 ≤ 5 + 1, 0 ≤ x42 ≤ 0 + 5, 0 ≤ x43 ≤ 0 + 5, 0 ≤ x44 ≤ 0 + 5,

xi j ≥ 0 ∀ i, j , D1, D2 ,D1 , D2 ≥ 0

The solution of the proposed goal programming model in shown in Table 15.

Sensitivity analysis

For different choices of the preference bounds of the upper and lower level decision variables,
the solution points obtained by solving the proposed model are shown in Tables 16 and 17.
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9 Flowchart for solving BLFTP-NN and BLIQTP-NN

10 Conclusion and future work

We have tried to formulate the journey of a vaccine from its manufacture to delivery using
bilevel transportation problem using two different objective functions viz. linear fractional
and indefinite quadratic. Apart from LINGO, the reported problems have also been solved
in MATHEMATICA and MATLAB and similar results were obtained.

The relevance of the paper is that it models the current issues of the transportation sector
which is trying to strategically transport the vaccinewhose supply, demand and transportation
cost is indeterminate. Pandemic situations like COVID-19 need efficient and timely solutions
of transportation sector with the cooperation of the decision makers as well. This will ulti-
mately lead to a smooth conduction of the vaccination drive and the financial management
will help in further research of vaccines and manpower management.
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Till now there is no paper in the literature which deals with BLFTP-NN and BLIQTP-
NN with neutrosophic numbers of the form P + QI . The problem can be extended to a
trilevel transportation problem,multiobjective BLTP-NN and different interval programming
methods can be employed to obtain a satisfactory solution.
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